Exemple #1
0
/* --------------------------------------------------------------------- */
static int
tmpfs_nocacheread(vm_object_t tobj, vm_pindex_t idx,
    vm_offset_t offset, size_t tlen, struct uio *uio)
{
	vm_page_t	m;
	int		error, rv;

	VM_OBJECT_LOCK(tobj);
	m = vm_page_grab(tobj, idx, VM_ALLOC_WIRED |
	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
	if (m->valid != VM_PAGE_BITS_ALL) {
		if (vm_pager_has_page(tobj, idx, NULL, NULL)) {
			rv = vm_pager_get_pages(tobj, &m, 1, 0);
			if (rv != VM_PAGER_OK) {
				vm_page_lock(m);
				vm_page_free(m);
				vm_page_unlock(m);
				VM_OBJECT_UNLOCK(tobj);
				return (EIO);
			}
		} else
			vm_page_zero_invalid(m, TRUE);
	}
	VM_OBJECT_UNLOCK(tobj);
	error = uiomove_fromphys(&m, offset, tlen, uio);
	VM_OBJECT_LOCK(tobj);
	vm_page_lock(m);
	vm_page_unwire(m, TRUE);
	vm_page_unlock(m);
	vm_page_wakeup(m);
	VM_OBJECT_UNLOCK(tobj);

	return (error);
}
Exemple #2
0
/*
 * Obtain a page pointer array and lock all pages into system memory. A segmentation violation will
 * occur here if the calling user does not have access to the submitted address.
 */
static int
via_lock_all_dma_pages(drm_via_sg_info_t *vsg,  drm_via_dmablit_t *xfer)
{
	unsigned long first_pfn = VIA_PFN(xfer->mem_addr);
	vm_page_t m;
	int i;

	vsg->num_pages = VIA_PFN(xfer->mem_addr +
	    (xfer->num_lines * xfer->mem_stride -1)) - first_pfn + 1;

	if (NULL == (vsg->pages = malloc(sizeof(vm_page_t) * vsg->num_pages,
	    DRM_MEM_DRIVER, M_NOWAIT)))
		return -ENOMEM;

	vsg->state = dr_via_pages_alloc;

	if (vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
	    (vm_offset_t)xfer->mem_addr, vsg->num_pages * PAGE_SIZE,
	    VM_PROT_READ | VM_PROT_WRITE, vsg->pages, vsg->num_pages) < 0)
		return -EACCES;

	for (i = 0; i < vsg->num_pages; i++) {
		m = vsg->pages[i];
		vm_page_lock(m);
		vm_page_wire(m);
		vm_page_unhold(m);
		vm_page_unlock(m);
	}
	vsg->state = dr_via_pages_locked;

	DRM_DEBUG("DMA pages locked\n");

	return 0;
}
Exemple #3
0
/*
 *	vm_fault_unwire:
 *
 *	Unwire a range of virtual addresses in a map.
 */
void
vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
    boolean_t fictitious)
{
	vm_paddr_t pa;
	vm_offset_t va;
	vm_page_t m;
	pmap_t pmap;

	pmap = vm_map_pmap(map);

	/*
	 * Since the pages are wired down, we must be able to get their
	 * mappings from the physical map system.
	 */
	for (va = start; va < end; va += PAGE_SIZE) {
		pa = pmap_extract(pmap, va);
		if (pa != 0) {
			pmap_change_wiring(pmap, va, FALSE);
			if (!fictitious) {
				m = PHYS_TO_VM_PAGE(pa);
				vm_page_lock(m);
				vm_page_unwire(m, TRUE);
				vm_page_unlock(m);
			}
		}
	}
}
Exemple #4
0
/*
 * Function that frees up all resources for a blit. It is usable even if the
 * blit info has only been partially built as long as the status enum is consistent
 * with the actual status of the used resources.
 */
static void
via_free_sg_info(drm_via_sg_info_t *vsg)
{
	vm_page_t page;
	int i;

	switch(vsg->state) {
	case dr_via_device_mapped:
		via_unmap_blit_from_device(vsg);
	case dr_via_desc_pages_alloc:
		for (i=0; i<vsg->num_desc_pages; ++i) {
			if (vsg->desc_pages[i] != NULL)
			    free(vsg->desc_pages[i], DRM_MEM_PAGES);
		}
		free(vsg->desc_pages, DRM_MEM_DRIVER);
	case dr_via_pages_locked:
		for (i=0; i < vsg->num_pages; ++i) {
			page = vsg->pages[i];
			vm_page_lock(page);
			vm_page_unwire(page, 0);
			vm_page_unlock(page);
		}
	case dr_via_pages_alloc:
		free(vsg->pages, DRM_MEM_DRIVER);
	default:
		vsg->state = dr_via_sg_init;
	}
	free(vsg->bounce_buffer, DRM_MEM_DRIVER);
	vsg->bounce_buffer = NULL;
	vsg->free_on_sequence = 0;
}
Exemple #5
0
/* --------------------------------------------------------------------- */
static int
tmpfs_nocacheread(vm_object_t tobj, vm_pindex_t idx,
    vm_offset_t offset, size_t tlen, struct uio *uio)
{
	vm_page_t	m;
	int		error;

	VM_OBJECT_LOCK(tobj);
	vm_object_pip_add(tobj, 1);
	m = vm_page_grab(tobj, idx, VM_ALLOC_WIRED |
	    VM_ALLOC_ZERO | VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
	if (m->valid != VM_PAGE_BITS_ALL) {
		if (vm_pager_has_page(tobj, idx, NULL, NULL)) {
			error = vm_pager_get_pages(tobj, &m, 1, 0);
			if (error != 0) {
				printf("tmpfs get pages from pager error [read]\n");
				goto out;
			}
		} else
			vm_page_zero_invalid(m, TRUE);
	}
	VM_OBJECT_UNLOCK(tobj);
	error = uiomove_fromphys(&m, offset, tlen, uio);
	VM_OBJECT_LOCK(tobj);
out:
	vm_page_lock(m);
	vm_page_unwire(m, TRUE);
	vm_page_unlock(m);
	vm_page_wakeup(m);
	vm_object_pip_subtract(tobj, 1);
	VM_OBJECT_UNLOCK(tobj);

	return (error);
}
Exemple #6
0
/*
 * Same as above, but forces the page to be detached from the object
 * and go into free pool.
 */
void
sf_ext_free_nocache(void *arg1, void *arg2)
{
	struct sf_buf *sf = arg1;
	struct sendfile_sync *sfs = arg2;
	vm_page_t pg = sf_buf_page(sf);

	sf_buf_free(sf);

	vm_page_lock(pg);
	if (vm_page_unwire(pg, PQ_NONE)) {
		vm_object_t obj;

		/* Try to free the page, but only if it is cheap to. */
		if ((obj = pg->object) == NULL)
			vm_page_free(pg);
		else if (!vm_page_xbusied(pg) && VM_OBJECT_TRYWLOCK(obj)) {
			vm_page_free(pg);
			VM_OBJECT_WUNLOCK(obj);
		} else
			vm_page_deactivate(pg);
	}
	vm_page_unlock(pg);

	if (sfs != NULL) {
		mtx_lock(&sfs->mtx);
		KASSERT(sfs->count > 0, ("Sendfile sync botchup count == 0"));
		if (--sfs->count == 0)
			cv_signal(&sfs->cv);
		mtx_unlock(&sfs->mtx);
	}
}
Exemple #7
0
/*
 * Detach mapped page and release resources back to the system.  Called
 * by mbuf(9) code when last reference to a page is freed.
 */
void
sf_ext_free(void *arg1, void *arg2)
{
	struct sf_buf *sf = arg1;
	struct sendfile_sync *sfs = arg2;
	vm_page_t pg = sf_buf_page(sf);

	sf_buf_free(sf);

	vm_page_lock(pg);
	/*
	 * Check for the object going away on us. This can
	 * happen since we don't hold a reference to it.
	 * If so, we're responsible for freeing the page.
	 */
	if (vm_page_unwire(pg, PQ_INACTIVE) && pg->object == NULL)
		vm_page_free(pg);
	vm_page_unlock(pg);

	if (sfs != NULL) {
		mtx_lock(&sfs->mtx);
		KASSERT(sfs->count > 0, ("Sendfile sync botchup count == 0"));
		if (--sfs->count == 0)
			cv_signal(&sfs->cv);
		mtx_unlock(&sfs->mtx);
	}
}
Exemple #8
0
/*
 * Fill as many pages as vm_fault has allocated for us.
 */
static int
phys_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
{
	int i;

	VM_OBJECT_ASSERT_WLOCKED(object);
	for (i = 0; i < count; i++) {
		if (m[i]->valid == 0) {
			if ((m[i]->flags & PG_ZERO) == 0)
				pmap_zero_page(m[i]);
			m[i]->valid = VM_PAGE_BITS_ALL;
		}
		KASSERT(m[i]->valid == VM_PAGE_BITS_ALL,
		    ("phys_pager_getpages: partially valid page %p", m[i]));
		KASSERT(m[i]->dirty == 0,
		    ("phys_pager_getpages: dirty page %p", m[i]));
		/* The requested page must remain busy, the others not. */
		if (i == reqpage) {
			vm_page_lock(m[i]);
			vm_page_flash(m[i]);
			vm_page_unlock(m[i]);
		} else
			vm_page_xunbusy(m[i]);
	}
	return (VM_PAGER_OK);
}
/*
 * Return the requested word from the user-space address.
 * Returns 0 if it isn't mapped.  (For what we're using it
 * for, if the actual value is 0, that's equivalent to that.)
 */
static caddr_t
GET_WORD(pmap_t map, caddr_t virtual_addr)
{
	caddr_t retval = 0;
	vm_page_t page;
	int err;
	caddr_t old_fault;
	
	page = pmap_extract_and_hold(map, (vm_offset_t)virtual_addr, VM_PROT_READ);
	if (page == 0) {
		return 0;
	}

	// I do this because copyin/copyout aren't re-entrant.
	old_fault = curpcb->pcb_onfault;
	err = copyin(virtual_addr, &retval, sizeof(retval));
	curpcb->pcb_onfault = old_fault;
	if (err != 0) {
#if SAMPLE_DEBUG
		printf("%s(%d):  copyin(%p, %p, %zd)  failed: %d\n", __FUNCTION__, __LINE__, (void*)virtual_addr, &retval, sizeof(retval), err);
#endif
		retval = 0;
	}

	vm_page_lock(page);
	vm_page_unhold(page);
	vm_page_unlock(page);
	return retval;
}
Exemple #10
0
void
vm_gpa_release(void *cookie)
{
	vm_page_t m = cookie;

	vm_page_lock(m);
	vm_page_unhold(m);
	vm_page_unlock(m);
}
Exemple #11
0
static inline void
release_page(struct faultstate *fs)
{

	vm_page_wakeup(fs->m);
	vm_page_lock(fs->m);
	vm_page_deactivate(fs->m);
	vm_page_unlock(fs->m);
	fs->m = NULL;
}
/*
 * Release a page we've previously wired.
 */
static void
zbuf_page_free(vm_page_t pp)
{

	vm_page_lock(pp);
	vm_page_unwire(pp, 0);
	if (pp->wire_count == 0 && pp->object == NULL)
		vm_page_free(pp);
	vm_page_unlock(pp);
}
Exemple #13
0
/*
 * Identify the physical page mapped at the given kernel virtual
 * address.  Insert this physical page into the given address space at
 * the given virtual address, replacing the physical page, if any,
 * that already exists there.
 */
static int
vm_pgmoveco(vm_map_t mapa, vm_offset_t kaddr, vm_offset_t uaddr)
{
    vm_map_t map = mapa;
    vm_page_t kern_pg, user_pg;
    vm_object_t uobject;
    vm_map_entry_t entry;
    vm_pindex_t upindex;
    vm_prot_t prot;
    boolean_t wired;

    KASSERT((uaddr & PAGE_MASK) == 0,
            ("vm_pgmoveco: uaddr is not page aligned"));

    /*
     * Herein the physical page is validated and dirtied.  It is
     * unwired in sf_buf_mext().
     */
    kern_pg = PHYS_TO_VM_PAGE(vtophys(kaddr));
    kern_pg->valid = VM_PAGE_BITS_ALL;
    KASSERT(kern_pg->queue == PQ_NONE && kern_pg->wire_count == 1,
            ("vm_pgmoveco: kern_pg is not correctly wired"));

    if ((vm_map_lookup(&map, uaddr,
                       VM_PROT_WRITE, &entry, &uobject,
                       &upindex, &prot, &wired)) != KERN_SUCCESS) {
        return(EFAULT);
    }
    VM_OBJECT_LOCK(uobject);
retry:
    if ((user_pg = vm_page_lookup(uobject, upindex)) != NULL) {
        if (vm_page_sleep_if_busy(user_pg, TRUE, "vm_pgmoveco"))
            goto retry;
        vm_page_lock(user_pg);
        pmap_remove_all(user_pg);
        vm_page_free(user_pg);
        vm_page_unlock(user_pg);
    } else {
        /*
         * Even if a physical page does not exist in the
         * object chain's first object, a physical page from a
         * backing object may be mapped read only.
         */
        if (uobject->backing_object != NULL)
            pmap_remove(map->pmap, uaddr, uaddr + PAGE_SIZE);
    }
    vm_page_insert(kern_pg, uobject, upindex);
    vm_page_dirty(kern_pg);
    VM_OBJECT_UNLOCK(uobject);
    vm_map_lookup_done(map, entry);
    return(KERN_SUCCESS);
}
Exemple #14
0
static void
unwire_ddp_buffer(struct ddp_buffer *db)
{
	int i;
	vm_page_t p;

	for (i = 0; i < db->npages; i++) {
		p = db->pages[i];
		vm_page_lock(p);
		vm_page_unwire(p, PQ_INACTIVE);
		vm_page_unlock(p);
	}
}
Exemple #15
0
void
exec_unmap_first_page(struct image_params *imgp)
{
	vm_page_t m;

	if (imgp->firstpage != NULL) {
		m = sf_buf_page(imgp->firstpage);
		sf_buf_free(imgp->firstpage);
		imgp->firstpage = NULL;
		vm_page_lock(m);
		vm_page_unhold(m);
		vm_page_unlock(m);
	}
}
Exemple #16
0
void
cdev_pager_free_page(vm_object_t object, vm_page_t m)
{

	VM_OBJECT_ASSERT_WLOCKED(object);
	if (object->type == OBJT_MGTDEVICE) {
		KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("unmanaged %p", m));
		pmap_remove_all(m);
		vm_page_lock(m);
		vm_page_remove(m);
		vm_page_unlock(m);
	} else if (object->type == OBJT_DEVICE)
		dev_pager_free_page(object, m);
}
Exemple #17
0
static void
wire_ddp_buffer(struct ddp_buffer *db)
{
	int i;
	vm_page_t p;

	for (i = 0; i < db->npages; i++) {
		p = db->pages[i];
		vm_page_lock(p);
		vm_page_wire(p);
		vm_page_unhold(p);
		vm_page_unlock(p);
	}
}
Exemple #18
0
int ttm_tt_swapin(struct ttm_tt *ttm)
{
	vm_object_t obj;
	vm_page_t from_page, to_page;
	int i, ret, rv;

	obj = ttm->swap_storage;

	VM_OBJECT_WLOCK(obj);
	vm_object_pip_add(obj, 1);
	for (i = 0; i < ttm->num_pages; ++i) {
		from_page = vm_page_grab(obj, i, VM_ALLOC_NOBUSY |
		    VM_ALLOC_RETRY);
		if (from_page->valid != VM_PAGE_BITS_ALL) {
			vm_page_busy(from_page);
			if (vm_pager_has_page(obj, i, NULL, NULL)) {
				rv = vm_pager_get_pages(obj, &from_page, 1, 0);
				if (rv != VM_PAGER_OK) {
					vm_page_lock(from_page);
					vm_page_free(from_page);
					vm_page_unlock(from_page);
					ret = -EIO;
					goto err_ret;
				}
			} else
				vm_page_zero_invalid(from_page, TRUE);
			vm_page_wakeup(from_page);
		}
		to_page = ttm->pages[i];
		if (unlikely(to_page == NULL)) {
			ret = -ENOMEM;
			goto err_ret;
		}
		pmap_copy_page(from_page, to_page);
	}
	vm_object_pip_wakeup(obj);
	VM_OBJECT_WUNLOCK(obj);

	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP))
		vm_object_deallocate(obj);
	ttm->swap_storage = NULL;
	ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
	return (0);

err_ret:
	vm_object_pip_wakeup(obj);
	VM_OBJECT_WUNLOCK(obj);
	return (ret);
}
Exemple #19
0
/*
 * Speed up the reclamation of up to "distance" pages that precede the
 * faulting pindex within the first object of the shadow chain.
 */
static void
vm_fault_cache_behind(const struct faultstate *fs, int distance)
{
	vm_object_t first_object, object;
	vm_page_t m, m_prev;
	vm_pindex_t pindex;

	object = fs->object;
	VM_OBJECT_ASSERT_WLOCKED(object);
	first_object = fs->first_object;
	if (first_object != object) {
		if (!VM_OBJECT_TRYWLOCK(first_object)) {
			VM_OBJECT_WUNLOCK(object);
			VM_OBJECT_WLOCK(first_object);
			VM_OBJECT_WLOCK(object);
		}
	}
	/* Neither fictitious nor unmanaged pages can be cached. */
	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
		if (fs->first_pindex < distance)
			pindex = 0;
		else
			pindex = fs->first_pindex - distance;
		if (pindex < OFF_TO_IDX(fs->entry->offset))
			pindex = OFF_TO_IDX(fs->entry->offset);
		m = first_object != object ? fs->first_m : fs->m;
		KASSERT((m->oflags & VPO_BUSY) != 0,
		    ("vm_fault_cache_behind: page %p is not busy", m));
		m_prev = vm_page_prev(m);
		while ((m = m_prev) != NULL && m->pindex >= pindex &&
		    m->valid == VM_PAGE_BITS_ALL) {
			m_prev = vm_page_prev(m);
			if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0)
				continue;
			vm_page_lock(m);
			if (m->hold_count == 0 && m->wire_count == 0) {
				pmap_remove_all(m);
				vm_page_aflag_clear(m, PGA_REFERENCED);
				if (m->dirty != 0)
					vm_page_deactivate(m);
				else
					vm_page_cache(m);
			}
			vm_page_unlock(m);
		}
	}
	if (first_object != object)
		VM_OBJECT_WUNLOCK(first_object);
}
Exemple #20
0
/*
 * Speed up the reclamation of up to "distance" pages that precede the
 * faulting pindex within the first object of the shadow chain.
 */
static void
vm_fault_cache_behind(const struct faultstate *fs, int distance)
{
	vm_object_t first_object, object;
	vm_page_t m, m_prev;
	vm_pindex_t pindex;

	object = fs->object;
	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
	first_object = fs->first_object;
	if (first_object != object) {
		if (!VM_OBJECT_TRYLOCK(first_object)) {
			VM_OBJECT_UNLOCK(object);
			VM_OBJECT_LOCK(first_object);
			VM_OBJECT_LOCK(object);
		}
	}
	if (first_object->type != OBJT_DEVICE &&
	    first_object->type != OBJT_PHYS && first_object->type != OBJT_SG) {
		if (fs->first_pindex < distance)
			pindex = 0;
		else
			pindex = fs->first_pindex - distance;
		if (pindex < OFF_TO_IDX(fs->entry->offset))
			pindex = OFF_TO_IDX(fs->entry->offset);
		m = first_object != object ? fs->first_m : fs->m;
		KASSERT((m->oflags & VPO_BUSY) != 0,
		    ("vm_fault_cache_behind: page %p is not busy", m));
		m_prev = vm_page_prev(m);
		while ((m = m_prev) != NULL && m->pindex >= pindex &&
		    m->valid == VM_PAGE_BITS_ALL) {
			m_prev = vm_page_prev(m);
			if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0)
				continue;
			vm_page_lock(m);
			if (m->hold_count == 0 && m->wire_count == 0) {
				pmap_remove_all(m);
				vm_page_aflag_clear(m, PGA_REFERENCED);
				if (m->dirty != 0)
					vm_page_deactivate(m);
				else
					vm_page_cache(m);
			}
			vm_page_unlock(m);
		}
	}
	if (first_object != object)
		VM_OBJECT_UNLOCK(first_object);
}
/*
 * Given a user pointer to a page of user memory, return an sf_buf for the
 * page.  Because we may be requesting quite a few sf_bufs, prefer failure to
 * deadlock and use SFB_NOWAIT.
 */
static struct sf_buf *
zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr)
{
	struct sf_buf *sf;
	vm_page_t pp;

	if (vm_fault_quick_hold_pages(map, uaddr, PAGE_SIZE, VM_PROT_READ |
	    VM_PROT_WRITE, &pp, 1) < 0)
		return (NULL);
	vm_page_lock(pp);
	vm_page_wire(pp);
	vm_page_unhold(pp);
	vm_page_unlock(pp);
	sf = sf_buf_alloc(pp, SFB_NOWAIT);
	if (sf == NULL) {
		zbuf_page_free(pp);
		return (NULL);
	}
	return (sf);
}
Exemple #22
0
static void
unlock_and_deallocate(struct faultstate *fs)
{

	vm_object_pip_wakeup(fs->object);
	VM_OBJECT_WUNLOCK(fs->object);
	if (fs->object != fs->first_object) {
		VM_OBJECT_WLOCK(fs->first_object);
		vm_page_lock(fs->first_m);
		vm_page_free(fs->first_m);
		vm_page_unlock(fs->first_m);
		vm_object_pip_wakeup(fs->first_object);
		VM_OBJECT_WUNLOCK(fs->first_object);
		fs->first_m = NULL;
	}
	vm_object_deallocate(fs->first_object);
	unlock_map(fs);	
	if (fs->vp != NULL) { 
		vput(fs->vp);
		fs->vp = NULL;
	}
}
Exemple #23
0
static int
privcmd_pg_fault(vm_object_t object, vm_ooffset_t offset,
    int prot, vm_page_t *mres)
{
	struct privcmd_map *map = object->handle;
	vm_pindex_t pidx;
	vm_page_t page, oldm;

	if (map->mapped != true)
		return (VM_PAGER_FAIL);

	pidx = OFF_TO_IDX(offset);
	if (pidx >= map->size || BIT_ISSET(map->size, pidx, map->err))
		return (VM_PAGER_FAIL);

	page = PHYS_TO_VM_PAGE(map->phys_base_addr + offset);
	if (page == NULL)
		return (VM_PAGER_FAIL);

	KASSERT((page->flags & PG_FICTITIOUS) != 0,
	    ("not fictitious %p", page));
	KASSERT(page->wire_count == 1, ("wire_count not 1 %p", page));
	KASSERT(vm_page_busied(page) == 0, ("page %p is busy", page));

	if (*mres != NULL) {
		oldm = *mres;
		vm_page_lock(oldm);
		vm_page_free(oldm);
		vm_page_unlock(oldm);
		*mres = NULL;
	}

	vm_page_insert(page, object, pidx);
	page->valid = VM_PAGE_BITS_ALL;
	vm_page_xbusy(page);
	*mres = page;
	return (VM_PAGER_OK);
}
Exemple #24
0
static void
socow_iodone(void *addr, void *args)
{	
	struct sf_buf *sf;
	vm_page_t pp;

	sf = args;
	pp = sf_buf_page(sf);
	sf_buf_free(sf);
	/* remove COW mapping  */
	vm_page_lock(pp);
	vm_page_cowclear(pp);
	vm_page_unwire(pp, 0);
	/*
	 * Check for the object going away on us. This can
	 * happen since we don't hold a reference to it.
	 * If so, we're responsible for freeing the page.
	 */
	if (pp->wire_count == 0 && pp->object == NULL)
		vm_page_free(pp);
	vm_page_unlock(pp);
	socow_stats.iodone++;
}
Exemple #25
0
/* See: old_dev_pager_fault() in device_pager.c as an example. */
static int
cheri_compositor_cfb_pg_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot,
    vm_page_t *mres)
{
	vm_pindex_t pidx;
	vm_paddr_t paddr;
	vm_page_t page;
	struct cfb_vm_object *cfb_vm_obj;
	struct cdev *dev;
	struct cheri_compositor_softc *sc;
	struct cdevsw *csw;
	vm_memattr_t memattr;
	int ref;
	int retval;

	pidx = OFF_TO_IDX(offset);

	VM_OBJECT_WUNLOCK(vm_obj);

	cfb_vm_obj = vm_obj->handle;
	dev = cfb_vm_obj->dev;
	sc = dev->si_drv1;

	retval = VM_PAGER_OK;

	CHERI_COMPOSITOR_DEBUG(sc, "vm_obj: %p, offset: %lu, prot: %i", vm_obj,
	    offset, prot);

	csw = dev_refthread(dev, &ref);

	if (csw == NULL) {
		retval = VM_PAGER_FAIL;
		goto done_unlocked;
	}

	/* Traditional d_mmap() call. */
	CHERI_COMPOSITOR_DEBUG(sc, "offset: %lu, nprot: %i", offset, prot);

	if (validate_prot_and_offset(sc, cfb_vm_obj->pool->mapped_fd,
	    prot, offset) != 0) {
		retval = VM_PAGER_FAIL;
		goto done_unlocked;
	}

	paddr = calculate_physical_address(sc, cfb_vm_obj->pool, offset);
	memattr = VM_MEMATTR_UNCACHEABLE;

	CHERI_COMPOSITOR_DEBUG(sc, "paddr: %p, memattr: %i",
	    (void *) paddr, memattr);

	dev_relthread(dev, ref);

	/* Sanity checks. */
	KASSERT((((*mres)->flags & PG_FICTITIOUS) == 0),
	    ("Expected non-fictitious page."));

	/*
	 * Replace the passed in reqpage page with our own fake page and
	 * free up the all of the original pages.
	 */
	page = vm_page_getfake(paddr, memattr);
	VM_OBJECT_WLOCK(vm_obj);
	vm_page_lock(*mres);
	vm_page_free(*mres);
	vm_page_unlock(*mres);
	*mres = page;
	vm_page_insert(page, vm_obj, pidx);

	page->valid = VM_PAGE_BITS_ALL;

	/* Success! */
	retval = VM_PAGER_OK;
	goto done;

done_unlocked:
	VM_OBJECT_WLOCK(vm_obj);
done:
	CHERI_COMPOSITOR_DEBUG(sc, "Finished with mres: %p (retval: %i)", *mres,
	    retval);

	return (retval);
}
Exemple #26
0
/*
 *	Routine:
 *		vm_fault_copy_entry
 *	Function:
 *		Create new shadow object backing dst_entry with private copy of
 *		all underlying pages. When src_entry is equal to dst_entry,
 *		function implements COW for wired-down map entry. Otherwise,
 *		it forks wired entry into dst_map.
 *
 *	In/out conditions:
 *		The source and destination maps must be locked for write.
 *		The source map entry must be wired down (or be a sharing map
 *		entry corresponding to a main map entry that is wired down).
 */
void
vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
    vm_ooffset_t *fork_charge)
{
	vm_object_t backing_object, dst_object, object, src_object;
	vm_pindex_t dst_pindex, pindex, src_pindex;
	vm_prot_t access, prot;
	vm_offset_t vaddr;
	vm_page_t dst_m;
	vm_page_t src_m;
	boolean_t src_readonly, upgrade;

#ifdef	lint
	src_map++;
#endif	/* lint */

	upgrade = src_entry == dst_entry;

	src_object = src_entry->object.vm_object;
	src_pindex = OFF_TO_IDX(src_entry->offset);
	src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;

	/*
	 * Create the top-level object for the destination entry. (Doesn't
	 * actually shadow anything - we copy the pages directly.)
	 */
	dst_object = vm_object_allocate(OBJT_DEFAULT,
	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
#if VM_NRESERVLEVEL > 0
	dst_object->flags |= OBJ_COLORED;
	dst_object->pg_color = atop(dst_entry->start);
#endif

	VM_OBJECT_WLOCK(dst_object);
	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
	    ("vm_fault_copy_entry: vm_object not NULL"));
	dst_entry->object.vm_object = dst_object;
	dst_entry->offset = 0;
	dst_object->charge = dst_entry->end - dst_entry->start;
	if (fork_charge != NULL) {
		KASSERT(dst_entry->cred == NULL,
		    ("vm_fault_copy_entry: leaked swp charge"));
		dst_object->cred = curthread->td_ucred;
		crhold(dst_object->cred);
		*fork_charge += dst_object->charge;
	} else {
		dst_object->cred = dst_entry->cred;
		dst_entry->cred = NULL;
	}
	access = prot = dst_entry->protection;
	/*
	 * If not an upgrade, then enter the mappings in the pmap as
	 * read and/or execute accesses.  Otherwise, enter them as
	 * write accesses.
	 *
	 * A writeable large page mapping is only created if all of
	 * the constituent small page mappings are modified. Marking
	 * PTEs as modified on inception allows promotion to happen
	 * without taking potentially large number of soft faults.
	 */
	if (!upgrade)
		access &= ~VM_PROT_WRITE;

	/*
	 * Loop through all of the virtual pages within the entry's
	 * range, copying each page from the source object to the
	 * destination object.  Since the source is wired, those pages
	 * must exist.  In contrast, the destination is pageable.
	 * Since the destination object does share any backing storage
	 * with the source object, all of its pages must be dirtied,
	 * regardless of whether they can be written.
	 */
	for (vaddr = dst_entry->start, dst_pindex = 0;
	    vaddr < dst_entry->end;
	    vaddr += PAGE_SIZE, dst_pindex++) {

		/*
		 * Allocate a page in the destination object.
		 */
		do {
			dst_m = vm_page_alloc(dst_object, dst_pindex,
			    VM_ALLOC_NORMAL);
			if (dst_m == NULL) {
				VM_OBJECT_WUNLOCK(dst_object);
				VM_WAIT;
				VM_OBJECT_WLOCK(dst_object);
			}
		} while (dst_m == NULL);

		/*
		 * Find the page in the source object, and copy it in.
		 * (Because the source is wired down, the page will be in
		 * memory.)
		 */
		VM_OBJECT_WLOCK(src_object);
		object = src_object;
		pindex = src_pindex + dst_pindex;
		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
		    src_readonly &&
		    (backing_object = object->backing_object) != NULL) {
			/*
			 * Allow fallback to backing objects if we are reading.
			 */
			VM_OBJECT_WLOCK(backing_object);
			pindex += OFF_TO_IDX(object->backing_object_offset);
			VM_OBJECT_WUNLOCK(object);
			object = backing_object;
		}
		if (src_m == NULL)
			panic("vm_fault_copy_wired: page missing");
		pmap_copy_page(src_m, dst_m);
		VM_OBJECT_WUNLOCK(object);
		dst_m->valid = VM_PAGE_BITS_ALL;
		dst_m->dirty = VM_PAGE_BITS_ALL;
		VM_OBJECT_WUNLOCK(dst_object);

		/*
		 * Enter it in the pmap. If a wired, copy-on-write
		 * mapping is being replaced by a write-enabled
		 * mapping, then wire that new mapping.
		 */
		pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);

		/*
		 * Mark it no longer busy, and put it on the active list.
		 */
		VM_OBJECT_WLOCK(dst_object);
		
		if (upgrade) {
			vm_page_lock(src_m);
			vm_page_unwire(src_m, 0);
			vm_page_unlock(src_m);

			vm_page_lock(dst_m);
			vm_page_wire(dst_m);
			vm_page_unlock(dst_m);
		} else {
			vm_page_lock(dst_m);
			vm_page_activate(dst_m);
			vm_page_unlock(dst_m);
		}
		vm_page_wakeup(dst_m);
	}
	VM_OBJECT_WUNLOCK(dst_object);
	if (upgrade) {
		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
		vm_object_deallocate(src_object);
	}
}
Exemple #27
0
int
vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
    int fault_flags, vm_page_t *m_hold)
{
	vm_prot_t prot;
	long ahead, behind;
	int alloc_req, era, faultcount, nera, reqpage, result;
	boolean_t growstack, is_first_object_locked, wired;
	int map_generation;
	vm_object_t next_object;
	vm_page_t marray[VM_FAULT_READ_MAX];
	int hardfault;
	struct faultstate fs;
	struct vnode *vp;
	int locked, error;

	hardfault = 0;
	growstack = TRUE;
	PCPU_INC(cnt.v_vm_faults);
	fs.vp = NULL;
	faultcount = reqpage = 0;

RetryFault:;

	/*
	 * Find the backing store object and offset into it to begin the
	 * search.
	 */
	fs.map = map;
	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
	    &fs.first_object, &fs.first_pindex, &prot, &wired);
	if (result != KERN_SUCCESS) {
		if (growstack && result == KERN_INVALID_ADDRESS &&
		    map != kernel_map) {
			result = vm_map_growstack(curproc, vaddr);
			if (result != KERN_SUCCESS)
				return (KERN_FAILURE);
			growstack = FALSE;
			goto RetryFault;
		}
		return (result);
	}

	map_generation = fs.map->timestamp;

	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
		panic("vm_fault: fault on nofault entry, addr: %lx",
		    (u_long)vaddr);
	}

	/*
	 * Make a reference to this object to prevent its disposal while we
	 * are messing with it.  Once we have the reference, the map is free
	 * to be diddled.  Since objects reference their shadows (and copies),
	 * they will stay around as well.
	 *
	 * Bump the paging-in-progress count to prevent size changes (e.g. 
	 * truncation operations) during I/O.  This must be done after
	 * obtaining the vnode lock in order to avoid possible deadlocks.
	 */
	VM_OBJECT_WLOCK(fs.first_object);
	vm_object_reference_locked(fs.first_object);
	vm_object_pip_add(fs.first_object, 1);

	fs.lookup_still_valid = TRUE;

	if (wired)
		fault_type = prot | (fault_type & VM_PROT_COPY);

	fs.first_m = NULL;

	/*
	 * Search for the page at object/offset.
	 */
	fs.object = fs.first_object;
	fs.pindex = fs.first_pindex;
	while (TRUE) {
		/*
		 * If the object is dead, we stop here
		 */
		if (fs.object->flags & OBJ_DEAD) {
			unlock_and_deallocate(&fs);
			return (KERN_PROTECTION_FAILURE);
		}

		/*
		 * See if page is resident
		 */
		fs.m = vm_page_lookup(fs.object, fs.pindex);
		if (fs.m != NULL) {
			/* 
			 * check for page-based copy on write.
			 * We check fs.object == fs.first_object so
			 * as to ensure the legacy COW mechanism is
			 * used when the page in question is part of
			 * a shadow object.  Otherwise, vm_page_cowfault()
			 * removes the page from the backing object, 
			 * which is not what we want.
			 */
			vm_page_lock(fs.m);
			if ((fs.m->cow) && 
			    (fault_type & VM_PROT_WRITE) &&
			    (fs.object == fs.first_object)) {
				vm_page_cowfault(fs.m);
				unlock_and_deallocate(&fs);
				goto RetryFault;
			}

			/*
			 * Wait/Retry if the page is busy.  We have to do this
			 * if the page is busy via either VPO_BUSY or 
			 * vm_page_t->busy because the vm_pager may be using
			 * vm_page_t->busy for pageouts ( and even pageins if
			 * it is the vnode pager ), and we could end up trying
			 * to pagein and pageout the same page simultaneously.
			 *
			 * We can theoretically allow the busy case on a read
			 * fault if the page is marked valid, but since such
			 * pages are typically already pmap'd, putting that
			 * special case in might be more effort then it is 
			 * worth.  We cannot under any circumstances mess
			 * around with a vm_page_t->busy page except, perhaps,
			 * to pmap it.
			 */
			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
				/*
				 * Reference the page before unlocking and
				 * sleeping so that the page daemon is less
				 * likely to reclaim it. 
				 */
				vm_page_aflag_set(fs.m, PGA_REFERENCED);
				vm_page_unlock(fs.m);
				if (fs.object != fs.first_object) {
					if (!VM_OBJECT_TRYWLOCK(
					    fs.first_object)) {
						VM_OBJECT_WUNLOCK(fs.object);
						VM_OBJECT_WLOCK(fs.first_object);
						VM_OBJECT_WLOCK(fs.object);
					}
					vm_page_lock(fs.first_m);
					vm_page_free(fs.first_m);
					vm_page_unlock(fs.first_m);
					vm_object_pip_wakeup(fs.first_object);
					VM_OBJECT_WUNLOCK(fs.first_object);
					fs.first_m = NULL;
				}
				unlock_map(&fs);
				if (fs.m == vm_page_lookup(fs.object,
				    fs.pindex)) {
					vm_page_sleep_if_busy(fs.m, TRUE,
					    "vmpfw");
				}
				vm_object_pip_wakeup(fs.object);
				VM_OBJECT_WUNLOCK(fs.object);
				PCPU_INC(cnt.v_intrans);
				vm_object_deallocate(fs.first_object);
				goto RetryFault;
			}
			vm_page_remque(fs.m);
			vm_page_unlock(fs.m);

			/*
			 * Mark page busy for other processes, and the 
			 * pagedaemon.  If it still isn't completely valid
			 * (readable), jump to readrest, else break-out ( we
			 * found the page ).
			 */
			vm_page_busy(fs.m);
			if (fs.m->valid != VM_PAGE_BITS_ALL)
				goto readrest;
			break;
		}

		/*
		 * Page is not resident, If this is the search termination
		 * or the pager might contain the page, allocate a new page.
		 */
		if (TRYPAGER || fs.object == fs.first_object) {
			if (fs.pindex >= fs.object->size) {
				unlock_and_deallocate(&fs);
				return (KERN_PROTECTION_FAILURE);
			}

			/*
			 * Allocate a new page for this object/offset pair.
			 *
			 * Unlocked read of the p_flag is harmless. At
			 * worst, the P_KILLED might be not observed
			 * there, and allocation can fail, causing
			 * restart and new reading of the p_flag.
			 */
			fs.m = NULL;
			if (!vm_page_count_severe() || P_KILLED(curproc)) {
#if VM_NRESERVLEVEL > 0
				if ((fs.object->flags & OBJ_COLORED) == 0) {
					fs.object->flags |= OBJ_COLORED;
					fs.object->pg_color = atop(vaddr) -
					    fs.pindex;
				}
#endif
				alloc_req = P_KILLED(curproc) ?
				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
				if (fs.object->type != OBJT_VNODE &&
				    fs.object->backing_object == NULL)
					alloc_req |= VM_ALLOC_ZERO;
				fs.m = vm_page_alloc(fs.object, fs.pindex,
				    alloc_req);
			}
			if (fs.m == NULL) {
				unlock_and_deallocate(&fs);
				VM_WAITPFAULT;
				goto RetryFault;
			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
				break;
		}

readrest:
		/*
		 * We have found a valid page or we have allocated a new page.
		 * The page thus may not be valid or may not be entirely 
		 * valid.
		 *
		 * Attempt to fault-in the page if there is a chance that the
		 * pager has it, and potentially fault in additional pages
		 * at the same time.
		 */
		if (TRYPAGER) {
			int rv;
			u_char behavior = vm_map_entry_behavior(fs.entry);

			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
			    P_KILLED(curproc)) {
				behind = 0;
				ahead = 0;
			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
				behind = 0;
				ahead = atop(fs.entry->end - vaddr) - 1;
				if (ahead > VM_FAULT_READ_AHEAD_MAX)
					ahead = VM_FAULT_READ_AHEAD_MAX;
				if (fs.pindex == fs.entry->next_read)
					vm_fault_cache_behind(&fs,
					    VM_FAULT_READ_MAX);
			} else {
				/*
				 * If this is a sequential page fault, then
				 * arithmetically increase the number of pages
				 * in the read-ahead window.  Otherwise, reset
				 * the read-ahead window to its smallest size.
				 */
				behind = atop(vaddr - fs.entry->start);
				if (behind > VM_FAULT_READ_BEHIND)
					behind = VM_FAULT_READ_BEHIND;
				ahead = atop(fs.entry->end - vaddr) - 1;
				era = fs.entry->read_ahead;
				if (fs.pindex == fs.entry->next_read) {
					nera = era + behind;
					if (nera > VM_FAULT_READ_AHEAD_MAX)
						nera = VM_FAULT_READ_AHEAD_MAX;
					behind = 0;
					if (ahead > nera)
						ahead = nera;
					if (era == VM_FAULT_READ_AHEAD_MAX)
						vm_fault_cache_behind(&fs,
						    VM_FAULT_CACHE_BEHIND);
				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
					ahead = VM_FAULT_READ_AHEAD_MIN;
				if (era != ahead)
					fs.entry->read_ahead = ahead;
			}

			/*
			 * Call the pager to retrieve the data, if any, after
			 * releasing the lock on the map.  We hold a ref on
			 * fs.object and the pages are VPO_BUSY'd.
			 */
			unlock_map(&fs);

			if (fs.object->type == OBJT_VNODE) {
				vp = fs.object->handle;
				if (vp == fs.vp)
					goto vnode_locked;
				else if (fs.vp != NULL) {
					vput(fs.vp);
					fs.vp = NULL;
				}
				locked = VOP_ISLOCKED(vp);

				if (locked != LK_EXCLUSIVE)
					locked = LK_SHARED;
				/* Do not sleep for vnode lock while fs.m is busy */
				error = vget(vp, locked | LK_CANRECURSE |
				    LK_NOWAIT, curthread);
				if (error != 0) {
					vhold(vp);
					release_page(&fs);
					unlock_and_deallocate(&fs);
					error = vget(vp, locked | LK_RETRY |
					    LK_CANRECURSE, curthread);
					vdrop(vp);
					fs.vp = vp;
					KASSERT(error == 0,
					    ("vm_fault: vget failed"));
					goto RetryFault;
				}
				fs.vp = vp;
			}
vnode_locked:
			KASSERT(fs.vp == NULL || !fs.map->system_map,
			    ("vm_fault: vnode-backed object mapped by system map"));

			/*
			 * now we find out if any other pages should be paged
			 * in at this time this routine checks to see if the
			 * pages surrounding this fault reside in the same
			 * object as the page for this fault.  If they do,
			 * then they are faulted in also into the object.  The
			 * array "marray" returned contains an array of
			 * vm_page_t structs where one of them is the
			 * vm_page_t passed to the routine.  The reqpage
			 * return value is the index into the marray for the
			 * vm_page_t passed to the routine.
			 *
			 * fs.m plus the additional pages are VPO_BUSY'd.
			 */
			faultcount = vm_fault_additional_pages(
			    fs.m, behind, ahead, marray, &reqpage);

			rv = faultcount ?
			    vm_pager_get_pages(fs.object, marray, faultcount,
				reqpage) : VM_PAGER_FAIL;

			if (rv == VM_PAGER_OK) {
				/*
				 * Found the page. Leave it busy while we play
				 * with it.
				 */

				/*
				 * Relookup in case pager changed page. Pager
				 * is responsible for disposition of old page
				 * if moved.
				 */
				fs.m = vm_page_lookup(fs.object, fs.pindex);
				if (!fs.m) {
					unlock_and_deallocate(&fs);
					goto RetryFault;
				}

				hardfault++;
				break; /* break to PAGE HAS BEEN FOUND */
			}
			/*
			 * Remove the bogus page (which does not exist at this
			 * object/offset); before doing so, we must get back
			 * our object lock to preserve our invariant.
			 *
			 * Also wake up any other process that may want to bring
			 * in this page.
			 *
			 * If this is the top-level object, we must leave the
			 * busy page to prevent another process from rushing
			 * past us, and inserting the page in that object at
			 * the same time that we are.
			 */
			if (rv == VM_PAGER_ERROR)
				printf("vm_fault: pager read error, pid %d (%s)\n",
				    curproc->p_pid, curproc->p_comm);
			/*
			 * Data outside the range of the pager or an I/O error
			 */
			/*
			 * XXX - the check for kernel_map is a kludge to work
			 * around having the machine panic on a kernel space
			 * fault w/ I/O error.
			 */
			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
				(rv == VM_PAGER_BAD)) {
				vm_page_lock(fs.m);
				vm_page_free(fs.m);
				vm_page_unlock(fs.m);
				fs.m = NULL;
				unlock_and_deallocate(&fs);
				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
			}
			if (fs.object != fs.first_object) {
				vm_page_lock(fs.m);
				vm_page_free(fs.m);
				vm_page_unlock(fs.m);
				fs.m = NULL;
				/*
				 * XXX - we cannot just fall out at this
				 * point, m has been freed and is invalid!
				 */
			}
		}

		/*
		 * We get here if the object has default pager (or unwiring) 
		 * or the pager doesn't have the page.
		 */
		if (fs.object == fs.first_object)
			fs.first_m = fs.m;

		/*
		 * Move on to the next object.  Lock the next object before
		 * unlocking the current one.
		 */
		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
		next_object = fs.object->backing_object;
		if (next_object == NULL) {
			/*
			 * If there's no object left, fill the page in the top
			 * object with zeros.
			 */
			if (fs.object != fs.first_object) {
				vm_object_pip_wakeup(fs.object);
				VM_OBJECT_WUNLOCK(fs.object);

				fs.object = fs.first_object;
				fs.pindex = fs.first_pindex;
				fs.m = fs.first_m;
				VM_OBJECT_WLOCK(fs.object);
			}
			fs.first_m = NULL;

			/*
			 * Zero the page if necessary and mark it valid.
			 */
			if ((fs.m->flags & PG_ZERO) == 0) {
				pmap_zero_page(fs.m);
			} else {
				PCPU_INC(cnt.v_ozfod);
			}
			PCPU_INC(cnt.v_zfod);
			fs.m->valid = VM_PAGE_BITS_ALL;
			break;	/* break to PAGE HAS BEEN FOUND */
		} else {
			KASSERT(fs.object != next_object,
			    ("object loop %p", next_object));
			VM_OBJECT_WLOCK(next_object);
			vm_object_pip_add(next_object, 1);
			if (fs.object != fs.first_object)
				vm_object_pip_wakeup(fs.object);
			VM_OBJECT_WUNLOCK(fs.object);
			fs.object = next_object;
		}
	}

	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
	    ("vm_fault: not busy after main loop"));

	/*
	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
	 * is held.]
	 */

	/*
	 * If the page is being written, but isn't already owned by the
	 * top-level object, we have to copy it into a new page owned by the
	 * top-level object.
	 */
	if (fs.object != fs.first_object) {
		/*
		 * We only really need to copy if we want to write it.
		 */
		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
			/*
			 * This allows pages to be virtually copied from a 
			 * backing_object into the first_object, where the 
			 * backing object has no other refs to it, and cannot
			 * gain any more refs.  Instead of a bcopy, we just 
			 * move the page from the backing object to the 
			 * first object.  Note that we must mark the page 
			 * dirty in the first object so that it will go out 
			 * to swap when needed.
			 */
			is_first_object_locked = FALSE;
			if (
				/*
				 * Only one shadow object
				 */
				(fs.object->shadow_count == 1) &&
				/*
				 * No COW refs, except us
				 */
				(fs.object->ref_count == 1) &&
				/*
				 * No one else can look this object up
				 */
				(fs.object->handle == NULL) &&
				/*
				 * No other ways to look the object up
				 */
				((fs.object->type == OBJT_DEFAULT) ||
				 (fs.object->type == OBJT_SWAP)) &&
			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
				/*
				 * We don't chase down the shadow chain
				 */
			    fs.object == fs.first_object->backing_object) {
				/*
				 * get rid of the unnecessary page
				 */
				vm_page_lock(fs.first_m);
				vm_page_free(fs.first_m);
				vm_page_unlock(fs.first_m);
				/*
				 * grab the page and put it into the 
				 * process'es object.  The page is 
				 * automatically made dirty.
				 */
				vm_page_lock(fs.m);
				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
				vm_page_unlock(fs.m);
				vm_page_busy(fs.m);
				fs.first_m = fs.m;
				fs.m = NULL;
				PCPU_INC(cnt.v_cow_optim);
			} else {
				/*
				 * Oh, well, lets copy it.
				 */
				pmap_copy_page(fs.m, fs.first_m);
				fs.first_m->valid = VM_PAGE_BITS_ALL;
				if (wired && (fault_flags &
				    VM_FAULT_CHANGE_WIRING) == 0) {
					vm_page_lock(fs.first_m);
					vm_page_wire(fs.first_m);
					vm_page_unlock(fs.first_m);
					
					vm_page_lock(fs.m);
					vm_page_unwire(fs.m, FALSE);
					vm_page_unlock(fs.m);
				}
				/*
				 * We no longer need the old page or object.
				 */
				release_page(&fs);
			}
			/*
			 * fs.object != fs.first_object due to above 
			 * conditional
			 */
			vm_object_pip_wakeup(fs.object);
			VM_OBJECT_WUNLOCK(fs.object);
			/*
			 * Only use the new page below...
			 */
			fs.object = fs.first_object;
			fs.pindex = fs.first_pindex;
			fs.m = fs.first_m;
			if (!is_first_object_locked)
				VM_OBJECT_WLOCK(fs.object);
			PCPU_INC(cnt.v_cow_faults);
			curthread->td_cow++;
		} else {
			prot &= ~VM_PROT_WRITE;
		}
	}

	/*
	 * We must verify that the maps have not changed since our last
	 * lookup.
	 */
	if (!fs.lookup_still_valid) {
		vm_object_t retry_object;
		vm_pindex_t retry_pindex;
		vm_prot_t retry_prot;

		if (!vm_map_trylock_read(fs.map)) {
			release_page(&fs);
			unlock_and_deallocate(&fs);
			goto RetryFault;
		}
		fs.lookup_still_valid = TRUE;
		if (fs.map->timestamp != map_generation) {
			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);

			/*
			 * If we don't need the page any longer, put it on the inactive
			 * list (the easiest thing to do here).  If no one needs it,
			 * pageout will grab it eventually.
			 */
			if (result != KERN_SUCCESS) {
				release_page(&fs);
				unlock_and_deallocate(&fs);

				/*
				 * If retry of map lookup would have blocked then
				 * retry fault from start.
				 */
				if (result == KERN_FAILURE)
					goto RetryFault;
				return (result);
			}
			if ((retry_object != fs.first_object) ||
			    (retry_pindex != fs.first_pindex)) {
				release_page(&fs);
				unlock_and_deallocate(&fs);
				goto RetryFault;
			}

			/*
			 * Check whether the protection has changed or the object has
			 * been copied while we left the map unlocked. Changing from
			 * read to write permission is OK - we leave the page
			 * write-protected, and catch the write fault. Changing from
			 * write to read permission means that we can't mark the page
			 * write-enabled after all.
			 */
			prot &= retry_prot;
		}
	}
	/*
	 * If the page was filled by a pager, update the map entry's
	 * last read offset.  Since the pager does not return the
	 * actual set of pages that it read, this update is based on
	 * the requested set.  Typically, the requested and actual
	 * sets are the same.
	 *
	 * XXX The following assignment modifies the map
	 * without holding a write lock on it.
	 */
	if (hardfault)
		fs.entry->next_read = fs.pindex + faultcount - reqpage;

	if ((prot & VM_PROT_WRITE) != 0 ||
	    (fault_flags & VM_FAULT_DIRTY) != 0) {
		vm_object_set_writeable_dirty(fs.object);

		/*
		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
		 * if the page is already dirty to prevent data written with
		 * the expectation of being synced from not being synced.
		 * Likewise if this entry does not request NOSYNC then make
		 * sure the page isn't marked NOSYNC.  Applications sharing
		 * data should use the same flags to avoid ping ponging.
		 */
		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
			if (fs.m->dirty == 0)
				fs.m->oflags |= VPO_NOSYNC;
		} else {
			fs.m->oflags &= ~VPO_NOSYNC;
		}

		/*
		 * If the fault is a write, we know that this page is being
		 * written NOW so dirty it explicitly to save on 
		 * pmap_is_modified() calls later.
		 *
		 * Also tell the backing pager, if any, that it should remove
		 * any swap backing since the page is now dirty.
		 */
		if (((fault_type & VM_PROT_WRITE) != 0 &&
		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
		    (fault_flags & VM_FAULT_DIRTY) != 0) {
			vm_page_dirty(fs.m);
			vm_pager_page_unswapped(fs.m);
		}
	}

	/*
	 * Page had better still be busy
	 */
	KASSERT(fs.m->oflags & VPO_BUSY,
		("vm_fault: page %p not busy!", fs.m));
	/*
	 * Page must be completely valid or it is not fit to
	 * map into user space.  vm_pager_get_pages() ensures this.
	 */
	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
	    ("vm_fault: page %p partially invalid", fs.m));
	VM_OBJECT_WUNLOCK(fs.object);

	/*
	 * Put this page into the physical map.  We had to do the unlock above
	 * because pmap_enter() may sleep.  We don't put the page
	 * back on the active queue until later so that the pageout daemon
	 * won't find it (yet).
	 */
	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
	if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
	VM_OBJECT_WLOCK(fs.object);
	vm_page_lock(fs.m);

	/*
	 * If the page is not wired down, then put it where the pageout daemon
	 * can find it.
	 */
	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
		if (wired)
			vm_page_wire(fs.m);
		else
			vm_page_unwire(fs.m, 1);
	} else
		vm_page_activate(fs.m);
	if (m_hold != NULL) {
		*m_hold = fs.m;
		vm_page_hold(fs.m);
	}
	vm_page_unlock(fs.m);
	vm_page_wakeup(fs.m);

	/*
	 * Unlock everything, and return
	 */
	unlock_and_deallocate(&fs);
	if (hardfault) {
		PCPU_INC(cnt.v_io_faults);
		curthread->td_ru.ru_majflt++;
	} else 
		curthread->td_ru.ru_minflt++;

	return (KERN_SUCCESS);
}
Exemple #28
0
/*
 * Hold each of the physical pages that are mapped by the specified range of
 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
 * and allow the specified types of access, "prot".  If all of the implied
 * pages are successfully held, then the number of held pages is returned
 * together with pointers to those pages in the array "ma".  However, if any
 * of the pages cannot be held, -1 is returned.
 */
int
vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
    vm_prot_t prot, vm_page_t *ma, int max_count)
{
	vm_offset_t end, va;
	vm_page_t *mp;
	int count;
	boolean_t pmap_failed;

	if (len == 0)
		return (0);
	end = round_page(addr + len);	
	addr = trunc_page(addr);

	/*
	 * Check for illegal addresses.
	 */
	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
		return (-1);

	count = howmany(end - addr, PAGE_SIZE);
	if (count > max_count)
		panic("vm_fault_quick_hold_pages: count > max_count");

	/*
	 * Most likely, the physical pages are resident in the pmap, so it is
	 * faster to try pmap_extract_and_hold() first.
	 */
	pmap_failed = FALSE;
	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
		*mp = pmap_extract_and_hold(map->pmap, va, prot);
		if (*mp == NULL)
			pmap_failed = TRUE;
		else if ((prot & VM_PROT_WRITE) != 0 &&
		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
			/*
			 * Explicitly dirty the physical page.  Otherwise, the
			 * caller's changes may go unnoticed because they are
			 * performed through an unmanaged mapping or by a DMA
			 * operation.
			 *
			 * The object lock is not held here.
			 * See vm_page_clear_dirty_mask().
			 */
			vm_page_dirty(*mp);
		}
	}
	if (pmap_failed) {
		/*
		 * One or more pages could not be held by the pmap.  Either no
		 * page was mapped at the specified virtual address or that
		 * mapping had insufficient permissions.  Attempt to fault in
		 * and hold these pages.
		 */
		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
			if (*mp == NULL && vm_fault_hold(map, va, prot,
			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
				goto error;
	}
	return (count);
error:	
	for (mp = ma; mp < ma + count; mp++)
		if (*mp != NULL) {
			vm_page_lock(*mp);
			vm_page_unhold(*mp);
			vm_page_unlock(*mp);
		}
	return (-1);
}
Exemple #29
0
static int
sg_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
{
	struct sglist *sg;
	vm_page_t m_paddr, page;
	vm_pindex_t offset;
	vm_paddr_t paddr;
	vm_memattr_t memattr;
	size_t space;
	int i;

	VM_OBJECT_ASSERT_WLOCKED(object);
	sg = object->handle;
	memattr = object->memattr;
	VM_OBJECT_WUNLOCK(object);
	offset = m[reqpage]->pindex;

	/*
	 * Lookup the physical address of the requested page.  An initial
	 * value of '1' instead of '0' is used so we can assert that the
	 * page is found since '0' can be a valid page-aligned physical
	 * address.
	 */
	space = 0;
	paddr = 1;
	for (i = 0; i < sg->sg_nseg; i++) {
		if (space + sg->sg_segs[i].ss_len <= (offset * PAGE_SIZE)) {
			space += sg->sg_segs[i].ss_len;
			continue;
		}
		paddr = sg->sg_segs[i].ss_paddr + offset * PAGE_SIZE - space;
		break;
	}
	KASSERT(paddr != 1, ("invalid SG page index"));

	/* If "paddr" is a real page, perform a sanity check on "memattr". */
	if ((m_paddr = vm_phys_paddr_to_vm_page(paddr)) != NULL &&
	    pmap_page_get_memattr(m_paddr) != memattr) {
		memattr = pmap_page_get_memattr(m_paddr);
		printf(
	    "WARNING: A device driver has set \"memattr\" inconsistently.\n");
	}

	/* Return a fake page for the requested page. */
	KASSERT(!(m[reqpage]->flags & PG_FICTITIOUS),
	    ("backing page for SG is fake"));

	/* Construct a new fake page. */
	page = vm_page_getfake(paddr, memattr);
	VM_OBJECT_WLOCK(object);
	TAILQ_INSERT_TAIL(&object->un_pager.sgp.sgp_pglist, page, plinks.q);

	/* Free the original pages and insert this fake page into the object. */
	for (i = 0; i < count; i++) {
		if (i == reqpage &&
		    vm_page_replace(page, object, offset) != m[i])
			panic("sg_pager_getpages: invalid place replacement");
		vm_page_lock(m[i]);
		vm_page_free(m[i]);
		vm_page_unlock(m[i]);
	}
	m[reqpage] = page;
	page->valid = VM_PAGE_BITS_ALL;

	return (VM_PAGER_OK);
}
Exemple #30
0
int
socow_setup(struct mbuf *m0, struct uio *uio)
{
	struct sf_buf *sf;
	vm_page_t pp;
	struct iovec *iov;
	struct vmspace *vmspace;
	struct vm_map *map;
	vm_offset_t offset, uva;

	socow_stats.attempted++;
	vmspace = curproc->p_vmspace;
	map = &vmspace->vm_map;
	uva = (vm_offset_t) uio->uio_iov->iov_base;
	offset = uva & PAGE_MASK;

	/*
	 * Verify that access to the given address is allowed from user-space.
	 */
	if (vm_fault_quick((caddr_t)uva, VM_PROT_READ) < 0)
		return (0);

       /* 
	* verify page is mapped & not already wired for i/o
	*/
	pp = pmap_extract_and_hold(map->pmap, uva, VM_PROT_READ);
	if (pp == NULL) {
		socow_stats.fail_not_mapped++;
		return(0);
	}

	/* 
	 * set up COW
	 */
	vm_page_lock(pp);
	if (vm_page_cowsetup(pp) != 0) {
		vm_page_unhold(pp);
		vm_page_unlock(pp);
		return (0);
	}

	/*
	 * wire the page for I/O
	 */
	vm_page_wire(pp);
	vm_page_unhold(pp);
	vm_page_unlock(pp);
	/*
	 * Allocate an sf buf
	 */
	sf = sf_buf_alloc(pp, SFB_CATCH);
	if (sf == NULL) {
		vm_page_lock(pp);
		vm_page_cowclear(pp);
		vm_page_unwire(pp, 0);
		/*
		 * Check for the object going away on us. This can
		 * happen since we don't hold a reference to it.
		 * If so, we're responsible for freeing the page.
		 */
		if (pp->wire_count == 0 && pp->object == NULL)
			vm_page_free(pp);
		vm_page_unlock(pp);
		socow_stats.fail_sf_buf++;
		return(0);
	}
	/* 
	 * attach to mbuf
	 */
	MEXTADD(m0, sf_buf_kva(sf), PAGE_SIZE, socow_iodone,
	    (void*)sf_buf_kva(sf), sf, M_RDONLY, EXT_SFBUF);
	m0->m_len = PAGE_SIZE - offset;
	m0->m_data = (caddr_t)sf_buf_kva(sf) + offset;
	socow_stats.success++;

	iov = uio->uio_iov;
	iov->iov_base = (char *)iov->iov_base + m0->m_len;
	iov->iov_len -= m0->m_len;
	uio->uio_resid -= m0->m_len;
	uio->uio_offset += m0->m_len;
	if (iov->iov_len == 0) {
		uio->uio_iov++;
		uio->uio_iovcnt--;
	}

	return(m0->m_len);
}