//---------------------------------------------------------------------------- float VertexCollapse::GetWeight (int iM, int iZ, int iP, Vector3* akVertex) { Segment3 kSegment; kSegment.Origin() = akVertex[iM]; kSegment.Direction() = akVertex[iP] - akVertex[iM]; float fSqrDist = SqrDistance(akVertex[iZ],kSegment); float fSqrLen = kSegment.Direction().SquaredLength(); return ( fSqrLen > 0.0f ? fSqrDist/fSqrLen : FLT_MAX ); }
//---------------------------------------------------------------------------- bool Mgc::FindIntersection (const Segment3& rkSegment, const Triangle3& rkTriangle, Vector3& rkPoint) { Real fSegP; if ( SqrDistance(rkSegment,rkTriangle,&fSegP) <= gs_fEpsilon ) { rkPoint = rkSegment.Origin() + fSegP*rkSegment.Direction(); return true; } return false; }
//---------------------------------------------------------------------------- bool Mgc::TestIntersection (const Segment3& rkSegment, const Box3& rkBox) { Real fAWdU[3], fADdU[3], fAWxDdU[3], fRhs; Vector3 kSDir = 0.5f*rkSegment.Direction(); Vector3 kSCen = rkSegment.Origin() + kSDir; Vector3 kDiff = kSCen - rkBox.Center(); fAWdU[0] = Math::FAbs(kSDir.Dot(rkBox.Axis(0))); fADdU[0] = Math::FAbs(kDiff.Dot(rkBox.Axis(0))); fRhs = rkBox.Extent(0) + fAWdU[0]; if ( fADdU[0] > fRhs ) return false; fAWdU[1] = Math::FAbs(kSDir.Dot(rkBox.Axis(1))); fADdU[1] = Math::FAbs(kDiff.Dot(rkBox.Axis(1))); fRhs = rkBox.Extent(1) + fAWdU[1]; if ( fADdU[1] > fRhs ) return false; fAWdU[2] = Math::FAbs(kSDir.Dot(rkBox.Axis(2))); fADdU[2] = Math::FAbs(kDiff.Dot(rkBox.Axis(2))); fRhs = rkBox.Extent(2) + fAWdU[2]; if ( fADdU[2] > fRhs ) return false; Vector3 kWxD = kSDir.Cross(kDiff); fAWxDdU[0] = Math::FAbs(kWxD.Dot(rkBox.Axis(0))); fRhs = rkBox.Extent(1)*fAWdU[2] + rkBox.Extent(2)*fAWdU[1]; if ( fAWxDdU[0] > fRhs ) return false; fAWxDdU[1] = Math::FAbs(kWxD.Dot(rkBox.Axis(1))); fRhs = rkBox.Extent(0)*fAWdU[2] + rkBox.Extent(2)*fAWdU[0]; if ( fAWxDdU[1] > fRhs ) return false; fAWxDdU[2] = Math::FAbs(kWxD.Dot(rkBox.Axis(2))); fRhs = rkBox.Extent(0)*fAWdU[1] + rkBox.Extent(1)*fAWdU[0]; if ( fAWxDdU[2] > fRhs ) return false; return true; }
//---------------------------------------------------------------------------- Real Mgc::SqrDistance (const Triangle3& rkTri0, const Triangle3& rkTri1, Real* pfTri0P0, Real* pfTri0P1, Real* pfTri1P0, Real* pfTri1P1) { Real fS, fT, fU, fV, fS0, fT0, fU0, fV0, fSqrDist, fSqrDist0; Segment3 kSeg; // compare edges of tri0 against all of tri1 kSeg.Origin() = rkTri0.Origin(); kSeg.Direction() = rkTri0.Edge0(); fSqrDist = SqrDistance(kSeg,rkTri1,&fS,&fU,&fV); fT = 0.0f; kSeg.Direction() = rkTri0.Edge1(); fSqrDist0 = SqrDistance(kSeg,rkTri1,&fT0,&fU0,&fV0); fS0 = 0.0f; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } kSeg.Origin() = kSeg.Origin() + rkTri0.Edge0(); kSeg.Direction() = kSeg.Direction() - rkTri0.Edge0(); fSqrDist0 = SqrDistance(kSeg,rkTri1,&fT0,&fU0,&fV0); fS0 = 1.0f-fT0; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } // compare edges of tri1 against all of tri0 kSeg.Origin() = rkTri1.Origin(); kSeg.Direction() = rkTri1.Edge0(); fSqrDist0 = SqrDistance(kSeg,rkTri0,&fU0,&fS0,&fT0); fV0 = 0.0f; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } kSeg.Direction() = rkTri1.Edge1(); fSqrDist0 = SqrDistance(kSeg,rkTri0,&fV0,&fS0,&fT0); fU0 = 0.0f; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } kSeg.Origin() = kSeg.Origin() + rkTri1.Edge0(); kSeg.Direction() = kSeg.Direction() - rkTri1.Edge0(); fSqrDist0 = SqrDistance(kSeg,rkTri0,&fV0,&fS0,&fT0); fU0 = 1.0f-fV0; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } if ( pfTri0P0 ) *pfTri0P0 = fS; if ( pfTri0P1 ) *pfTri0P1 = fT; if ( pfTri1P0 ) *pfTri1P0 = fU; if ( pfTri1P1 ) *pfTri1P1 = fV; return Math::FAbs(fSqrDist); }
Real Wml::SqrDistance (const Rectangle3<Real>& rkRct0, const Rectangle3<Real>& rkRct1, Real* pfRct0P0, Real* pfRct0P1, Real* pfRct1P0, Real* pfRct1P1) { Real fS, fT, fS0, fT0; // rct0 parameters Real fU, fV, fU0, fV0; // rct1 parameters Real fSqrDist, fSqrDist0; Segment3<Real> kSeg; // compare edges of rct0 against all of rct1 kSeg.Origin() = rkRct0.Origin(); kSeg.Direction() = rkRct0.Edge0(); fSqrDist = SqrDistance(kSeg,rkRct1,&fS,&fU,&fV); fT = (Real)0.0; kSeg.Direction() = rkRct0.Edge1(); fSqrDist0 = SqrDistance(kSeg,rkRct1,&fT0,&fU0,&fV0); fS0 = (Real)0.0; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } kSeg.Origin() = rkRct0.Origin() + rkRct0.Edge0(); fSqrDist0 = SqrDistance(kSeg,rkRct1,&fT0,&fU0,&fV0); fS0 = (Real)1.0; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } kSeg.Origin() = rkRct0.Origin() + rkRct0.Edge1(); kSeg.Direction() = rkRct0.Edge0(); fSqrDist0 = SqrDistance(kSeg,rkRct1,&fS0,&fU0,&fV0); fT0 = (Real)1.0; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } // compare edges of pgm1 against all of pgm0 kSeg.Origin() = rkRct1.Origin(); kSeg.Direction() = rkRct1.Edge0(); fSqrDist0 = SqrDistance(kSeg,rkRct0,&fU0,&fS0,&fT0); fV0 = (Real)0.0; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } kSeg.Direction() = rkRct1.Edge1(); fSqrDist0 = SqrDistance(kSeg,rkRct0,&fV0,&fS0,&fT0); fU0 = (Real)0.0; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } kSeg.Origin() = rkRct1.Origin() + rkRct1.Edge0(); fSqrDist0 = SqrDistance(kSeg,rkRct0,&fV0,&fS0,&fT0); fU0 = (Real)1.0; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } kSeg.Origin() = rkRct1.Origin() + rkRct1.Edge1(); kSeg.Direction() = rkRct1.Edge0(); fSqrDist0 = SqrDistance(kSeg,rkRct0,&fU0,&fS0,&fT0); fV0 = (Real)1.0; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } if ( pfRct0P0 ) *pfRct0P0 = fS; if ( pfRct0P1 ) *pfRct0P1 = fT; if ( pfRct1P0 ) *pfRct1P0 = fU; if ( pfRct1P1 ) *pfRct1P1 = fV; return fSqrDist; }
bool Mgc::FindIntersection (const Segment3& rkSegment, const Sphere& rkSphere, int& riQuantity, Vector3 akPoint[2]) { // set up quadratic Q(t) = a*t^2 + 2*b*t + c Vector3 kDiff = rkSegment.Origin() - rkSphere.Center(); Real fA = rkSegment.Direction().SquaredLength(); Real fB = kDiff.Dot(rkSegment.Direction()); Real fC = kDiff.SquaredLength() - rkSphere.Radius()*rkSphere.Radius(); // no intersection if Q(t) has no real roots Real afT[2]; Real fDiscr = fB*fB - fA*fC; if ( fDiscr < 0.0f ) { riQuantity = 0; return false; } else if ( fDiscr > 0.0f ) { Real fRoot = Math::Sqrt(fDiscr); Real fInvA = 1.0f/fA; afT[0] = (-fB - fRoot)*fInvA; afT[1] = (-fB + fRoot)*fInvA; // assert: t0 < t1 since A > 0 if ( afT[0] > 1.0f || afT[1] < 0.0f ) { riQuantity = 0; return false; } else if ( afT[0] >= 0.0f ) { if ( afT[1] > 1.0f ) { riQuantity = 1; akPoint[0] = rkSegment.Origin()+afT[0]*rkSegment.Direction(); return true; } else { riQuantity = 2; akPoint[0] = rkSegment.Origin()+afT[0]*rkSegment.Direction(); akPoint[1] = rkSegment.Origin()+afT[1]*rkSegment.Direction(); return true; } } else // afT[1] >= 0 { riQuantity = 1; akPoint[0] = rkSegment.Origin()+afT[1]*rkSegment.Direction(); return true; } } else { afT[0] = -fB/fA; if ( 0.0f <= afT[0] && afT[0] <= 1.0f ) { riQuantity = 1; akPoint[0] = rkSegment.Origin()+afT[0]*rkSegment.Direction(); return true; } else { riQuantity = 0; return false; } } }
//---------------------------------------------------------------------------- Real Mgc::SqrDistance (const Parallelogram3& rkPgm0, const Parallelogram3& rkPgm1, Real* pfPgm0P0, Real* pfPgm0P1, Real* pfPgm1P0, Real* pfPgm1P1) { Real fS, fT, fS0, fT0; // pgm0 parameters Real fU, fV, fU0, fV0; // pgm1 parameters Real fSqrDist, fSqrDist0; Segment3 kSeg; // compare edges of pgm0 against all of pgm1 kSeg.Origin() = rkPgm0.Origin(); kSeg.Direction() = rkPgm0.Edge0(); fSqrDist = SqrDistance(kSeg,rkPgm1,&fS,&fU,&fV); fT = 0.0f; kSeg.Direction() = rkPgm0.Edge1(); fSqrDist0 = SqrDistance(kSeg,rkPgm1,&fT0,&fU0,&fV0); fS0 = 0.0f; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } kSeg.Origin() = rkPgm0.Origin() + rkPgm0.Edge0(); fSqrDist0 = SqrDistance(kSeg,rkPgm1,&fT0,&fU0,&fV0); fS0 = 1.0f; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } kSeg.Origin() = rkPgm0.Origin() + rkPgm0.Edge1(); kSeg.Direction() = rkPgm0.Edge0(); fSqrDist0 = SqrDistance(kSeg,rkPgm1,&fS0,&fU0,&fV0); fT0 = 1.0f; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } // compare edges of pgm1 against all of pgm0 kSeg.Origin() = rkPgm1.Origin(); kSeg.Direction() = rkPgm1.Edge0(); fSqrDist0 = SqrDistance(kSeg,rkPgm0,&fU0,&fS0,&fT0); fV0 = 0.0f; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } kSeg.Direction() = rkPgm1.Edge1(); fSqrDist0 = SqrDistance(kSeg,rkPgm0,&fV0,&fS0,&fT0); fU0 = 0.0f; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } kSeg.Origin() = rkPgm1.Origin() + rkPgm1.Edge0(); fSqrDist0 = SqrDistance(kSeg,rkPgm0,&fV0,&fS0,&fT0); fU0 = 1.0f; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } kSeg.Origin() = rkPgm1.Origin() + rkPgm1.Edge1(); kSeg.Direction() = rkPgm1.Edge0(); fSqrDist0 = SqrDistance(kSeg,rkPgm0,&fU0,&fS0,&fT0); fV0 = 1.0f; if ( fSqrDist0 < fSqrDist ) { fSqrDist = fSqrDist0; fS = fS0; fT = fT0; fU = fU0; fV = fV0; } if ( pfPgm0P0 ) *pfPgm0P0 = fS; if ( pfPgm0P1 ) *pfPgm0P1 = fT; if ( pfPgm1P0 ) *pfPgm1P0 = fU; if ( pfPgm1P1 ) *pfPgm1P1 = fV; return Math::FAbs(fSqrDist); }
static bool FindTriSphrCoplanarIntersection (int iVertex, const Vector3<Real> akV[3], const Vector3<Real>& /* rkNormal */, const Vector3<Real>& rkSideNorm, const Vector3<Real>& rkSide, const Sphere3<Real>& rkSphere, const Vector3<Real>& rkTriVelocity, const Vector3<Real>& rkSphVelocity, Real& rfTFirst, Real fTMax, int& riQuantity, Vector3<Real> akP[6]) { // TO DO. The parameter rkNormal is not used here. Is this an error? // Or does the caller make some adjustments to the other inputs to // account for the normal? // iVertex is the "hinge" vertex that the two potential edges that can // be intersected by the sphere connect to, and it indexes into akV. // rkSideNorm is the normal of the plane formed by (iVertex,iVertex+1) // and the tri norm, passed so as not to recalculate // check for intersections at time 0 Vector3<Real> kDist = akV[iVertex] - rkSphere.Center(); if ( kDist.SquaredLength() < rkSphere.Radius()*rkSphere.Radius() ) { // already intersecting that vertex rfTFirst = (Real)0.0; return false; } // Tri stationary, sphere moving Vector3<Real> kVel = rkSphVelocity - rkTriVelocity; // check for easy out if ( kVel.Dot(kDist) <= (Real)0.0 ) { // moving away return false; } // find intersection of velocity ray and side normal // project ray and plane onto the plane normal Real fPlane = rkSideNorm.Dot(akV[iVertex]); Real fCenter = rkSideNorm.Dot(rkSphere.Center()); Real fVel = rkSideNorm.Dot(kVel); Real fFactor = (fPlane - fCenter)/fVel; Vector3<Real> kPoint = rkSphere.Center() + fFactor*kVel; // now, find which side of the hinge vertex this lies by projecting // both the vertex and this new point onto the triangle edge (the same // edge whose "normal" was used to find this point) Real fVertex = rkSide.Dot(akV[iVertex]); Real fPoint = rkSide.Dot(kPoint); Segment3<Real> kSeg; if ( fPoint >= fVertex ) { // intersection with edge (iVertex,iVertex+1) kSeg.Origin() = akV[iVertex]; kSeg.Direction() = akV[(iVertex+1)%3] - akV[iVertex]; } else { // intersection with edge (iVertex-1,iVertex) if ( iVertex != 0 ) kSeg.Origin() = akV[iVertex-1]; else kSeg.Origin() = akV[2]; kSeg.Direction() = akV[iVertex] - kSeg.Origin(); } // This could be either an sphere-edge or a sphere-vertex intersection // (this test isn't enough to differentiate), so use the full-on // line-sphere test. return FindIntersection(kSeg,rkTriVelocity,rkSphere,rkSphVelocity, rfTFirst,fTMax,riQuantity,akP); }
bool Wml::FindIntersection (const Triangle3<Real>& rkTri, const Vector3<Real>& rkTriVelocity, const Sphere3<Real>& rkSphere, const Vector3<Real>& rkSphVelocity, Real& rfTFirst, Real fTMax, int& riQuantity, Vector3<Real> akP[6]) { // triangle vertices Vector3<Real> akV[3] = { rkTri.Origin(), rkTri.Origin() + rkTri.Edge0(), rkTri.Origin() + rkTri.Edge1() }; // triangle edges Vector3<Real> akE[3] = { akV[1] - akV[0], akV[2] - akV[1], akV[0] - akV[2] }; // triangle normal Vector3<Real> kN = akE[1].Cross(akE[0]); // sphere center projection on triangle normal Real fNdC = kN.Dot(rkSphere.Center()); // Radius projected length in normal direction. This defers the square // root to normalize kN until absolutely needed. Real fNormRadiusSqr = kN.SquaredLength()*rkSphere.Radius()*rkSphere.Radius(); // triangle projection on triangle normal Real fNdT = kN.Dot(akV[0]); // Distance from sphere to triangle along the normal Real fDist = fNdC - fNdT; // normals for the plane formed by edge i and the triangle normal Vector3<Real> akExN[3] = { akE[0].Cross(kN), akE[1].Cross(kN), akE[2].Cross(kN) }; Segment3<Real> kSeg; if ( fDist*fDist <= fNormRadiusSqr ) { // sphere currently intersects the plane of the triangle // see which edges the sphere center is inside/outside of bool bInside[3]; for (int i = 0; i < 3; i++ ) { bInside[i] = ( akExN[i].Dot(rkSphere.Center()) >= akExN[i].Dot(akV[i]) ); } if ( bInside[0] ) { if ( bInside[1] ) { if ( bInside[2] ) { // triangle inside sphere return false; } else // !bInside[2] { // potential intersection with edge 2 kSeg.Origin() = akV[2]; kSeg.Direction() = akE[2]; return FindIntersection(kSeg,rkTriVelocity,rkSphere, rkSphVelocity,rfTFirst,fTMax,riQuantity,akP); } } else // !bInside[1] { if ( bInside[2] ) { // potential intersection with edge 1 kSeg.Origin() = akV[1]; kSeg.Direction() = akE[1]; return FindIntersection(kSeg,rkTriVelocity,rkSphere, rkSphVelocity,rfTFirst,fTMax,riQuantity,akP); } else // !bInside[2] { // potential intersection with edges 1,2 return FindTriSphrCoplanarIntersection(2,akV,kN,akExN[2], akE[2],rkSphere,rkTriVelocity,rkSphVelocity,rfTFirst, fTMax,riQuantity,akP); } } } else // !bInside[0] { if ( bInside[1] ) { if ( bInside[2] ) { // potential intersection with edge 0 kSeg.Origin() = akV[0]; kSeg.Direction() = akE[0]; return FindIntersection(kSeg,rkTriVelocity,rkSphere, rkSphVelocity,rfTFirst,fTMax,riQuantity,akP); } else // !bInside[2] { // potential intersection with edges 2,0 return FindTriSphrCoplanarIntersection(0,akV,kN,akExN[0], akE[0],rkSphere,rkTriVelocity,rkSphVelocity,rfTFirst, fTMax,riQuantity,akP); } } else // !bInside[1] { if ( bInside[2] ) { // potential intersection with edges 0,1 return FindTriSphrCoplanarIntersection(1,akV,kN,akExN[1], akE[1],rkSphere,rkTriVelocity,rkSphVelocity,rfTFirst, fTMax,riQuantity,akP); } else // !bInside[2] { // we should not get here assert( false ); return false; } } } } else { // sphere does not currently intersect the plane of the triangle // sphere moving, triangle stationary Vector3<Real> kVel = rkSphVelocity - rkTriVelocity; // Find point of intersection of the sphere and the triangle // plane. Where this point occurs on the plane relative to the // triangle determines the potential kind of intersection. kN.Normalize(); // Point on sphere we care about intersecting the triangle plane Vector3<Real> kSpherePoint; // Which side of the triangle is the sphere on? if ( fNdC > fNdT ) { // positive side if ( kVel.Dot(kN) >= (Real)0.0 ) { // moving away, easy out return false; } kSpherePoint = rkSphere.Center() - rkSphere.Radius()*kN; } else { // negative side if ( kVel.Dot(kN) <= (Real)0.0 ) { // moving away, easy out return false; } kSpherePoint = rkSphere.Center() + rkSphere.Radius()*kN; } // find intersection of velocity ray and triangle plane // project ray and plane onto the plane normal Real fPlane = kN.Dot(akV[0]); Real fPoint = kN.Dot(kSpherePoint); Real fVel = kN.Dot(kVel); Real fTime = (fPlane - fPoint)/fVel; // where this intersects Vector3<Real> kIntrPoint = kSpherePoint + fTime*kVel; // see which edges this intersection point is inside/outside of bool bInside[3]; for (int i = 0; i < 3; i++ ) bInside[i] = (akExN[i].Dot(kIntrPoint) >= akExN[i].Dot(akV[i])); if ( bInside[0] ) { if ( bInside[1] ) { if ( bInside[2] ) { // intersects face at time fTime if ( fTime > fTMax ) { // intersection after tMax return false; } else { rfTFirst = fTime; riQuantity = 1; // kIntrPoint is the point in space, assuming that // TriVel is 0. Re-adjust the point to where it // should be, were it not. akP[0] = kIntrPoint + fTime*rkTriVelocity; return true; } } else // !bInside[2] { // potential intersection with edge 2 kSeg.Origin() = akV[2]; kSeg.Direction() = akE[2]; return FindIntersection(kSeg,rkTriVelocity,rkSphere, rkSphVelocity,rfTFirst,fTMax,riQuantity,akP); } } else // !bInside[1] { if ( bInside[2] ) { // potential intersection with edge 1 kSeg.Origin() = akV[1]; kSeg.Direction() = akE[1]; return FindIntersection(kSeg,rkTriVelocity,rkSphere, rkSphVelocity,rfTFirst,fTMax,riQuantity,akP); } else // !bInside[2] { // potential intersection with vertex 2 return FindSphereVertexIntersection(akV[2],rkSphere, rkSphVelocity,rkTriVelocity,rfTFirst,fTMax, riQuantity,akP); } } } else // !bInside[0] { if ( bInside[1] ) { if ( bInside[2] ) { // potential intersection with edge 0 kSeg.Origin() = akV[0]; kSeg.Direction() = akE[0]; return FindIntersection(kSeg,rkTriVelocity,rkSphere, rkSphVelocity,rfTFirst,fTMax,riQuantity,akP); } else // !bInside[2] { // potential intersection with vertex 0 return FindSphereVertexIntersection(akV[0],rkSphere, rkSphVelocity,rkTriVelocity,rfTFirst,fTMax, riQuantity,akP); } } else // !bInside[1] { if ( bInside[2] ) { // potential intersection with vertex 1 return FindSphereVertexIntersection(akV[1],rkSphere, rkSphVelocity,rkTriVelocity,rfTFirst,fTMax, riQuantity,akP); } else // !bInside[2] { // we should not get here assert( false ); return false; } } } } }