PView *GMSH_CVTRemeshPlugin::execute(PView *v) { //TODO normalization GModel* m = GModel::current() ; std::vector<double> vertices ; std::vector<unsigned int> faces ; unsigned int offset = 0 ; for(GModel::fiter it = m->firstFace(); it != m->lastFace(); ++it) { (*it)->buildSTLTriangulation() ; for(unsigned int i = 0; i < (*it)->stl_vertices.size(); ++i) { GPoint p = (*it)->point((*it)->stl_vertices[i]) ; vertices.push_back(p.x()) ; vertices.push_back(p.y()) ; vertices.push_back(p.z()) ; } for(unsigned int i = 0; i < (*it)->stl_triangles.size(); ++i) { faces.push_back((*it)->stl_triangles[i]+offset) ; } offset += (*it)->stl_vertices.size() ; } Revoropt::MeshBuilder<3> mesh ; mesh.swap_vertices(vertices) ; mesh.swap_faces(faces) ; double mesh_center[3] ; double mesh_scale ; Revoropt::normalize_mesh(&mesh, mesh_center, &mesh_scale) ; double nradius = (double)CVTRemeshOptions_Number[5].def ; //normals std::vector<double> normals(3*mesh.vertices_size()) ; Revoropt::full_robust_vertex_normals(&mesh,nradius,normals.data()) ; //lifted vertices std::vector<double> lifted_vertices(6*mesh.vertices_size(), 0) ; for(unsigned int vertex = 0; vertex < mesh.vertices_size(); ++vertex) { std::copy( mesh.vertex(vertex), mesh.vertex(vertex)+3, lifted_vertices.data()+6*vertex ) ; std::copy( normals.data()+3*vertex, normals.data()+3*vertex+3, lifted_vertices.data()+6*vertex+3 ) ; } //setup lifted mesh Revoropt::ROMeshWrapper<3,6> lifted_mesh( lifted_vertices.data(), lifted_vertices.size()/6, &mesh ) ; //triangle weight factor double twfactor = (double)CVTRemeshOptions_Number[3].def ; //face ratios std::vector<double> triangle_weights(lifted_mesh.faces_size()) ; if(twfactor > 0) { for(unsigned int f = 0; f < lifted_mesh.faces_size(); ++f) { //vertices of the initial triangle const unsigned int* fverts = mesh.face(f) ; //positions const double* x[3] ; for(int i=0; i<3; ++i) { x[i] = lifted_mesh.vertex(fverts[i]) ; } //ratio double ratio = 1 ; //vectors typedef Eigen::Matrix<double,3,1> Vector3 ; Eigen::Map<const Vector3> v0(x[0]) ; Eigen::Map<const Vector3> v1(x[1]) ; Eigen::Map<const Vector3> v2(x[2]) ; //triangle frame Vector3 U = (v1-v0) ; const double U_len = U.norm() ; if(U_len > 0) { U /= U_len ; Vector3 H = (v2-v0) ; H = H - H.dot(U)*U ; const double H_len = H.norm() ; if(H_len > 0) { //we know that the triangle is not flat H /= H_len ; //gradient of the barycentric weights in the triangle Eigen::Matrix<double,3,2> bar_grads ; bar_grads(2,0) = 0 ; bar_grads(2,1) = 1/H_len ; //gradient norms of every normal component for(int i = 0; i < 2; ++i) { //reference frame for the vertex Eigen::Map<const Vector3> vi0(x[(i+1)%3]) ; Eigen::Map<const Vector3> vi1(x[(i+2)%3]) ; Eigen::Map<const Vector3> vi2(x[ i ]) ; Vector3 Ui = (vi1-vi0) ; Ui /= Ui.norm() ; Vector3 Hi = (vi2-vi0) ; Hi = Hi - Hi.dot(Ui)*Ui ; const double Hi_invlen = 1/Hi.norm() ; Hi *= Hi_invlen ; bar_grads(i,0) = Hi.dot(U)*Hi_invlen ; bar_grads(i,1) = Hi.dot(H)*Hi_invlen ; } //gradient of each component of the normal Eigen::Map<const Vector3> n0(x[0]+3) ; Eigen::Map<const Vector3> n1(x[1]+3) ; Eigen::Map<const Vector3> n2(x[2]+3) ; Eigen::Matrix<double,3,2> n_grads = Eigen::Matrix<double,3,2>::Zero() ; n_grads = n0*bar_grads.row(0) ; n_grads += n1*bar_grads.row(1) ; n_grads += n2*bar_grads.row(2) ; //maximal gradient norm double g_max = n_grads.row(0).dot(n_grads.row(0)) ; double g_other = n_grads.row(1).dot(n_grads.row(1)) ; g_max = g_max > g_other ? g_max : g_other ; g_other = n_grads.row(2).dot(n_grads.row(2)) ; g_max = g_max > g_other ? g_max : g_other ; if(g_max == g_max) { //prevent nan ratio += g_max ; } } } triangle_weights[f] = pow(ratio,twfactor) ; } } //normal factor double nfactor = (double)CVTRemeshOptions_Number[2].def ; ; //weight the normal component by the provided factor for(unsigned int i = 0; i<lifted_mesh.vertices_size(); ++i) { double* v = lifted_vertices.data() + 6*i ; v[3]*= nfactor ; v[4]*= nfactor ; v[5]*= nfactor ; } //number of sites unsigned int nsites = (unsigned int)CVTRemeshOptions_Number[0].def ; //lifted sites std::vector<double> lifted_sites(6*nsites) ; if(twfactor > 0) { Revoropt::generate_random_sites< Revoropt::ROMesh<3,6> >( &lifted_mesh, nsites, lifted_sites.data(), triangle_weights.data() ) ; } else { Revoropt::generate_random_sites< Revoropt::ROMesh<3,6> >( &lifted_mesh, nsites, lifted_sites.data() ) ; } //setup the cvt minimizer Revoropt::CVT::DirectMinimizer< Revoropt::ROMesh<3,6> > cvt ; cvt.set_sites(lifted_sites.data(), nsites) ; cvt.set_mesh(&lifted_mesh) ; if(twfactor > 0) { cvt.set_triangle_weights(triangle_weights.data()) ; } //setup the callback SolverCallback callback ; //number of iterations unsigned int niter = (unsigned int)CVTRemeshOptions_Number[1].def ; ; unsigned int aniso_niter = std::min<unsigned int>(10,niter) ; //solver status int status = 0 ; //isotropic iterations if(niter > 10) { aniso_niter = std::max(aniso_niter,niter*10/100) ; cvt.set_anisotropy(1) ; status = cvt.minimize<Revoropt::Solver::AlgLBFGS>(niter-aniso_niter, &callback) ; } //anisotropic iterations if(niter > 0) { //tangent space anisotropy double tanisotropy = (double)CVTRemeshOptions_Number[4].def ; ; //anisotropic iterations cvt.set_anisotropy(tanisotropy) ; status = cvt.minimize<Revoropt::Solver::AlgLBFGS>(aniso_niter, &callback) ; } //rdt std::vector<unsigned int> rdt_triangles ; Revoropt::RDTBuilder< Revoropt::ROMesh<3,6> > build_rdt(rdt_triangles) ; Revoropt::RVD< Revoropt::ROMesh<3,6> > rvd ; rvd.set_sites(lifted_sites.data(), nsites) ; rvd.set_mesh(&lifted_mesh) ; rvd.compute(build_rdt) ; GFace* res_face = new discreteFace(m, m->getMaxElementaryNumber(2)+1) ; m->add(res_face) ; //scale back and transfer to gmsh std::vector<MVertex*> m_verts(nsites) ; for(unsigned int i = 0; i < nsites; ++i) { m_verts[i] = new MVertex( lifted_sites[6*i ]*mesh_scale + mesh_center[0], lifted_sites[6*i+1]*mesh_scale + mesh_center[1], lifted_sites[6*i+2]*mesh_scale + mesh_center[2] ) ; res_face->addMeshVertex(m_verts[i]) ; } for(unsigned int i = 0; i < rdt_triangles.size()/3; ++i) { res_face->addTriangle( new MTriangle( m_verts[rdt_triangles[3*i ]], m_verts[rdt_triangles[3*i+1]], m_verts[rdt_triangles[3*i+2]] ) ) ; } res_face->setAllElementsVisible(true) ; return v ; }
PView *GMSH_BubblesPlugin::execute(PView *v) { double shrink = (double)BubblesOptions_Number[0].def; std::string fileName = BubblesOptions_String[0].def; FILE *fp = Fopen(fileName.c_str(), "w"); if(!fp){ Msg::Error("Could not open output file '%s'", fileName.c_str()); return v; } GModel *m = GModel::current(); int p = m->getMaxElementaryNumber(0) + 1; int l = m->getMaxElementaryNumber(1) + 1; int s = m->getMaxElementaryNumber(2) + 1; int ll = s, ps = 1; SBoundingBox3d bbox = m->bounds(); double lc = norm(SVector3(bbox.max(), bbox.min())) / 100; fprintf(fp, "lc = %g;\n", lc); for(GModel::viter vit = m->firstVertex(); vit != m->lastVertex(); vit++) (*vit)->writeGEO(fp, "lc"); for(GModel::eiter eit = m->firstEdge(); eit != m->lastEdge(); eit++) (*eit)->writeGEO(fp); for(GModel::fiter fit = m->firstFace(); fit != m->lastFace(); fit++){ (*fit)->writeGEO(fp); fprintf(fp, "Delete { Surface {%d}; }\n", (*fit)->tag()); int sbeg = s; int llbeg = ll; // compute vertex-to-triangle_barycenter map std::map<MVertex*, std::vector<SPoint3> > v2t; for(unsigned int i = 0; i < (*fit)->triangles.size(); i++) for(int j = 0; j < 3; j++) v2t[(*fit)->triangles[i]->getVertex(j)].push_back((*fit)->triangles[i]->barycenter()); // add boundary vertices in map to get cells "closer" to the boundary for(std::map<MVertex*, std::vector<SPoint3> >::iterator it = v2t.begin(); it != v2t.end(); it++){ MVertex *v = it->first; if(v->onWhat() && v->onWhat()->dim() < 2) it->second.push_back(SPoint3(it->first->x(), it->first->y(), it->first->z())); } for(std::map<MVertex*, std::vector<SPoint3> >::iterator it = v2t.begin(); it != v2t.end(); it++){ if(it->second.size() > 2){ // get barycenter of cell boundary points and order them SPoint3 bc; for(unsigned int i = 0; i < it->second.size(); i++) bc += it->second[i]; bc *= 1. / (double)it->second.size(); compareAngle comp(bc); std::sort(it->second.begin(), it->second.end(), comp); // shrink cells if(shrink){ for(unsigned int i = 0; i < it->second.size(); i++){ double dir[3] = {it->second[i].x() - bc.x(), it->second[i].y() - bc.y(), it->second[i].z() - bc.z()}; it->second[i][0] -= shrink * dir[0]; it->second[i][1] -= shrink * dir[1]; it->second[i][2] -= shrink * dir[2]; } } // create b-spline bounded surface for each cell int nump = it->second.size(); for(int i = 0; i < nump; i++){ SPoint3 &b(it->second[i]); fprintf(fp, "Point(%d) = {%.16g, %.16g, %.16g, lc};\n", p++, b.x(), b.y(), b.z()); } fprintf(fp, "BSpline(%d) = {", l++); for(int i = nump - 1; i >= 0; i--) fprintf(fp, "%d,", p - i - 1); fprintf(fp, "%d};\n", p - nump); fprintf(fp, "Line Loop(%d) = {%d};\n", ll++, l - 1); fprintf(fp, "Plane Surface(%d) = {%d};\n", s++, ll - 1); } } fprintf(fp, "Physical Surface(%d) = {%d:%d};\n", ps++, sbeg, s - 1); fprintf(fp, "Plane Surface(%d) = {%d, %d:%d};\n", s++, (*fit)->tag(), llbeg, ll - 1); fprintf(fp, "Physical Surface(%d) = {%d};\n", ps++, s - 1); } fclose(fp); return v; }