/// addPassesToEmitMC - Add passes to the specified pass manager to get
/// machine code emitted with the MCJIT. This method returns true if machine
/// code is not supported. It fills the MCContext Ctx pointer which can be
/// used to build custom MCStreamer.
///
bool LLVMTargetMachine::addPassesToEmitMC(PassManagerBase &PM,
                                          MCContext *&Ctx,
                                          raw_ostream &Out,
                                          bool DisableVerify) {
  // Add common CodeGen passes.
  Ctx = addPassesToGenerateCode(this, PM, DisableVerify);
  if (!Ctx)
    return true;

  if (hasMCSaveTempLabels())
    Ctx->setAllowTemporaryLabels(false);

  // Create the code emitter for the target if it exists.  If not, .o file
  // emission fails.
  const MCSubtargetInfo &STI = getSubtarget<MCSubtargetInfo>();
  MCCodeEmitter *MCE = getTarget().createMCCodeEmitter(*getInstrInfo(),STI,
                                                       *Ctx);
  MCAsmBackend *MAB = getTarget().createMCAsmBackend(getTargetTriple());
  if (MCE == 0 || MAB == 0)
    return true;

  OwningPtr<MCStreamer> AsmStreamer;
  AsmStreamer.reset(getTarget().createMCObjectStreamer(getTargetTriple(), *Ctx,
                                                       *MAB, Out, MCE,
                                                       hasMCRelaxAll(),
                                                       hasMCNoExecStack()));
  AsmStreamer.get()->InitSections();

  // Create the AsmPrinter, which takes ownership of AsmStreamer if successful.
  FunctionPass *Printer = getTarget().createAsmPrinter(*this, *AsmStreamer);
  if (Printer == 0)
    return true;

  // If successful, createAsmPrinter took ownership of AsmStreamer.
  AsmStreamer.take();

  PM.add(Printer);

  return false; // success!
}
Exemple #2
0
void MCJIT::generateCodeForModule(Module *M) {
  // Get a thread lock to make sure we aren't trying to load multiple times
  MutexGuard locked(lock);

  // This must be a module which has already been added to this MCJIT instance.
  assert(OwnedModules.ownsModule(M) &&
         "MCJIT::generateCodeForModule: Unknown module.");

  // Re-compilation is not supported
  if (OwnedModules.hasModuleBeenLoaded(M))
    return;

  OwningPtr<ObjectBuffer> ObjectToLoad;
  // Try to load the pre-compiled object from cache if possible
  if (0 != ObjCache) {
    OwningPtr<MemoryBuffer> PreCompiledObject(ObjCache->getObject(M));
    if (0 != PreCompiledObject.get())
      ObjectToLoad.reset(new ObjectBuffer(PreCompiledObject.take()));
  }

  // If the cache did not contain a suitable object, compile the object
  if (!ObjectToLoad) {
    ObjectToLoad.reset(emitObject(M));
    assert(ObjectToLoad.get() && "Compilation did not produce an object.");
  }

  // Load the object into the dynamic linker.
  // MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
  ObjectImage *LoadedObject = Dyld.loadObject(ObjectToLoad.take());
  LoadedObjects.push_back(LoadedObject);
  if (!LoadedObject)
    report_fatal_error(Dyld.getErrorString());

  // FIXME: Make this optional, maybe even move it to a JIT event listener
  LoadedObject->registerWithDebugger();

  NotifyObjectEmitted(*LoadedObject);

  OwnedModules.markModuleAsLoaded(M);
}
Exemple #3
0
int
main (int argc, char ** argv)
{
  if (argc < 3) {
    fprintf(stderr,"Not enough positional arguments to %s.\n",argv[0]);
    return 1;
  }

  llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
  LLVMContext &Context = getGlobalContext();

  std::string InputFilename(argv[1]);
  std::string OutputFilename(argv[2]);

  OwningPtr<tool_output_file> Out;
  
  std::string ErrorInfo;
  Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
				 sys::fs::F_Binary));

  SMDiagnostic Err;

  std::auto_ptr<Module> M;
  M.reset(ParseIRFile(InputFilename, Err, Context));

  if (M.get() == 0) {
    Err.print(argv[0], errs());
    return 1;
  }


  Summarize(M.get());

  WriteBitcodeToFile(M.get(),Out->os());

  Out->keep();

  return 0;
}
Exemple #4
0
int main(int argc, char **argv) {
  // Print a stack trace if we signal out.
  sys::PrintStackTraceOnErrorSignal();
  PrettyStackTraceProgram X(argc, argv);

  LLVMContext &Context = getGlobalContext();
  llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
  
  cl::ParseCommandLineOptions(argc, argv, "llvm profile dump decoder\n");

  // Read in the bitcode file...
  std::string ErrorMessage;
  OwningPtr<MemoryBuffer> Buffer;
  error_code ec;
  Module *M = 0;
  if (!(ec = MemoryBuffer::getFileOrSTDIN(BitcodeFile, Buffer))) {
    M = ParseBitcodeFile(Buffer.get(), Context, &ErrorMessage);
  } else
    ErrorMessage = ec.message();
  if (M == 0) {
    errs() << argv[0] << ": " << BitcodeFile << ": "
      << ErrorMessage << "\n";
    return 1;
  }

  // Read the profiling information. This is redundant since we load it again
  // using the standard profile info provider pass, but for now this gives us
  // access to additional information not exposed via the ProfileInfo
  // interface.
  ProfileInfoLoader PIL(argv[0], ProfileDataFile);

  // Run the printer pass.
  PassManager PassMgr;
  PassMgr.add(createProfileLoaderPass(ProfileDataFile));
  PassMgr.add(new ProfileInfoPrinterPass(PIL));
  PassMgr.run(*M);

  return 0;
}
bool
SimplePrinterConsumer::HandleTopLevelDecl(DeclGroupRef D) {
	if(D.begin() == D.end()) {
		return true;
	}
	Decl *firstD = *(D.begin());
	if(compInst->getSourceManager().isInSystemHeader(firstD->getLocation())) {
		return true;
	}

	PrintingPolicy policy = compInst->getASTContext().getPrintingPolicy();
	NullStmt *nullSt = new (compInst->getASTContext()) NullStmt(SourceLocation());

	for(DeclGroupRef::iterator 
		   I = D.begin(), E = D.end();
		   I != E; ++I) {
		Decl *dd = *I;

		DPRINT("PrintingPolicy: %d %d %d %d %d", policy.SuppressSpecifiers, policy.SuppressScope, policy.SuppressTag, policy.SuppressUnwrittenScope, policy.SuppressSpecifiers);
		
		dd->print(out, policy);
		nullSt->printPretty(out, NULL, policy);
		if(dd->hasBody()) {
			Stmt *ss = dd->getBody();
			// Print Stmts
			//dd->dump();
			//StmtPrinter(compInst, dd->getBody()).TraverseDecl(dd);

			// CFG
			
			OwningPtr<CFG> cfg;
			cfg.reset(CFG::buildCFG((const Decl*)dd, (Stmt*)(dd->getBody()), &compInst->getASTContext(), CFG::BuildOptions()));
			assert(cfg.get() != NULL && "build CFG failed.");
			cfg->dump(compInst->getLangOpts(), true);
			cfg->viewCFG(compInst->getLangOpts());
		}
	}
	return true;
};
Exemple #6
0
error_code Archive::Child::getMemoryBuffer(OwningPtr<MemoryBuffer> &Result,
                                           bool FullPath) const {
  StringRef Name;
  if (error_code ec = getName(Name))
    return ec;
  SmallString<128> Path;
  Result.reset(MemoryBuffer::getMemBuffer(
      getBuffer(), FullPath ? (Twine(Parent->getFileName()) + "(" + Name + ")")
                                  .toStringRef(Path)
                            : Name,
      false));
  return error_code::success();
}
Exemple #7
0
// Get just the externally visible defined symbols from the bitcode
bool llvm::GetBitcodeSymbols(const sys::Path& fName,
                             LLVMContext& Context,
                             std::vector<std::string>& symbols,
                             std::string* ErrMsg) {
  OwningPtr<MemoryBuffer> Buffer;
  if (error_code ec = MemoryBuffer::getFileOrSTDIN(fName.c_str(), Buffer)) {
    if (ErrMsg) *ErrMsg = "Could not open file '" + fName.str() + "'" + ": "
                        + ec.message();
    return true;
  }

  Module *M = ParseBitcodeFile(Buffer.get(), Context, ErrMsg);
  if (!M)
    return true;

  // Get the symbols
  getSymbols(M, symbols);

  // Done with the module.
  delete M;
  return true;
}
/// addPassesToEmitMC - Add passes to the specified pass manager to get
/// machine code emitted with the MCJIT. This method returns true if machine
/// code is not supported. It fills the MCContext Ctx pointer which can be
/// used to build custom MCStreamer.
///
bool LLVMTargetMachine::addPassesToEmitMC(PassManagerBase &PM,
                                          MCContext *&Ctx,
                                          raw_ostream &Out,
                                          CodeGenOpt::Level OptLevel,
                                          bool DisableVerify) {
  // Add common CodeGen passes.
  if (addCommonCodeGenPasses(PM, OptLevel, DisableVerify, Ctx))
    return true;

  // Create the code emitter for the target if it exists.  If not, .o file
  // emission fails.
  MCCodeEmitter *MCE = getTarget().createCodeEmitter(*this, *Ctx);
  TargetAsmBackend *TAB = getTarget().createAsmBackend(TargetTriple);
  if (MCE == 0 || TAB == 0)
    return true;

  OwningPtr<MCStreamer> AsmStreamer;
  AsmStreamer.reset(getTarget().createObjectStreamer(TargetTriple, *Ctx,
                                                     *TAB, Out, MCE,
                                                     hasMCRelaxAll(),
                                                     hasMCNoExecStack()));
  AsmStreamer.get()->InitSections();

  // Create the AsmPrinter, which takes ownership of AsmStreamer if successful.
  FunctionPass *Printer = getTarget().createAsmPrinter(*this, *AsmStreamer);
  if (Printer == 0)
    return true;

  // If successful, createAsmPrinter took ownership of AsmStreamer.
  AsmStreamer.take();

  PM.add(Printer);

  // Make sure the code model is set.
  setCodeModelForJIT();

  return false; // success!
}
Exemple #9
0
int main(int argc, char **argv) {
  // Init LLVM, call llvm_shutdown() on exit, parse args, etc.
  llvm::PrettyStackTraceProgram X(argc, argv);
  cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n");
  llvm_shutdown_obj Y;

  OwningPtr<Module> M(new Module("/tmp/autogen.bc", getGlobalContext()));
  Function *F = GenEmptyFunction(M.get());

  // Pick an initial seed value
  Random R(SeedCL);
  // Generate lots of random instructions inside a single basic block.
  FillFunction(F, R);
  // Break the basic block into many loops.
  IntroduceControlFlow(F, R);

  // Figure out what stream we are supposed to write to...
  OwningPtr<tool_output_file> Out;
  // Default to standard output.
  if (OutputFilename.empty())
    OutputFilename = "-";

  std::string ErrorInfo;
  Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
                                 sys::fs::F_Binary));
  if (!ErrorInfo.empty()) {
    errs() << ErrorInfo << '\n';
    return 1;
  }

  PassManager Passes;
  Passes.add(createVerifierPass());
  Passes.add(createPrintModulePass(Out->os()));
  Passes.run(*M.get());
  Out->keep();

  return 0;
}
Exemple #10
0
bool TeslaVisitor::VisitFunctionDecl(FunctionDecl *F) {
    // Only analyse non-deleted definitions (i.e. definitions with bodies).
    if (!F->doesThisDeclarationHaveABody())
        return true;


    // We only parse functions that return __tesla_automaton_description*.
    const Type *RetTy = F->getResultType().getTypePtr();
    if (!RetTy->isPointerType())
        return true;

    QualType Pointee = RetTy->getPointeeType();
    auto TypeID = Pointee.getBaseTypeIdentifier();
    if (!TypeID)
        return true;

    OwningPtr<Parser> P;
    StringRef FnName = F->getName();

    // Build a Parser appropriate to what we're parsing.
    string RetTypeName = TypeID->getName();
    if (RetTypeName == AUTOMATON_DESC)
        P.reset(Parser::AutomatonParser(F, *Context));

    else if ((RetTypeName == AUTOMATON_USAGE) && (FnName != AUTOMATON_USES))
        P.reset(Parser::MappingParser(F, *Context));

    else
        return true;


    // Actually parse the function.
    if (!P)
        return false;

    OwningPtr<AutomatonDescription> Description;
    OwningPtr<Usage> Use;
    if (!P->Parse(Description, Use))
        return false;

    if (Description)
        Automata.push_back(Description.take());

    if (Use)
        Roots.push_back(Use.take());

    return true;
}
Exemple #11
0
llvm::MemoryBuffer *FileManager::
getBufferForFile(const FileEntry *Entry, std::string *ErrorStr,
                 bool isVolatile) {
  OwningPtr<llvm::MemoryBuffer> Result;
  llvm::error_code ec;

  uint64_t FileSize = Entry->getSize();
  // If there's a high enough chance that the file have changed since we
  // got its size, force a stat before opening it.
  if (isVolatile)
    FileSize = -1;

  const char *Filename = Entry->getName();
  // If the file is already open, use the open file descriptor.
  if (Entry->File) {
    ec = Entry->File->getBuffer(Filename, Result, FileSize);
    if (ErrorStr)
      *ErrorStr = ec.message();
    Entry->closeFile();
    return Result.take();
  }

  // Otherwise, open the file.

  if (FileSystemOpts.WorkingDir.empty()) {
    ec = FS->getBufferForFile(Filename, Result, FileSize);
    if (ec && ErrorStr)
      *ErrorStr = ec.message();
    return Result.take();
  }

  SmallString<128> FilePath(Entry->getName());
  FixupRelativePath(FilePath);
  ec = FS->getBufferForFile(FilePath.str(), Result, FileSize);
  if (ec && ErrorStr)
    *ErrorStr = ec.message();
  return Result.take();
}
bool FixItRewriter::WriteFixedFiles(
            std::vector<std::pair<std::string, std::string> > *RewrittenFiles) {
  if (NumFailures > 0 && !FixItOpts->FixWhatYouCan) {
    Diag(FullSourceLoc(), diag::warn_fixit_no_changes);
    return true;
  }

  RewritesReceiver Rec(Rewrite);
  Editor.applyRewrites(Rec);

  for (iterator I = buffer_begin(), E = buffer_end(); I != E; ++I) {
    const FileEntry *Entry = Rewrite.getSourceMgr().getFileEntryForID(I->first);
    int fd;
    std::string Filename = FixItOpts->RewriteFilename(Entry->getName(), fd);
    std::string Err;
    OwningPtr<llvm::raw_fd_ostream> OS;
    if (fd != -1) {
      OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true));
    } else {
      OS.reset(new llvm::raw_fd_ostream(Filename.c_str(), Err,
                                        llvm::raw_fd_ostream::F_Binary));
    }
    if (!Err.empty()) {
      Diags.Report(clang::diag::err_fe_unable_to_open_output)
          << Filename << Err;
      continue;
    }
    RewriteBuffer &RewriteBuf = I->second;
    RewriteBuf.write(*OS);
    OS->flush();

    if (RewrittenFiles)
      RewrittenFiles->push_back(std::make_pair(Entry->getName(), Filename));
  }

  return false;
}
Exemple #13
0
static void WriteOutputFile(const Module *M) {
  // Infer the output filename if needed.
  if (OutputFilename.empty()) {
    if (InputFilename == "-") {
      OutputFilename = "-";
    } else {
      std::string IFN = InputFilename;
      int Len = IFN.length();
      if (IFN[Len-3] == '.' && IFN[Len-2] == 'l' && IFN[Len-1] == 'l') {
        // Source ends in .ll
        OutputFilename = std::string(IFN.begin(), IFN.end()-3);
      } else {
        OutputFilename = IFN;   // Append a .bc to it
      }
      OutputFilename += ".bc";
    }
  }

  std::string ErrorInfo;
  OwningPtr<tool_output_file> Out
  (new tool_output_file(OutputFilename.c_str(), ErrorInfo,
                        raw_fd_ostream::F_Binary));
  if (!ErrorInfo.empty()) {
    errs() << ErrorInfo << '\n';
    exit(1);
  }

  // @LOCALMOD-BEGIN
  if (Force || !CheckBitcodeOutputToConsole(Out->os(), true)) {
    WriteBitcodeToFile(M, Out->os());
  }
  // @LOCALMOD-END

  // Declare success.
  Out->keep();
}
Exemple #14
0
static int performOperation(ArchiveOperation Operation) {
  // Create or open the archive object.
  OwningPtr<MemoryBuffer> Buf;
  error_code EC = MemoryBuffer::getFile(ArchiveName, Buf, -1, false);
  if (EC && EC != llvm::errc::no_such_file_or_directory) {
    errs() << ToolName << ": error opening '" << ArchiveName
           << "': " << EC.message() << "!\n";
    return 1;
  }

  if (!EC) {
    object::Archive Archive(Buf.take(), EC);

    if (EC) {
      errs() << ToolName << ": error loading '" << ArchiveName
             << "': " << EC.message() << "!\n";
      return 1;
    }
    performOperation(Operation, &Archive);
    return 0;
  }

  assert(EC == llvm::errc::no_such_file_or_directory);

  if (!shouldCreateArchive(Operation)) {
    failIfError(EC, Twine("error loading '") + ArchiveName + "'");
  } else {
    if (!Create) {
      // Produce a warning if we should and we're creating the archive
      errs() << ToolName << ": creating " << ArchiveName << "\n";
    }
  }

  performOperation(Operation, NULL);
  return 0;
}
Exemple #15
0
    virtual bool HandleTopLevelDecl(DeclGroupRef D) {
      PrettyStackTraceDecl CrashInfo(*D.begin(), SourceLocation(),
                                     Context->getSourceManager(),
                                     "LLVM IR generation of declaration");

      if (llvm::TimePassesIsEnabled)
        LLVMIRGeneration.startTimer();

      Gen->HandleTopLevelDecl(D);

      if (llvm::TimePassesIsEnabled)
        LLVMIRGeneration.stopTimer();

      return true;
    }
Exemple #16
0
  // MCJIT will call this function before compiling any module
  // MCJIT takes ownership of both the MemoryBuffer object and the memory
  // to which it refers.
  virtual MemoryBuffer* getObject(const Module* M) {
    // Get the ModuleID
    const std::string ModuleID = M->getModuleIdentifier();

    // If we've flagged this as an IR file, cache it
    if (0 == ModuleID.compare(0, 3, "IR:")) {
      std::string IRFileName = ModuleID.substr(3);
      SmallString<128> IRCacheFile = CacheDir;
      sys::path::append(IRCacheFile, IRFileName);
      if (!sys::fs::exists(IRCacheFile.str())) {
        // This file isn't in our cache
        return NULL;
      }
      OwningPtr<MemoryBuffer> IRObjectBuffer;
      MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false);
      // MCJIT will want to write into this buffer, and we don't want that
      // because the file has probably just been mmapped.  Instead we make
      // a copy.  The filed-based buffer will be released when it goes
      // out of scope.
      return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer());
    }

    return NULL;
  }
Exemple #17
0
/// \brief Attempt to read the lock file with the given name, if it exists.
///
/// \param LockFileName The name of the lock file to read.
///
/// \returns The process ID of the process that owns this lock file
Optional<std::pair<std::string, int> >
LockFileManager::readLockFile(StringRef LockFileName) {
  // Check whether the lock file exists. If not, clearly there's nothing
  // to read, so we just return.
  bool Exists = false;
  if (sys::fs::exists(LockFileName, Exists) || !Exists)
    return None;

  // Read the owning host and PID out of the lock file. If it appears that the
  // owning process is dead, the lock file is invalid.
  OwningPtr<MemoryBuffer> MB;
  if (MemoryBuffer::getFile(LockFileName, MB)) {
    StringRef Hostname;
    StringRef PIDStr;
    tie(Hostname, PIDStr) = getToken(MB->getBuffer(), " ");
    int PID;
    if (PIDStr.getAsInteger(10, PID))
      return std::make_pair(std::string(Hostname), PID);
  }

  // Delete the lock file. It's invalid anyway.
  sys::fs::remove(LockFileName);
  return None;
}
 explicit ModuleMapParser(Lexer &L, SourceManager &SourceMgr, 
                          DiagnosticsEngine &Diags,
                          ModuleMap &Map,
                          const DirectoryEntry *Directory,
                          const DirectoryEntry *BuiltinIncludeDir)
   : L(L), SourceMgr(SourceMgr), Diags(Diags), Map(Map), 
     Directory(Directory), BuiltinIncludeDir(BuiltinIncludeDir), 
     HadError(false), ActiveModule(0)
 {
   TargetOptions TargetOpts;
   TargetOpts.Triple = llvm::sys::getDefaultTargetTriple();
   Target.reset(TargetInfo::CreateTargetInfo(Diags, TargetOpts));
   
   Tok.clear();
   consumeToken();
 }
bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input,
                                               DiagnosticsEngine &Diags,
                                               FileManager &FileMgr,
                                               SourceManager &SourceMgr,
                                               const FrontendOptions &Opts) {
  SrcMgr::CharacteristicKind
    Kind = Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User;

  if (Input.isBuffer()) {
    SourceMgr.createMainFileIDForMemBuffer(Input.getBuffer(), Kind);
    assert(!SourceMgr.getMainFileID().isInvalid() &&
           "Couldn't establish MainFileID!");
    return true;
  }

  StringRef InputFile = Input.getFile();

  // Figure out where to get and map in the main file.
  if (InputFile != "-") {
    const FileEntry *File = FileMgr.getFile(InputFile);
    if (!File) {
      Diags.Report(diag::err_fe_error_reading) << InputFile;
      return false;
    }
    SourceMgr.createMainFileID(File, Kind);

    // The natural SourceManager infrastructure can't currently handle named
    // pipes, but we would at least like to accept them for the main
    // file. Detect them here, read them with the more generic MemoryBuffer
    // function, and simply override their contents as we do for STDIN.
    if (File->isNamedPipe()) {
      OwningPtr<llvm::MemoryBuffer> MB;
      if (llvm::error_code ec = llvm::MemoryBuffer::getFile(InputFile, MB)) {
        Diags.Report(diag::err_cannot_open_file) << InputFile << ec.message();
        return false;
      }
      SourceMgr.overrideFileContents(File, MB.take());
    }
  } else {
    OwningPtr<llvm::MemoryBuffer> SB;
    if (llvm::MemoryBuffer::getSTDIN(SB)) {
      // FIXME: Give ec.message() in this diag.
      Diags.Report(diag::err_fe_error_reading_stdin);
      return false;
    }
    const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(),
                                                   SB->getBufferSize(), 0);
    SourceMgr.createMainFileID(File, Kind);
    SourceMgr.overrideFileContents(File, SB.take());
  }

  assert(!SourceMgr.getMainFileID().isInvalid() &&
         "Couldn't establish MainFileID!");
  return true;
}
static void WriteOutputFile(const Module *M) {
  // Infer the output filename if needed.
  if (OutputFilename.empty()) {
    if (InputFilename == "-") {
      OutputFilename = "-";
    } else {
      std::string IFN = InputFilename;
      int Len = IFN.length();
      if (IFN[Len-3] == '.' && IFN[Len-2] == 'l' && IFN[Len-1] == 'l') {
        // Source ends in .ll
        OutputFilename = std::string(IFN.begin(), IFN.end()-3);
      } else {
        OutputFilename = IFN;   // Append a .bc to it
      }
      OutputFilename += ".bc";
    }
  }

  std::string ErrorInfo;
  OwningPtr<tool_output_file> Out
  (new tool_output_file(OutputFilename.c_str(), ErrorInfo,
                        llvm::sys::fs::F_Binary));
  if (!ErrorInfo.empty()) {
    errs() << ErrorInfo << '\n';
    exit(1);
  }

  if (Force || !CheckBitcodeOutputToConsole(Out->os(), true)) {
    switch(BitcodeVersion) {
      case BC29:
        llvm_2_9::WriteBitcodeToFile(M, Out->os());
        break;
      case BC29Func:
        llvm_2_9_func::WriteBitcodeToFile(M, Out->os());
        break;
      case BC32:
        llvm_3_2::WriteBitcodeToFile(M, Out->os());
        break;
      case BCHEAD:
        llvm::WriteBitcodeToFile(M, Out->os());
        break;
    }
  }

  // Declare success.
  Out->keep();
}
Exemple #21
0
error_code MachOUniversalBinary::ObjectForArch::getAsObjectFile(
    OwningPtr<ObjectFile> &Result) const {
  if (Parent) {
    StringRef ParentData = Parent->getData();
    StringRef ObjectData = ParentData.substr(Header.offset, Header.size);
    std::string ObjectName =
        Parent->getFileName().str() + ":" +
        Triple::getArchTypeName(MachOObjectFile::getArch(Header.cputype));
    MemoryBuffer *ObjBuffer = MemoryBuffer::getMemBuffer(
        ObjectData, ObjectName, false);
    ErrorOr<ObjectFile *> Obj = ObjectFile::createMachOObjectFile(ObjBuffer);
    if (error_code EC = Obj.getError())
      return EC;
    Result.reset(Obj.get());
    return object_error::success;
  }
  return object_error::parse_failed;
}
OwningPtr<LuaStackChecker> LuaStateAccess::replaceLuaStackChecker(lua_State* L, OwningPtr<LuaStackChecker> newStackChecker)
{
    ExtraLuaStateData* extra = (ExtraLuaStateData*)((char*)(L) - sizeof(ExtraLuaStateData));
    
    OwningPtr<LuaStackChecker> oldStackChecker;
    
    if (extra->stackChecker != NULL)
    {
        {
            LuaStackChecker* p = (LuaStackChecker*) extra->stackChecker;
            LuaStateAccess_HeapObjectRefManipulator::resetInitialOwnership(p);
            oldStackChecker = OwningPtr<LuaStackChecker>(p);
            // no decRefCounter, because OwningPtr takes given Ownerchip
        }
        
        LuaStateAccess_HeapObjectRefManipulator::incRefCounter(newStackChecker);
        extra->stackChecker = newStackChecker.getRawPtr();
    }
    return oldStackChecker;
}
Exemple #23
0
static error_code getMemoryBufferForStream(int FD,
                                           StringRef BufferName,
                                           OwningPtr<MemoryBuffer> &result) {
  const ssize_t ChunkSize = 4096*4;
  SmallString<ChunkSize> Buffer;
  ssize_t ReadBytes;
  // Read into Buffer until we hit EOF.
  do {
    Buffer.reserve(Buffer.size() + ChunkSize);
    ReadBytes = read(FD, Buffer.end(), ChunkSize);
    if (ReadBytes == -1) {
      if (errno == EINTR) continue;
      return error_code(errno, posix_category());
    }
    Buffer.set_size(Buffer.size() + ReadBytes);
  } while (ReadBytes != 0);

  result.reset(MemoryBuffer::getMemBufferCopy(Buffer, BufferName));
  return error_code::success();
}
Exemple #24
0
error_code MemoryBuffer::getSTDIN(OwningPtr<MemoryBuffer> &result) {
  // Read in all of the data from stdin, we cannot mmap stdin.
  //
  // FIXME: That isn't necessarily true, we should try to mmap stdin and
  // fallback if it fails.
  sys::Program::ChangeStdinToBinary();

  const ssize_t ChunkSize = 4096*4;
  SmallString<ChunkSize> Buffer;
  ssize_t ReadBytes;
  // Read into Buffer until we hit EOF.
  do {
    Buffer.reserve(Buffer.size() + ChunkSize);
    ReadBytes = read(0, Buffer.end(), ChunkSize);
    if (ReadBytes == -1) {
      if (errno == EINTR) continue;
      return error_code(errno, posix_category());
    }
    Buffer.set_size(Buffer.size() + ReadBytes);
  } while (ReadBytes != 0);

  result.reset(getMemBufferCopy(Buffer, "<stdin>"));
  return error_code::success();
}
ExternalASTSource *
CompilerInstance::createPCHExternalASTSource(StringRef Path,
                                             const std::string &Sysroot,
                                             bool DisablePCHValidation,
                                             bool AllowPCHWithCompilerErrors,
                                             Preprocessor &PP,
                                             ASTContext &Context,
                                             void *DeserializationListener,
                                             bool Preamble) {
  OwningPtr<ASTReader> Reader;
  Reader.reset(new ASTReader(PP, Context,
                             Sysroot.empty() ? "" : Sysroot.c_str(),
                             DisablePCHValidation,
                             AllowPCHWithCompilerErrors));

  Reader->setDeserializationListener(
            static_cast<ASTDeserializationListener *>(DeserializationListener));
  switch (Reader->ReadAST(Path,
                          Preamble ? serialization::MK_Preamble
                                   : serialization::MK_PCH,
                          SourceLocation(),
                          ASTReader::ARR_None)) {
  case ASTReader::Success:
    // Set the predefines buffer as suggested by the PCH reader. Typically, the
    // predefines buffer will be empty.
    PP.setPredefines(Reader->getSuggestedPredefines());
    return Reader.take();

  case ASTReader::Failure:
    // Unrecoverable failure: don't even try to process the input file.
    break;

  case ASTReader::OutOfDate:
  case ASTReader::VersionMismatch:
  case ASTReader::ConfigurationMismatch:
  case ASTReader::HadErrors:
    // No suitable PCH file could be found. Return an error.
    break;
  }

  return 0;
}
Exemple #26
0
static void DumpSymbolNamesFromFile(std::string &Filename) {
  if (Filename != "-" && !sys::fs::exists(Filename)) {
    errs() << ToolName << ": '" << Filename << "': " << "No such file\n";
    return;
  }

  OwningPtr<MemoryBuffer> Buffer;
  if (error(MemoryBuffer::getFileOrSTDIN(Filename, Buffer), Filename))
    return;

  sys::fs::file_magic magic = sys::fs::identify_magic(Buffer->getBuffer());

  LLVMContext &Context = getGlobalContext();
  std::string ErrorMessage;
  if (magic == sys::fs::file_magic::bitcode) {
    Module *Result = 0;
    Result = ParseBitcodeFile(Buffer.get(), Context, &ErrorMessage);
    if (Result) {
      DumpSymbolNamesFromModule(Result);
      delete Result;
    } else {
      error(ErrorMessage, Filename);
      return;
    }
  } else if (magic == sys::fs::file_magic::archive) {
    OwningPtr<Binary> arch;
    if (error(object::createBinary(Buffer.take(), arch), Filename))
      return;

    if (object::Archive *a = dyn_cast<object::Archive>(arch.get())) {
      if (ArchiveMap) {
        outs() << "Archive map" << "\n";
        for (object::Archive::symbol_iterator i = a->begin_symbols(), 
             e = a->end_symbols(); i != e; ++i) {
          object::Archive::child_iterator c;
          StringRef symname;
          StringRef filename;
          if (error(i->getMember(c))) 
              return;
          if (error(i->getName(symname)))
              return;
          if (error(c->getName(filename)))
              return;
          outs() << symname << " in " << filename << "\n";
        }
        outs() << "\n";
      }

      for (object::Archive::child_iterator i = a->begin_children(),
                                           e = a->end_children(); i != e; ++i) {
        OwningPtr<Binary> child;
        if (i->getAsBinary(child)) {
          // Try opening it as a bitcode file.
          OwningPtr<MemoryBuffer> buff(i->getBuffer());
          Module *Result = 0;
          if (buff)
            Result = ParseBitcodeFile(buff.get(), Context, &ErrorMessage);

          if (Result) {
            DumpSymbolNamesFromModule(Result);
            delete Result;
          }
          continue;
        }
        if (object::ObjectFile *o = dyn_cast<ObjectFile>(child.get())) {
          outs() << o->getFileName() << ":\n";
          DumpSymbolNamesFromObject(o);
        }
      }
    }
  } else if (magic.is_object()) {
    OwningPtr<Binary> obj;
    if (error(object::createBinary(Buffer.take(), obj), Filename))
      return;
    if (object::ObjectFile *o = dyn_cast<ObjectFile>(obj.get()))
      DumpSymbolNamesFromObject(o);
  } else {
    errs() << ToolName << ": " << Filename << ": "
           << "unrecognizable file type\n";
    return;
  }
}
//===----------------------------------------------------------------------===//
// main for opt
//
int main(int argc, char **argv) {
  sys::PrintStackTraceOnErrorSignal();
  llvm::PrettyStackTraceProgram X(argc, argv);

  // Enable debug stream buffering.
  EnableDebugBuffering = true;

  llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
  LLVMContext &Context = getGlobalContext();

  InitializeAllTargets();
  InitializeAllTargetMCs();

  // Initialize passes
  PassRegistry &Registry = *PassRegistry::getPassRegistry();
  initializeCore(Registry);
  initializeScalarOpts(Registry);
  initializeObjCARCOpts(Registry);
  initializeVectorization(Registry);
  initializeIPO(Registry);
  initializeAnalysis(Registry);
  initializeIPA(Registry);
  initializeTransformUtils(Registry);
  initializeInstCombine(Registry);
  initializeInstrumentation(Registry);
  initializeTarget(Registry);
  // @LOCALMOD-BEGIN
  initializeAddPNaClExternalDeclsPass(Registry);
  initializeCanonicalizeMemIntrinsicsPass(Registry);
  initializeExpandArithWithOverflowPass(Registry);
  initializeExpandByValPass(Registry);
  initializeExpandConstantExprPass(Registry);
  initializeExpandCtorsPass(Registry);
  initializeExpandGetElementPtrPass(Registry);
  initializeExpandSmallArgumentsPass(Registry);
  initializeExpandStructRegsPass(Registry);
  initializeExpandTlsConstantExprPass(Registry);
  initializeExpandTlsPass(Registry);
  initializeExpandVarArgsPass(Registry);
  initializeFlattenGlobalsPass(Registry);
  initializeGlobalCleanupPass(Registry);
  initializeInsertDivideCheckPass(Registry);
  initializePNaClABIVerifyFunctionsPass(Registry);
  initializePNaClABIVerifyModulePass(Registry);
  initializePNaClSjLjEHPass(Registry);
  initializePromoteI1OpsPass(Registry);
  initializePromoteIntegersPass(Registry);
  initializeRemoveAsmMemoryPass(Registry);
  initializeReplacePtrsWithIntsPass(Registry);
  initializeResolveAliasesPass(Registry);
  initializeResolvePNaClIntrinsicsPass(Registry);
  initializeRewriteAtomicsPass(Registry);
  initializeRewriteLLVMIntrinsicsPass(Registry);
  initializeRewritePNaClLibraryCallsPass(Registry);
  initializeStripAttributesPass(Registry);
  initializeStripMetadataPass(Registry);
  initializeExpandI64Pass(Registry);
  // @LOCALMOD-END

  cl::ParseCommandLineOptions(argc, argv,
    "llvm .bc -> .bc modular optimizer and analysis printer\n");

  if (AnalyzeOnly && NoOutput) {
    errs() << argv[0] << ": analyze mode conflicts with no-output mode.\n";
    return 1;
  }

  SMDiagnostic Err;

  // Load the input module...
  OwningPtr<Module> M;
  M.reset(ParseIRFile(InputFilename, Err, Context));

  if (M.get() == 0) {
    Err.print(argv[0], errs());
    return 1;
  }

  // If we are supposed to override the target triple, do so now.
  if (!TargetTriple.empty())
    M->setTargetTriple(Triple::normalize(TargetTriple));

  // Figure out what stream we are supposed to write to...
  OwningPtr<tool_output_file> Out;
  if (NoOutput) {
    if (!OutputFilename.empty())
      errs() << "WARNING: The -o (output filename) option is ignored when\n"
                "the --disable-output option is used.\n";
  } else {
    // Default to standard output.
    if (OutputFilename.empty())
      OutputFilename = "-";

    std::string ErrorInfo;
    Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
                                   raw_fd_ostream::F_Binary));
    if (!ErrorInfo.empty()) {
      errs() << ErrorInfo << '\n';
      return 1;
    }
  }

  // If the output is set to be emitted to standard out, and standard out is a
  // console, print out a warning message and refuse to do it.  We don't
  // impress anyone by spewing tons of binary goo to a terminal.
  if (!Force && !NoOutput && !AnalyzeOnly && !OutputAssembly)
    if (CheckBitcodeOutputToConsole(Out->os(), !Quiet))
      NoOutput = true;

  // Create a PassManager to hold and optimize the collection of passes we are
  // about to build.
  //
  PassManager Passes;

  // Add an appropriate TargetLibraryInfo pass for the module's triple.
  TargetLibraryInfo *TLI = new TargetLibraryInfo(Triple(M->getTargetTriple()));

  // The -disable-simplify-libcalls flag actually disables all builtin optzns.
  if (DisableSimplifyLibCalls)
    TLI->disableAllFunctions();
  Passes.add(TLI);

  // Add an appropriate DataLayout instance for this module.
  DataLayout *TD = 0;
  const std::string &ModuleDataLayout = M.get()->getDataLayout();
  if (!ModuleDataLayout.empty())
    TD = new DataLayout(ModuleDataLayout);
  else if (!DefaultDataLayout.empty())
    TD = new DataLayout(DefaultDataLayout);

  if (TD)
    Passes.add(TD);

  Triple ModuleTriple(M->getTargetTriple());
  TargetMachine *Machine = 0;
  if (ModuleTriple.getArch())
    Machine = GetTargetMachine(Triple(ModuleTriple));
  OwningPtr<TargetMachine> TM(Machine);

  // Add internal analysis passes from the target machine.
  if (TM.get())
    TM->addAnalysisPasses(Passes);

  OwningPtr<FunctionPassManager> FPasses;
  if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) {
    FPasses.reset(new FunctionPassManager(M.get()));
    if (TD)
      FPasses->add(new DataLayout(*TD));
  }

  if (PrintBreakpoints) {
    // Default to standard output.
    if (!Out) {
      if (OutputFilename.empty())
        OutputFilename = "-";

      std::string ErrorInfo;
      Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
                                     raw_fd_ostream::F_Binary));
      if (!ErrorInfo.empty()) {
        errs() << ErrorInfo << '\n';
        return 1;
      }
    }
    Passes.add(new BreakpointPrinter(Out->os()));
    NoOutput = true;
  }

  // If the -strip-debug command line option was specified, add it.  If
  // -std-compile-opts was also specified, it will handle StripDebug.
  if (StripDebug && !StandardCompileOpts)
    addPass(Passes, createStripSymbolsPass(true));

  // Create a new optimization pass for each one specified on the command line
  for (unsigned i = 0; i < PassList.size(); ++i) {
    // Check to see if -std-compile-opts was specified before this option.  If
    // so, handle it.
    if (StandardCompileOpts &&
        StandardCompileOpts.getPosition() < PassList.getPosition(i)) {
      AddStandardCompilePasses(Passes);
      StandardCompileOpts = false;
    }

    if (StandardLinkOpts &&
        StandardLinkOpts.getPosition() < PassList.getPosition(i)) {
      AddStandardLinkPasses(Passes);
      StandardLinkOpts = false;
    }

    if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 1, 0);
      OptLevelO1 = false;
    }

    if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 2, 0);
      OptLevelO2 = false;
    }

    if (OptLevelOs && OptLevelOs.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 2, 1);
      OptLevelOs = false;
    }

    if (OptLevelOz && OptLevelOz.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 2, 2);
      OptLevelOz = false;
    }

    if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 3, 0);
      OptLevelO3 = false;
    }

    // @LOCALMOD-BEGIN
    if (PNaClABISimplifyPreOpt &&
        PNaClABISimplifyPreOpt.getPosition() < PassList.getPosition(i)) {
      PNaClABISimplifyAddPreOptPasses(Passes);
      PNaClABISimplifyPreOpt = false;
    }

    if (PNaClABISimplifyPostOpt &&
        PNaClABISimplifyPostOpt.getPosition() < PassList.getPosition(i)) {
      PNaClABISimplifyAddPostOptPasses(Passes);
      PNaClABISimplifyPostOpt = false;
    }
    // @LOCALMOD-END

    const PassInfo *PassInf = PassList[i];
    Pass *P = 0;
    if (PassInf->getNormalCtor())
      P = PassInf->getNormalCtor()();
    else
      errs() << argv[0] << ": cannot create pass: "******"\n";
    if (P) {
      PassKind Kind = P->getPassKind();
      addPass(Passes, P);

      if (AnalyzeOnly) {
        switch (Kind) {
        case PT_BasicBlock:
          Passes.add(new BasicBlockPassPrinter(PassInf, Out->os()));
          break;
        case PT_Region:
          Passes.add(new RegionPassPrinter(PassInf, Out->os()));
          break;
        case PT_Loop:
          Passes.add(new LoopPassPrinter(PassInf, Out->os()));
          break;
        case PT_Function:
          Passes.add(new FunctionPassPrinter(PassInf, Out->os()));
          break;
        case PT_CallGraphSCC:
          Passes.add(new CallGraphSCCPassPrinter(PassInf, Out->os()));
          break;
        default:
          Passes.add(new ModulePassPrinter(PassInf, Out->os()));
          break;
        }
      }
    }

    if (PrintEachXForm)
      Passes.add(createPrintModulePass(&errs()));
  }

  // If -std-compile-opts was specified at the end of the pass list, add them.
  if (StandardCompileOpts) {
    AddStandardCompilePasses(Passes);
    StandardCompileOpts = false;
  }

  if (StandardLinkOpts) {
    AddStandardLinkPasses(Passes);
    StandardLinkOpts = false;
  }

  if (OptLevelO1)
    AddOptimizationPasses(Passes, *FPasses, 1, 0);

  if (OptLevelO2)
    AddOptimizationPasses(Passes, *FPasses, 2, 0);

  if (OptLevelOs)
    AddOptimizationPasses(Passes, *FPasses, 2, 1);

  if (OptLevelOz)
    AddOptimizationPasses(Passes, *FPasses, 2, 2);

  if (OptLevelO3)
    AddOptimizationPasses(Passes, *FPasses, 3, 0);

  if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) {
    FPasses->doInitialization();
    for (Module::iterator F = M->begin(), E = M->end(); F != E; ++F)
      FPasses->run(*F);
    FPasses->doFinalization();
  }

  // @LOCALMOD-BEGIN
  if (PNaClABISimplifyPreOpt)
    PNaClABISimplifyAddPreOptPasses(Passes);

  if (PNaClABISimplifyPostOpt)
    PNaClABISimplifyAddPostOptPasses(Passes);
  // @LOCALMOD-END

  // Check that the module is well formed on completion of optimization
  if (!NoVerify && !VerifyEach)
    Passes.add(createVerifierPass());

  // Write bitcode or assembly to the output as the last step...
  if (!NoOutput && !AnalyzeOnly) {
    if (OutputAssembly)
      Passes.add(createPrintModulePass(&Out->os()));
    // @LOCALMOD
  }

  // Before executing passes, print the final values of the LLVM options.
  cl::PrintOptionValues();

  // Now that we have all of the passes ready, run them.
  Passes.run(*M.get());

// @LOCALMOD-BEGIN
  // Write bitcode to the output.
  if (!NoOutput && !AnalyzeOnly && !OutputAssembly) {
    switch (OutputFileFormat) {
      case LLVMFormat:
        WriteBitcodeToFile(M.get(), Out->os());
        break;
      case PNaClFormat:
        NaClWriteBitcodeToFile(M.get(), Out->os());
        break;
      default:
        errs() << "Don't understand bitcode format for generated bitcode.\n";
        return 1;
    }
  }
// @LOCALMOD-END

  // Declare success.
  if (!NoOutput || PrintBreakpoints)
    Out->keep();

  return 0;
}
Exemple #28
0
int
main(int argc, char *argv[]) {
  cl::ParseCommandLineOptions(argc, argv);

  auto& err = llvm::errs();

  ManifestFile Result;
  std::map<Identifier,const AutomatonDescription*> Automata;
  std::map<Identifier,const Usage*> Usages;

  for (auto& Filename : InputFiles) {
    OwningPtr<Manifest> Manifest(Manifest::load(llvm::errs(),
                                                Automaton::Unlinked,
                                                Filename));
    if (!Manifest) {
      err << "Unable to read manifest '" << Filename << "'\n";
      return 1;
    }

    for (auto i : Manifest->AllAutomata()) {
      auto Existing = Automata.find(i.first);
      if (Existing == Automata.end())
        Automata[i.first] = &(*Result.add_automaton() = *i.second);

      // If we already have this automaton, verify that both are
      // exactly the same.
      else if (*Existing->second != *i.second)
        panic("Attempting to cat two files containing automaton '"
          + ShortName(Existing->first)
          + "', but these automata are not exactly the same.");
    }

    for (auto i : Manifest->RootAutomata()) {
      auto Existing = Usages.find(i->identifier());
      if (Existing == Usages.end())
        Usages[i->identifier()] = &(*Result.add_root() = *i);

      else if (*Existing->second != *i)
        panic("Attempting to cat two files containing root '"
          + ShortName(i->identifier())
          + "', but these roots are not exactly the same.");
    }
  }

  string ProtobufText;
  google::protobuf::TextFormat::PrintToString(Result, &ProtobufText);

  bool UseFile = (OutputFile != "-");
  OwningPtr<raw_fd_ostream> outfile;

  if (UseFile) {
    string OutErrorInfo;
    outfile.reset(new raw_fd_ostream(OutputFile.c_str(), OutErrorInfo));
  }
  raw_ostream& out = UseFile ? *outfile : llvm::outs();
  out << ProtobufText;

  google::protobuf::ShutdownProtobufLibrary();

  return 0;
}
Exemple #29
0
int main(int argc, char **argv) {
  llvm::sys::PrintStackTraceOnErrorSignal();
  llvm::PrettyStackTraceProgram X(argc, argv);
  llvm_shutdown_obj Y;
  cl::ParseCommandLineOptions(argc, argv, "linker script randomizer\n");

  sys::Path ldPath = sys::Program::FindProgramByName("ld");
  if (ldPath.isEmpty()) {
    errs() << "Couldn't find system linker";
    llvm_shutdown();
    return 1;
  }

  sys::Path scriptPath = sys::Path::GetTemporaryDirectory();
  if (scriptPath.isEmpty()) {
    errs() << "Error accessing temporary directory";
    llvm_shutdown();
    return 1;
  }
  scriptPath.appendComponent("ld_script");
  scriptPath.makeUnique(false, NULL);

  sys::Path devNull;
  std::string errMsg;
  const char *ldArgs[] = { ldPath.c_str(), "--verbose", NULL };
  const sys::Path *redirects[] = { &devNull, &scriptPath, &scriptPath, NULL };
  if (sys::Program::ExecuteAndWait(ldPath, ldArgs, 0, redirects, 0, 0, &errMsg)) {
    errs() << "Error executing linker";
    llvm_shutdown();
    return 1;
  }

  OwningPtr< MemoryBuffer > scriptFile;
  error_code ec = MemoryBuffer::getFile(scriptPath.c_str(), scriptFile);
  if (ec) {
    errs() << "Error reading script file: " << ec.message();
    llvm_shutdown();
    return 1;
  }
 
  uint32_t minPage = (MinBaseAddress + PAGE_SIZE - 1) / PAGE_SIZE,
           maxPage = MaxBaseAddress / PAGE_SIZE;
  if (minPage > maxPage) {
    errs() << "Base address interval is empty";
    llvm_shutdown();
    return 1;
  }
  uint32_t newAddr = PAGE_SIZE * (minPage + 
    RandomNumberGenerator::Generator().Random(maxPage - minPage + 1));

  char oldAddrStr[12];
  sprintf(oldAddrStr, "0x%08x", OldBaseAddress.getValue());

  llvm::Regex oldAddrRegex(oldAddrStr);
  StringRef scriptText = scriptFile->getBuffer();
  StringRef oldScriptText = scriptText;
  char newAddrStr[12];
  sprintf(newAddrStr, "0x%08x", newAddr);
  do {
    // Replace one occurrence of old address with new one
    oldScriptText = scriptText;
    scriptText = oldAddrRegex.sub(newAddrStr, scriptText);
  } while (!scriptText.equals(oldScriptText));
  std::cout << scriptText.str();
  return 0;
}
bool LLVMTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
                                            formatted_raw_ostream &Out,
                                            CodeGenFileType FileType,
                                            CodeGenOpt::Level OptLevel,
                                            bool DisableVerify) {
  // Add common CodeGen passes.
  MCContext *Context = 0;
  if (addCommonCodeGenPasses(PM, OptLevel, DisableVerify, Context))
    return true;
  assert(Context != 0 && "Failed to get MCContext");

  if (hasMCSaveTempLabels())
    Context->setAllowTemporaryLabels(false);

  const MCAsmInfo &MAI = *getMCAsmInfo();
  const MCSubtargetInfo &STI = getSubtarget<MCSubtargetInfo>();
  OwningPtr<MCStreamer> AsmStreamer;

  switch (FileType) {
  default: return true;
  case CGFT_AssemblyFile: {
    MCInstPrinter *InstPrinter =
      getTarget().createMCInstPrinter(MAI.getAssemblerDialect(), MAI, STI);

    // Create a code emitter if asked to show the encoding.
    MCCodeEmitter *MCE = 0;
    MCAsmBackend *MAB = 0;
    if (ShowMCEncoding) {
      const MCSubtargetInfo &STI = getSubtarget<MCSubtargetInfo>();
      MCE = getTarget().createMCCodeEmitter(*getInstrInfo(), STI, *Context);
      MAB = getTarget().createMCAsmBackend(getTargetTriple());
    }

    MCStreamer *S = getTarget().createAsmStreamer(*Context, Out,
                                                  getVerboseAsm(),
                                                  hasMCUseLoc(),
                                                  hasMCUseCFI(),
                                                  hasMCUseDwarfDirectory(),
                                                  InstPrinter,
                                                  MCE, MAB,
                                                  ShowMCInst);
    AsmStreamer.reset(S);
    break;
  }
  case CGFT_ObjectFile: {
    // Create the code emitter for the target if it exists.  If not, .o file
    // emission fails.
    MCCodeEmitter *MCE = getTarget().createMCCodeEmitter(*getInstrInfo(), STI,
                                                         *Context);
    MCAsmBackend *MAB = getTarget().createMCAsmBackend(getTargetTriple());
    if (MCE == 0 || MAB == 0)
      return true;

    AsmStreamer.reset(getTarget().createMCObjectStreamer(getTargetTriple(),
                                                         *Context, *MAB, Out,
                                                         MCE, hasMCRelaxAll(),
                                                         hasMCNoExecStack()));
    AsmStreamer.get()->InitSections();
    break;
  }
  case CGFT_Null:
    // The Null output is intended for use for performance analysis and testing,
    // not real users.
    AsmStreamer.reset(createNullStreamer(*Context));
    break;
  }

  if (EnableMCLogging)
    AsmStreamer.reset(createLoggingStreamer(AsmStreamer.take(), errs()));

  // Create the AsmPrinter, which takes ownership of AsmStreamer if successful.
  FunctionPass *Printer = getTarget().createAsmPrinter(*this, *AsmStreamer);
  if (Printer == 0)
    return true;

  // If successful, createAsmPrinter took ownership of AsmStreamer.
  AsmStreamer.take();

  PM.add(Printer);

  PM.add(createGCInfoDeleter());
  return false;
}