ReverseXAxis (TGraphAsymmErrors *g, double size) { // Remove the current axis g->GetXaxis()->SetLabelOffset(999); g->GetXaxis()->SetTickLength(0); // Redraw the new axis gPad->Update(); g->GetYaxis()->SetTitle("Event Selection Efficiency"); TGaxis *newaxis = new TGaxis(gPad->GetUxmax(), gPad->GetUymin(), gPad->GetUxmin(), gPad->GetUymin(), g->GetXaxis()->GetXmin(), g->GetXaxis()->GetXmax(), 510,"-"); newaxis->SetLabelOffset(-0.04); newaxis->SetTitle("Centrality"); newaxis->SetTitleFont(42); newaxis->SetTitleSize(size); newaxis->SetLabelSize(size); newaxis->CenterTitle(); newaxis->SetLabelFont(42); newaxis->Draw(); }
void ReverseXAxis (TH1 *h) { h->GetXaxis()->SetLabelOffset(999); h->GetXaxis()->SetTickLength(0); gPad->Update(); TGaxis *newaxis = new TGaxis(gPad->GetUxmax(), gPad->GetUymin(), gPad->GetUxmin(), gPad->GetUymin(), h->GetXaxis()->GetXmin(), h->GetXaxis()->GetXmax(), 510,"-"); newaxis->SetLabelOffset(-0.03); newaxis->SetTitle("X[cm]"); newaxis->CenterTitle(1); newaxis->Draw(); }
void composeTrackAnalysisbyAssociator(string FileListName, int FileNumber) { if(debug) cout << FileListName << endl; string theFileName; ifstream composeFileList; composeFileList.open(FileListName.c_str()); string OutputPlotNamepreFix = FileListName + "_"; string OutputPlotNameFix = ".png"; unsigned int EventNumber; unsigned int trackingParticleMatch; double recTrackPurity; double recTrackrefMomentum; double recTrackrefPhi; double recTrackrefEta; double recTrackinnerMomentum; double recTrackinnerPhi; double recTrackinnerEta; unsigned int recTrackinnerValid; double recTrackouterMomentum; double recTrackouterPhi; double recTrackouterEta; unsigned int recTrackouterValid; double simTrackinnerMomentum; double simTrackinnerPhi; double simTrackinnerEta; unsigned int simTrackinnerMatch; double simTrackouterMomentum; double simTrackouterPhi; double simTrackouterEta; unsigned int simTrackouterMatch; double recTrackinnerMomentumofTSOS; double recTrackinnerPhiofTSOS; double recTrackinnerEtaofTSOS; unsigned int recTrackinnerValidofTSOS; double recTrackouterMomentumofTSOS; double recTrackouterPhiofTSOS; double recTrackouterEtaofTSOS; unsigned int recTrackouterValidofTSOS; double recTrackimpactMomentumofTSOS; double recTrackimpactPhiofTSOS; double recTrackimpactEtaofTSOS; unsigned int recTrackimpactValidofTSOS; int recTrackCharge; double simTrackMomentumPt; double simTrackPhi; double simTrackEta; int simTrackCharge; TObjArray* myEfficiencyHist = new TObjArray(); TObjArray* myParticleHist = new TObjArray(); TObjArray* mySTAHist = new TObjArray(); TObjArray* myChargeCheckHist = new TObjArray(); TObjArray* myDeltaPtHist = new TObjArray(); TObjArray* myDeltaPhiHist = new TObjArray(); TObjArray* myDeltaEtaHist = new TObjArray(); vector<string> TypeName; TypeName.clear(); for(int Index = 0; Index < FileNumber; Index++) { getline(composeFileList, theFileName); TypeName.push_back(theFileName); string fullFileName = "data/"+ theFileName + ".root"; if(debug) cout << theFileName << endl; TFile* RootFile = TFile::Open(fullFileName.c_str()); TTree* T1 = (TTree*)RootFile->Get("ExTree"); T1->SetBranchAddress("EventNumber", &EventNumber); T1->SetBranchAddress("trackingParticleMatch", &trackingParticleMatch); T1->SetBranchAddress("recTrackPurity", &recTrackPurity); T1->SetBranchAddress("recTrackrefMomentum", &recTrackrefMomentum); T1->SetBranchAddress("recTrackrefPhi", &recTrackrefPhi); T1->SetBranchAddress("recTrackrefEta", &recTrackrefEta); T1->SetBranchAddress("recTrackinnerMomentum", &recTrackinnerMomentum); T1->SetBranchAddress("recTrackinnerPhi", &recTrackinnerPhi); T1->SetBranchAddress("recTrackinnerEta", &recTrackinnerEta); T1->SetBranchAddress("recTrackinnerValid", &recTrackinnerValid); T1->SetBranchAddress("recTrackouterMomentum", &recTrackouterMomentum); T1->SetBranchAddress("recTrackouterPhi", &recTrackouterPhi); T1->SetBranchAddress("recTrackouterEta", &recTrackouterEta); T1->SetBranchAddress("recTrackouterValid", &recTrackouterValid); T1->SetBranchAddress("simTrackinnerMomentum", &simTrackinnerMomentum); T1->SetBranchAddress("simTrackinnerPhi", &simTrackinnerPhi); T1->SetBranchAddress("simTrackinnerEta", &simTrackinnerEta); T1->SetBranchAddress("simTrackinnerMatch", &simTrackinnerMatch); T1->SetBranchAddress("simTrackouterMomentum", &simTrackouterMomentum); T1->SetBranchAddress("simTrackouterPhi", &simTrackouterPhi); T1->SetBranchAddress("simTrackouterEta", &simTrackouterEta); T1->SetBranchAddress("simTrackouterMatch", &simTrackouterMatch); T1->SetBranchAddress("recTrackinnerMomentumofTSOS", &recTrackinnerMomentumofTSOS); T1->SetBranchAddress("recTrackinnerPhiofTSOS", &recTrackinnerPhiofTSOS); T1->SetBranchAddress("recTrackinnerEtaofTSOS", &recTrackinnerEtaofTSOS); T1->SetBranchAddress("recTrackinnerValidofTSOS", &recTrackinnerValidofTSOS); T1->SetBranchAddress("recTrackouterMomentumofTSOS", &recTrackouterMomentumofTSOS); T1->SetBranchAddress("recTrackouterPhiofTSOS", &recTrackouterPhiofTSOS); T1->SetBranchAddress("recTrackouterEtaofTSOS", &recTrackouterEtaofTSOS); T1->SetBranchAddress("recTrackouterValidofTSOS", &recTrackouterValidofTSOS); T1->SetBranchAddress("recTrackimpactMomentumofTSOS", &recTrackimpactMomentumofTSOS); T1->SetBranchAddress("recTrackimpactPhiofTSOS", &recTrackimpactPhiofTSOS); T1->SetBranchAddress("recTrackimpactEtaofTSOS", &recTrackimpactEtaofTSOS); T1->SetBranchAddress("recTrackimpactValidofTSOS", &recTrackimpactValidofTSOS); T1->SetBranchAddress("recTrackCharge", &recTrackCharge); T1->SetBranchAddress("simTrackMomentumPt", &simTrackMomentumPt); T1->SetBranchAddress("simTrackPhi", &simTrackPhi); T1->SetBranchAddress("simTrackEta", &simTrackEta); T1->SetBranchAddress("simTrackCharge", &simTrackCharge); string TempHistName; TempHistName = theFileName + "_Efficiency2simPt"; TH1D* Efficiency2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_Particle2simPt"; TH1D* Particle2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_STA2simPt"; TH1D* STA2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_InverseChargeRato2simPt"; TH1D* InverseChargeRato2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_DeltaPt2simPt"; TH1D* DeltaPt2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_DeltaPhi2simPt"; TH1D* DeltaPhi2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_DeltaEta2simPt"; TH1D* DeltaEta2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_MaxPurity2simPt"; TH2D* MaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 6, 0., 1.2); TempHistName = theFileName + "_Multiplicity2simPt"; TH2D* Multiplicity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 10, 0., 10.); TempHistName = theFileName + "_ChargeCheck2simPt"; TH2D* ChargeCheck2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 5, -2.5, 2.5); TempHistName = theFileName + "_simTrackMomentumPtmaxPurity2simPt"; TH2D* simTrackMomentumPtmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, (int)5*PtScale, 0, PtScale); TempHistName = theFileName + "_simTrackPhimaxPurity2simPt"; TH2D* simTrackPhimaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 314, -PI, PI); TempHistName = theFileName + "_simTrackEtamaxPurity2simPt"; TH2D* simTrackEtamaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 400, -2.0, 2.0); TempHistName = theFileName + "_recTrackimpactMomentumofTSOSmaxPurity2simPt"; TH2D* recTrackimpactMomentumofTSOSmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, (int)5*PtScale, 0, PtScale); TempHistName = theFileName + "_recTrackimpactPhiofTSOSmaxPurity2simPt"; TH2D* recTrackimpactPhiofTSOSmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 314, -PI, PI); TempHistName = theFileName + "_recTrackimpactEtaofTSOSmaxPurity2simPt"; TH2D* recTrackimpactEtaofTSOSmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 600, -3.0, 3.0); TempHistName = theFileName + "_recTrackimpactValidofTSOSmaxPurity2simPt"; TH2D* recTrackimpactValidofTSOSmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 2, 0., 2.); TempHistName = theFileName + "_DeltaPtmaxPurity2simPt"; TH2D* DeltaPtmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, (int)5*PtScale, -1.*PtScale, PtScale); TempHistName = theFileName + "_DeltaPhimaxPurity2simPt"; TH2D* DeltaPhimaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 314, -PI, PI); TempHistName = theFileName + "_DeltaEtamaxPurity2simPt"; TH2D* DeltaEtamaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 400, -2.0, 2.0); unsigned int trackingParticleMatch_temp; unsigned int efficiency_temp; double recTrackPurity_temp; double recTrackrefMomentum_temp; double recTrackrefPhi_temp; double recTrackrefEta_temp; double recTrackinnerMomentum_temp; double recTrackinnerPhi_temp; double recTrackinnerEta_temp; unsigned int recTrackinnerValid_temp; double recTrackouterMomentum_temp; double recTrackouterPhi_temp; double recTrackouterEta_temp; unsigned int recTrackouterValid_temp; double simTrackinnerMomentum_temp; double simTrackinnerPhi_temp; double simTrackinnerEta_temp; unsigned int simTrackinnerMatch_temp; double simTrackouterMomentum_temp; double simTrackouterPhi_temp; double simTrackouterEta_temp; unsigned int simTrackouterMatch_temp; double recTrackinnerMomentumofTSOS_temp; double recTrackinnerPhiofTSOS_temp; double recTrackinnerEtaofTSOS_temp; unsigned int recTrackinnerValidofTSOS_temp; double recTrackouterMomentumofTSOS_temp; double recTrackouterPhiofTSOS_temp; double recTrackouterEtaofTSOS_temp; unsigned int recTrackouterValidofTSOS_temp; double recTrackimpactMomentumofTSOS_temp; double recTrackimpactPhiofTSOS_temp; double recTrackimpactEtaofTSOS_temp; unsigned int recTrackimpactValidofTSOS_temp; int recTrackCharge_temp; double simTrackMomentumPt_temp; double simTrackPhi_temp; double simTrackEta_temp; int simTrackCharge_temp; int Nentries = T1->GetEntries(); for(int i = 0; i < Nentries; i++) { T1->GetEntry(i); if(trackingParticleMatch == 0) { MaxPurity2simPtHist->Fill(simTrackMomentumPt, 0); Multiplicity2simPtHist->Fill(simTrackMomentumPt, 0); int tempParticleBinNumber = Particle2simPtHist->FindBin(simTrackMomentumPt); double tempParticleBinValue = Particle2simPtHist->GetBinContent(tempParticleBinNumber); tempParticleBinValue += 1.; Particle2simPtHist->SetBinContent(tempParticleBinNumber, tempParticleBinValue); } else { efficiency_temp = 1; trackingParticleMatch_temp = trackingParticleMatch; recTrackPurity_temp = recTrackPurity; recTrackrefMomentum_temp = recTrackrefMomentum; recTrackrefPhi_temp = recTrackrefPhi; recTrackrefEta_temp = recTrackrefEta; recTrackinnerMomentum_temp = recTrackinnerMomentum; recTrackinnerPhi_temp = recTrackinnerPhi; recTrackinnerEta_temp = recTrackinnerEta; recTrackinnerValid_temp = recTrackinnerValid; recTrackouterMomentum_temp = recTrackouterMomentum; recTrackouterPhi_temp = recTrackouterPhi; recTrackouterEta_temp = recTrackouterEta; recTrackouterValid_temp = recTrackouterValid; simTrackinnerMomentum_temp = simTrackinnerMomentum; simTrackinnerPhi_temp = simTrackinnerPhi; simTrackinnerEta_temp = simTrackinnerEta; simTrackinnerMatch_temp = simTrackinnerMatch; simTrackouterMomentum_temp = simTrackouterMomentum; simTrackouterPhi_temp = simTrackouterPhi; simTrackouterEta_temp = simTrackouterEta; simTrackouterMatch_temp = simTrackouterMatch; recTrackinnerMomentumofTSOS_temp = recTrackinnerMomentumofTSOS; recTrackinnerPhiofTSOS_temp = recTrackinnerPhiofTSOS; recTrackinnerEtaofTSOS_temp = recTrackinnerEtaofTSOS; recTrackinnerValidofTSOS_temp = recTrackinnerValidofTSOS; recTrackouterMomentumofTSOS_temp = recTrackouterMomentumofTSOS; recTrackouterPhiofTSOS_temp = recTrackouterPhiofTSOS; recTrackouterEtaofTSOS_temp = recTrackouterEtaofTSOS; recTrackouterValidofTSOS_temp = recTrackouterValidofTSOS; recTrackimpactMomentumofTSOS_temp = recTrackimpactMomentumofTSOS; recTrackimpactPhiofTSOS_temp = recTrackimpactPhiofTSOS; recTrackimpactEtaofTSOS_temp = recTrackimpactEtaofTSOS; recTrackimpactValidofTSOS_temp = recTrackimpactValidofTSOS; recTrackCharge_temp = recTrackCharge; simTrackMomentumPt_temp = simTrackMomentumPt; simTrackPhi_temp = simTrackPhi; simTrackEta_temp = simTrackEta; simTrackCharge_temp = simTrackCharge; bool nextStep = true; while(nextStep) { i++; T1->GetEntry(i); if(trackingParticleMatch <= trackingParticleMatch_temp) nextStep = false; else trackingParticleMatch_temp = trackingParticleMatch; if(nextStep == true && recTrackPurity_temp < recTrackPurity) { if(debug) cout << "step another match, trackingParticleMatch_temp: " << trackingParticleMatch_temp << endl; //trackingParticleMatch_temp = trackingParticleMatch; recTrackPurity_temp = recTrackPurity; recTrackrefMomentum_temp = recTrackrefMomentum; recTrackrefPhi_temp = recTrackrefPhi; recTrackrefEta_temp = recTrackrefEta; recTrackinnerMomentum_temp = recTrackinnerMomentum; recTrackinnerPhi_temp = recTrackinnerPhi; recTrackinnerEta_temp = recTrackinnerEta; recTrackinnerValid_temp = recTrackinnerValid; recTrackouterMomentum_temp = recTrackouterMomentum; recTrackouterPhi_temp = recTrackouterPhi; recTrackouterEta_temp = recTrackouterEta; recTrackouterValid_temp = recTrackouterValid; simTrackinnerMomentum_temp = simTrackinnerMomentum; simTrackinnerPhi_temp = simTrackinnerPhi; simTrackinnerEta_temp = simTrackinnerEta; simTrackinnerMatch_temp = simTrackinnerMatch; simTrackouterMomentum_temp = simTrackouterMomentum; simTrackouterPhi_temp = simTrackouterPhi; simTrackouterEta_temp = simTrackouterEta; simTrackouterMatch_temp = simTrackouterMatch; recTrackinnerMomentumofTSOS_temp = recTrackinnerMomentumofTSOS; recTrackinnerPhiofTSOS_temp = recTrackinnerPhiofTSOS; recTrackinnerEtaofTSOS_temp = recTrackinnerEtaofTSOS; recTrackinnerValidofTSOS_temp = recTrackinnerValidofTSOS; recTrackouterMomentumofTSOS_temp = recTrackouterMomentumofTSOS; recTrackouterPhiofTSOS_temp = recTrackouterPhiofTSOS; recTrackouterEtaofTSOS_temp = recTrackouterEtaofTSOS; recTrackouterValidofTSOS_temp = recTrackouterValidofTSOS; recTrackimpactMomentumofTSOS_temp = recTrackimpactMomentumofTSOS; recTrackimpactPhiofTSOS_temp = recTrackimpactPhiofTSOS; recTrackimpactEtaofTSOS_temp = recTrackimpactEtaofTSOS; recTrackimpactValidofTSOS_temp = recTrackimpactValidofTSOS; recTrackCharge_temp = recTrackCharge; simTrackMomentumPt_temp = simTrackMomentumPt; simTrackPhi_temp = simTrackPhi; simTrackEta_temp = simTrackEta; simTrackCharge_temp = simTrackCharge; } } i--; //if(debug) cout << "Filling Multiplicity " << trackingParticleMatch_temp << endl; MaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackPurity_temp); Multiplicity2simPtHist->Fill(simTrackMomentumPt_temp, trackingParticleMatch_temp); ChargeCheck2simPtHist->Fill(simTrackMomentumPt_temp, simTrackCharge_temp*recTrackCharge_temp); simTrackMomentumPtmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, simTrackMomentumPt_temp); simTrackPhimaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, simTrackPhi_temp); simTrackEtamaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, simTrackEta_temp); recTrackimpactMomentumofTSOSmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactMomentumofTSOS_temp); recTrackimpactPhiofTSOSmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactPhiofTSOS_temp); recTrackimpactEtaofTSOSmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactEtaofTSOS_temp); recTrackimpactValidofTSOSmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactValidofTSOS_temp); DeltaPtmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, (recTrackimpactMomentumofTSOS_temp-simTrackMomentumPt_temp)/simTrackMomentumPt_temp); DeltaPhimaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactPhiofTSOS_temp-simTrackPhi_temp); DeltaEtamaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactEtaofTSOS_temp-simTrackEta_temp); int tempParticleBinNumber = STA2simPtHist->FindBin(simTrackMomentumPt_temp); double tempParticleBinValue = Particle2simPtHist->GetBinContent(tempParticleBinNumber); tempParticleBinValue += 1.; Particle2simPtHist->SetBinContent(tempParticleBinNumber, tempParticleBinValue); double tempSTABinValue = STA2simPtHist->GetBinContent(tempParticleBinNumber); tempSTABinValue += 1.; STA2simPtHist->SetBinContent(tempParticleBinNumber, tempSTABinValue); } } for(int PtIndex = 1; PtIndex <= (int)(PtScale/2); PtIndex++) { double ParticleBinValue = Particle2simPtHist->GetBinContent(PtIndex); double STABinValue = STA2simPtHist->GetBinContent(PtIndex); if(ParticleBinValue == 0.) ParticleBinValue += 1.; double EfficiencyBinValue = STABinValue / ParticleBinValue * 100.; double EfficiencyBinError = sqrt(EfficiencyBinValue * (100. - EfficiencyBinValue) / ParticleBinValue); cout << ParticleBinValue << ", " << STABinValue << ", " << EfficiencyBinValue << endl; Efficiency2simPtHist->SetBinContent(PtIndex, EfficiencyBinValue); Efficiency2simPtHist->SetBinError(PtIndex, EfficiencyBinError); TH1D* ChargeCheckHist = ChargeCheck2simPtHist->ProjectionY("ChargeCheck", PtIndex, PtIndex, "o"); double ReverseChargeBinValue = ChargeCheckHist->GetBinContent(2); double CoverseChargeBinValue = ChargeCheckHist->GetBinContent(4); double TotalChargeBinValue = ReverseChargeBinValue + CoverseChargeBinValue; if(TotalChargeBinValue == 0.); TotalChargeBinValue += 1.; double ReverseChargeRato = ReverseChargeBinValue / TotalChargeBinValue; InverseChargeRato2simPtHist->SetBinContent(PtIndex, ReverseChargeRato); TH1D* DeltaPtHist = DeltaPtmaxPurity2simPtHist->ProjectionY("DeltaPt", PtIndex, PtIndex, "o"); double DeltaPtMean = DeltaPtHist->GetMean(); double DeltaPtRMS = DeltaPtHist->GetRMS(); DeltaPt2simPtHist->SetBinContent(PtIndex, DeltaPtMean); DeltaPt2simPtHist->SetBinError(PtIndex, DeltaPtRMS); TH1D* DeltaPhiHist = DeltaPhimaxPurity2simPtHist->ProjectionY("DeltaPhi", PtIndex, PtIndex, "o"); double DeltaPhiMean = DeltaPhiHist->GetMean(); double DeltaPhiRMS = DeltaPhiHist->GetRMS(); DeltaPhi2simPtHist->SetBinContent(PtIndex, DeltaPhiMean); DeltaPhi2simPtHist->SetBinError(PtIndex, DeltaPhiRMS); TH1D* DeltaEtaHist = DeltaEtamaxPurity2simPtHist->ProjectionY("DeltaEta", PtIndex, PtIndex, "o"); double DeltaEtaMean = DeltaEtaHist->GetMean(); double DeltaEtaRMS = DeltaEtaHist->GetRMS(); DeltaEta2simPtHist->SetBinContent(PtIndex, DeltaEtaMean); DeltaEta2simPtHist->SetBinError(PtIndex, DeltaEtaRMS); } myEfficiencyHist->AddLast(Efficiency2simPtHist); myParticleHist->AddLast(Particle2simPtHist); mySTAHist->AddLast(STA2simPtHist); myChargeCheckHist->AddLast(InverseChargeRato2simPtHist); myDeltaPtHist->AddLast(DeltaPt2simPtHist); } double minX = 0; double minY = 0; double maxX = 110; double maxY = 40; TCanvas* myCanvas = new TCanvas("Canvas", "Canvas", 800, 600); myCanvas->cd(); TPad* myPad = new TPad("Pad", "Pad", 0, 0, 1, 1); myPad->Draw(); myPad->cd(); ((TH1D*)(myParticleHist->At(0)))->SetStats(0); ((TH1D*)(myParticleHist->At(0)))->GetXaxis()->SetTitle("simPt/Gev"); ((TH1D*)(myParticleHist->At(0)))->GetXaxis()->CenterTitle(1); ((TH1D*)(myParticleHist->At(0)))->Draw(); for(int Index = 0; Index < FileNumber; Index++) { ((TH1D*)(mySTAHist->At(Index)))->SetStats(0); ((TH1D*)(mySTAHist->At(Index)))->SetLineColor(kRed+Index); ((TH1D*)(mySTAHist->At(Index)))->Draw("same"); } TLegend *STALeg = new TLegend(0.6,0.1,0.9,0.3); STALeg->SetBorderSize(1); TString LegKey = "ParticleTrack"; STALeg->AddEntry(myParticleHist->At(0), LegKey, "lpf"); for(int Index = 0; Index < FileNumber; Index++) { LegKey = TypeName[Index]; STALeg->AddEntry(mySTAHist->At(Index), LegKey, "lpf"); } STALeg->Draw(); string SaveName = OutputPlotNamepreFix + "_STA2simPt" + OutputPlotNameFix; myCanvas->SaveAs(SaveName.c_str()); myPad->Clear(); myPad->Update(); double YScale = myPad->GetUymax() / 110.; ((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->SetTitle("simPt/Gev"); ((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->CenterTitle(1); ((TH1D*)(myEfficiencyHist->At(0)))->SetStats(0); ((TH1D*)(myEfficiencyHist->At(0)))->Scale(YScale); ((TH1D*)(myEfficiencyHist->At(0)))->SetLineColor(kRed); ((TH1D*)(myEfficiencyHist->At(0)))->Draw("same,ah"); for(int Index = 1; Index < FileNumber; Index++) { ((TH1D*)(myEfficiencyHist->At(Index)))->SetStats(0); ((TH1D*)(myEfficiencyHist->At(Index)))->Scale(YScale); ((TH1D*)(myEfficiencyHist->At(Index)))->SetLineColor(kRed+Index); ((TH1D*)(myEfficiencyHist->At(Index)))->Draw("same,ah"); } myPad->Update(); if(debug) cout << "Y: " << myPad->GetUymax() << endl; double YAxisMinValue=((TH1D*)(myEfficiencyHist->At(0)))->GetYaxis()->GetXmin(); double YAxisMaxValue=((TH1D*)(myEfficiencyHist->At(0)))->GetYaxis()->GetXmax(); int YAxisNBins=((TH1D*)(myEfficiencyHist->At(0)))->GetYaxis()->GetNbins(); TGaxis* YAxis = new TGaxis(myPad->GetUxmin(), myPad->GetUymin(), myPad->GetUxmin(), myPad->GetUymax(), 0, 110, 510, "-R"); YAxis->SetLineColor(kGreen); YAxis->SetLabelColor(kGreen); YAxis->SetTitle("Efficiency of STA for simPts"); YAxis->CenterTitle(1); YAxis->Draw(); double XAxisMinValue=((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->GetXmin(); double XAxisMaxValue=((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->GetXmax(); int XAxisNBins=((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->GetNbins(); TGaxis* XAxis = new TGaxis(myPad->GetUxmin(), myPad->GetUymin(), myPad->GetUxmax(), myPad->GetUymin(), XAxisMinValue, XAxisMaxValue, 510, "+L"); XAxis->SetTitle("simPt/Gev"); XAxis->CenterTitle(1); XAxis->Draw(); TLegend *EffLeg = new TLegend(0.1,0.9,0.4,1.0); EffLeg->SetBorderSize(1); for(int Index = 0; Index < FileNumber; Index++) { TString LegKey = TypeName[Index]; EffLeg->AddEntry(myEfficiencyHist->At(Index), LegKey, "lpf"); } EffLeg->Draw(); string SaveName = OutputPlotNamepreFix + "_Eff2simPt" + OutputPlotNameFix; myCanvas->SaveAs(SaveName.c_str()); ((TH1D*)(myDeltaPtHist->At(0)))->SetStats(0); ((TH1D*)(myDeltaPtHist->At(0)))->GetXaxis()->SetTitle("simPt/Gev"); ((TH1D*)(myDeltaPtHist->At(0)))->GetXaxis()->CenterTitle(1); ((TH1D*)(myDeltaPtHist->At(0)))->GetYaxis()->SetTitle("deltPt/simPt"); ((TH1D*)(myDeltaPtHist->At(0)))->GetYaxis()->CenterTitle(1); ((TH1D*)(myDeltaPtHist->At(0)))->SetLineColor(kRed); ((TH1D*)(myDeltaPtHist->At(0)))->Draw(""); for(int Index = 1; Index < FileNumber; Index++) { ((TH1D*)(myDeltaPtHist->At(Index)))->SetStats(0); //((TH1D*)(myDeltaPtHist->At(Index)))->GetXaxis()->SetTitle("simPt/Gev"); //((TH1D*)(myDeltaPtHist->At(Index)))->GetXaxis()->CenterTitle(1); //((TH1D*)(myDeltaPtHist->At(Index)))->GetYaxis()->SetTitle("deltPt/simPt"); //((TH1D*)(myDeltaPtHist->At(Index)))->GetYaxis()->CenterTitle(1); ((TH1D*)(myDeltaPtHist->At(Index)))->SetLineColor(kRed+Index); ((TH1D*)(myDeltaPtHist->At(Index)))->Draw("same"); //SaveName = OutputPlotNamepreFix + TypeName[Index] + "DeltaPt" + OutputPlotNameFix; //myCanvas->SaveAs(SaveName.c_str()); } TLegend *PtLeg = new TLegend(0.6,0.8,0.9,0.9); PtLeg->SetBorderSize(1); for(int Index = 0; Index < FileNumber; Index++) { TString LegKey = TypeName[Index]; PtLeg->AddEntry(myDeltaPtHist->At(Index), LegKey, "lpf"); } PtLeg->Draw(); SaveName = OutputPlotNamepreFix + "_DeltaPt" + OutputPlotNameFix; myCanvas->SaveAs(SaveName.c_str()); }
void PlotPotential2D( const TString &sim, Int_t time, Int_t zoom=2, Int_t Nbins=2, const TString &options="") { #ifdef __CINT__ gSystem->Load("libplasma.so"); #endif PlasmaGlob::Initialize(); // Palettes! gROOT->Macro("PlasmaPalettes.C"); // Init Units table PUnits::UnitsTable::Get(); // Load PData PData *pData = PData::Get(sim.Data()); pData->LoadFileNames(time); if(!pData->IsInit()) return; TString opt = options; // More makeup gStyle->SetPadGridY(0); if(opt.Contains("gridx")) { gStyle->SetPadGridX(1); } if(opt.Contains("gridy")) { gStyle->SetPadGridY(1); } // Some plasma constants Double_t n0 = pData->GetPlasmaDensity(); Double_t omegap = pData->GetPlasmaFrequency(); Double_t timedepth = 1.; if(omegap!=0.0) timedepth = 1/omegap; Double_t kp = pData->GetPlasmaK(); Double_t skindepth = 1.; if(kp!=0.0) skindepth = 1/kp; Double_t E0 = pData->GetPlasmaE0(); // Some beam properties: Double_t Ebeam = pData->GetBeamEnergy(); Double_t gamma = pData->GetBeamGamma(); Double_t vbeam = pData->GetBeamVelocity(); cout << Form(" - Bunch gamma = %8.4f", gamma ) << endl; cout << Form(" - Bunch velocity = %8.4f c", vbeam ) << endl; // Other parameters Float_t trapPotential = 1.0 - (1.0/gamma); cout << Form(" - Trap. potential = %8.4f mc2/e",trapPotential) << endl; cout << endl; // Time in OU Float_t Time = pData->GetRealTime(); // z start of the plasma in normalized units. Float_t zStartPlasma = pData->GetPlasmaStart()*kp; // z start of the beam in normalized units. Float_t zStartBeam = pData->GetBeamStart()*kp; // z start of the neutral in normalized units. Float_t zStartNeutral = pData->GetNeutralStart()*kp; // z end of the neutral in normalized units. Float_t zEndNeutral = pData->GetNeutralEnd()*kp; if(opt.Contains("center")) { Time -= zStartPlasma; if(opt.Contains("comov")) // Centers on the head of the beam. Time += zStartBeam; } Float_t shiftz = pData->Shift(opt); // cout << "Shift = " << shiftz << endl; // Calculate the "axis range" in number of bins. If Nbins==0 a RMS width is taken. Double_t rms0 = pData->GetBeamRmsY() * kp; if(pData->IsCyl()) rms0 = pData->GetBeamRmsR() * kp; Int_t FirstyBin = 0; Int_t LastyBin = 0; if(Nbins==0) { if(rms0>0.0) Nbins = TMath::Nint(rms0 / pData->GetDX(1)); else Nbins = 1; } // Slice width limits. if(!pData->IsCyl()) { FirstyBin = pData->GetNX(1)/2 + 1 - Nbins; LastyBin = pData->GetNX(1)/2 + Nbins; } else { FirstyBin = 1; LastyBin = Nbins; } // ---------------------------------------------------------------------------------- // Get charge density histos Int_t Nspecies = pData->NSpecies(); TH2F **hDen2D = new TH2F*[Nspecies]; // Get charge density on-axis TH1F **hDen1D = new TH1F*[Nspecies]; // And electric current (integrated) TH1F **hCur1D = new TH1F*[Nspecies]; for(Int_t i=0; i<Nspecies; i++) { hDen2D[i] = NULL; if(!pData->GetChargeFileName(i)) continue; cout << Form(" Getting charge density of specie: ") << i << endl; char hName[24]; sprintf(hName,"hDen2D_%i",i); hDen2D[i] = (TH2F*) gROOT->FindObject(hName); if(hDen2D[i]) delete hDen2D[i]; if(!pData->Is3D()) hDen2D[i] = pData->GetCharge(i,opt); else hDen2D[i] = pData->GetCharge2DSliceZY(i,-1,Nbins,opt+"avg"); hDen2D[i]->SetName(hName); hDen2D[i]->GetXaxis()->CenterTitle(); hDen2D[i]->GetYaxis()->CenterTitle(); hDen2D[i]->GetZaxis()->CenterTitle(); if(opt.Contains("comov")) hDen2D[i]->GetXaxis()->SetTitle("k_{p} #zeta"); else hDen2D[i]->GetXaxis()->SetTitle("k_{p} z"); if(pData->IsCyl()) hDen2D[i]->GetYaxis()->SetTitle("k_{p} r"); else hDen2D[i]->GetYaxis()->SetTitle("k_{p} y"); hDen2D[i]->GetZaxis()->SetTitle("n [n_{0}]"); hDen1D[i] = NULL; hCur1D[i] = NULL; if(!pData->GetEfieldFileName(i)) continue; sprintf(hName,"hDen1D_%i",i); hDen1D[i] = (TH1F*) gROOT->FindObject(hName); if(hDen1D[i]) delete hDen1D[i]; // 1D histograms if(pData->Is3D()) { hDen1D[i] = pData->GetH1SliceZ3D(pData->GetChargeFileName(i)->c_str(),"charge",-1,Nbins,-1,Nbins,opt+"avg"); } else if(pData->IsCyl()) { // Cylindrical: The first bin with r>0 is actually the number 1 (not the 0). hDen1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",1,Nbins,opt+"avg"); } else { // 2D cartesian hDen1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",-1,Nbins,opt+"avg"); } hDen1D[i]->SetName(hName); // if(hDen1D[i]) delete hDen1D[i]; // hDen1D[i] = (TH1F*) hE2D[i]->ProjectionX(hName,FirstyBin,LastyBin); // hDen1D[i]->Scale(1.0/(LastyBin-FirstyBin+1)); if(opt.Contains("comov")) hDen1D[i]->GetXaxis()->SetTitle("#zeta [c/#omega_{p}]"); else hDen1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]"); if(i==0) hDen1D[i]->GetYaxis()->SetTitle("n/n_{0}"); else if(i==1) hDen1D[i]->GetYaxis()->SetTitle("n_{b}/n_{0}"); else hDen1D[i]->GetYaxis()->SetTitle("n_{i}/n_{0}"); // Get the current: if(i==0) continue; sprintf(hName,"hCur1D_%i",i); hCur1D[i] = (TH1F*) gROOT->FindObject(hName); if(hCur1D[i]) delete hCur1D[i]; if(opt.Contains("curr")) { // To get the current is needed to read in a wider transverse range which includes all the charge. Int_t NbinsT = 100; if(pData->Is3D()) { hCur1D[i] = pData->GetH1SliceZ3D(pData->GetChargeFileName(i)->c_str(),"charge",-1,NbinsT,-1,NbinsT,opt+"int"); } else if(pData->IsCyl()) { // Cylindrical: The first bin with r>0 is actually the number 1 (not the 0). hCur1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",1,NbinsT,opt+"int"); } else { // 2D cartesian hCur1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",-1,NbinsT,opt+"int"); } hCur1D[i]->SetName(hName); if(opt.Contains("comov")) { hCur1D[i]->GetXaxis()->SetTitle("#zeta [c/#omega_{p}]"); hCur1D[i]->GetYaxis()->SetTitle("dn/d#zeta [(n_{0}/k_{p}^{3}) (#omega_{p}/c)]"); } else { hCur1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]"); hCur1D[i]->GetYaxis()->SetTitle("dn/dz [(n_{0}/k_{p}^{3}) (#omega_{p}/c)]"); } Int_t NB = hCur1D[i]->GetNbinsX(); Float_t dx = (hCur1D[i]->GetBinLowEdge(1)-hCur1D[i]->GetBinLowEdge(NB+1))/NB; // hCur1D[i]->Scale(dx); Float_t Charge = hCur1D[i]->Integral() * dx; cout << Form(" Integrated charge of specie %3i = %8.4f n0 * kp^-3",i,Charge) << endl; } } // Get electric fields 2D const Int_t Nfields = 3; TH2F **hE2D = new TH2F*[Nfields]; TH1F **hE1D = new TH1F*[Nfields]; TH2F *hV2D = NULL; TH1F *hV1D = NULL; for(Int_t i=0; i<Nfields; i++) { hE2D[i] = NULL; hE1D[i] = NULL; if(!pData->GetEfieldFileName(i)) continue; cout << Form(" Getting electric field number ") << i+1 << endl; char hName[24]; sprintf(hName,"hE2D_%i",i); hE2D[i] = (TH2F*) gROOT->FindObject(hName); if(hE2D[i]) delete hE2D[i]; if(!pData->Is3D()) hE2D[i] = pData->GetEField(i,opt); else hE2D[i] = pData->GetEField2DSliceZY(i,-1,Nbins,opt+"avg"); hE2D[i]->SetName(hName); hE2D[i]->GetXaxis()->CenterTitle(); hE2D[i]->GetYaxis()->CenterTitle(); hE2D[i]->GetZaxis()->CenterTitle(); if(opt.Contains("comov")) hE2D[i]->GetXaxis()->SetTitle("k_{p} #zeta"); else hE2D[i]->GetXaxis()->SetTitle("k_{p} z"); if(pData->IsCyl()) hE2D[i]->GetYaxis()->SetTitle("k_{p} r"); else hE2D[i]->GetYaxis()->SetTitle("k_{p} y"); if(i==0) hE2D[i]->GetZaxis()->SetTitle("E_{z}/E_{0}"); else if(i==1) hE2D[i]->GetZaxis()->SetTitle("E_{y}/E_{0}"); else if(i==2) hE2D[i]->GetZaxis()->SetTitle("E_{x}/E_{0}"); sprintf(hName,"hE1D_%i",i); hE1D[i] = (TH1F*) gROOT->FindObject(hName); if(hE1D[i]) delete hE1D[i]; // 1D histograms char nam[3]; sprintf(nam,"e%i",i+1); if(pData->Is3D()) { if(i==0) hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,-1,Nbins,opt+"avg"); else hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,-Nbins,Nbins,opt+"avg"); } else if(pData->IsCyl()) { // Cylindrical: The first bin with r>0 is actually the number 1 (not the 0). hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opt+"avg"); } else { // 2D cartesian if(i==0) hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,opt+"avg"); else hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,opt+"avg"); } hE1D[i]->SetName(hName); if(opt.Contains("comov")) hE1D[i]->GetXaxis()->SetTitle("#zeta [c/#omega_{p}]"); else hE1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]"); if(i==0) hE1D[i]->GetYaxis()->SetTitle("E_{z} [E_{0}]"); else if(i==1) hE1D[i]->GetYaxis()->SetTitle("E_{y} [E_{0}]"); else if(i==2) hE1D[i]->GetYaxis()->SetTitle("E_{x} [E_{0}]"); // Alternative // if(hE1D[i]) delete hE1D[i]; // hE1D[i] = (TH1F*) hE2D[i]->ProjectionX(hName,FirstyBin,LastyBin); // hE1D[i]->Scale(1.0/(LastyBin-FirstyBin+1)); if(i==0) { Int_t NbinsX = hE2D[i]->GetNbinsX(); Int_t NbinsY = hE2D[i]->GetNbinsY(); Float_t dx = pData->GetDX(0); sprintf(hName,"hV2D"); hV2D = (TH2F*) hE2D[i]->Clone(hName); hV2D->Reset(); sprintf(hName,"hV1D"); hV1D = (TH1F*) hE1D[i]->Clone(hName); hV1D->Reset(); for(Int_t j=NbinsY; j>0; j--) { Double_t integral = 0.0; for(Int_t k=NbinsX; k>0; k--) { integral += hE2D[i]->GetBinContent(k,j) * dx; hV2D->SetBinContent(k,j,integral); } } Double_t integral = 0.0; for(Int_t k=NbinsX; k>0; k--) { integral += hE1D[i]->GetBinContent(k) * dx; hV1D->SetBinContent(k,integral); } } } // Now, combine the electric field components into the total |E| // and calculate ionization probability for He: // Outter Helium electron Double_t Eion0 = 24.59 * PUnits::eV; Double_t Z = 1; TH2F *hETotal2D = (TH2F*) hE2D[0]->Clone("hETotal2D"); hETotal2D->Reset(); TH2F *hIonProb2D = (TH2F*) hE2D[0]->Clone("hIonProb2D"); hIonProb2D->Reset(); TH1F *hETotal1D = (TH1F*) hE1D[0]->Clone("hETotal1D"); hETotal1D->Reset(); TH1F *hIonProb1D = (TH1F*) hE1D[0]->Clone("hIonProb1D"); hIonProb1D->Reset(); { Int_t NbinsX = hE2D[0]->GetNbinsX(); Int_t NbinsY = hE2D[0]->GetNbinsY(); for(Int_t j=0; j<NbinsX; j++) { for(Int_t k=0; k<NbinsY; k++) { Double_t E1 = hE2D[0]->GetBinContent(j,k); Double_t E2 = hE2D[1]->GetBinContent(j,k); Double_t E3 = hE2D[2]->GetBinContent(j,k); Double_t E = TMath::Sqrt(E1*E1+E2*E2+E3*E3); hETotal2D->SetBinContent(j,k,E); E *= E0; // Double_t IonProb = (PFunc::ADK(E,Eion0,Z,l,m)/PUnits::atomictime)*PUnits::femtosecond; Double_t IonProb = PFunc::ADK_ENG(E,Eion0,Z) * PUnits::femtosecond; // if(IonProb>1) IonProb = 1.0; // cout << "Ion prob = " << IonProb << endl; hIonProb2D->SetBinContent(j,k,IonProb); } Double_t E1 = hE1D[0]->GetBinContent(j); Double_t E2 = hE1D[1]->GetBinContent(j); Double_t E3 = hE1D[2]->GetBinContent(j); Double_t E = TMath::Sqrt(E1*E1+E2*E2+E3*E3); hETotal1D->SetBinContent(j,E); E *= E0; // Double_t IonProb = (PFunc::ADK(E,Eion0,Z,l,m)/PUnits::atomictime)*PUnits::femtosecond; Double_t IonProb = PFunc::ADK_ENG(E,Eion0,Z) * PUnits::femtosecond; // cout << "Ion prob = " << IonProb << endl; hIonProb1D->SetBinContent(j,IonProb); } } hETotal2D->GetZaxis()->SetTitle("E [E_{0}]"); hIonProb2D->GetZaxis()->SetTitle("W_{ADK} [fs^{-1}]"); hETotal1D->GetYaxis()->SetTitle("E [E_{0}]"); hIonProb1D->GetYaxis()->SetTitle("W_{ADK} [fs^{-1}]"); // Tunning the Histograms // --------------------- // Chaning to user units: // -------------------------- if(opt.Contains("units") && n0) { for(Int_t i=0; i<Nspecies; i++) { if(!hDen2D[i]) continue; Int_t NbinsX = hDen2D[i]->GetNbinsX(); Float_t xMin = skindepth * hDen2D[i]->GetXaxis()->GetXmin() / PUnits::um; Float_t xMax = skindepth * hDen2D[i]->GetXaxis()->GetXmax() / PUnits::um; Int_t NbinsY = hDen2D[i]->GetNbinsY(); Float_t ymin = skindepth * hDen2D[i]->GetYaxis()->GetXmin() / PUnits::um; Float_t ymax = skindepth * hDen2D[i]->GetYaxis()->GetXmax() / PUnits::um; hDen2D[i]->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax); // for(Int_t j=0;j<hDen2D[i]->GetNbinsX();j++) { // for(Int_t k=0;k<hDen2D[i]->GetNbinsY();k++) { // hDen2D[i]->SetBinContent(j,k, hDen2D[i]->GetBinContent(j,k) * n0 / (1e17/PUnits::cm3) ); // } // } if(pData->IsCyl()) hDen2D[i]->GetYaxis()->SetTitle("r [#mum]"); else hDen2D[i]->GetYaxis()->SetTitle("y [#mum]"); if(opt.Contains("comov")) hDen2D[i]->GetXaxis()->SetTitle("#zeta [#mum]"); else hDen2D[i]->GetXaxis()->SetTitle("z [#mum]"); // if(i==0) // hDen2D[i]->GetZaxis()->SetTitle("n_{e} [10^{17}/cm^{3}]"); // else if(i==1) // hDen2D[i]->GetZaxis()->SetTitle("n_{b} [10^{17}/cm^{3}]"); // else // hDen2D[i]->GetZaxis()->SetTitle("n_{i} [10^{17}/cm^{3}]"); hDen1D[i]->SetBins(NbinsX,xMin,xMax); // for(Int_t j=0;j<hDen1D[i]->GetNbinsX();j++) { // hDen1D[i]->SetBinContent(j, hDen1D[i]->GetBinContent(j) * n0 / (1e17/PUnits::cm3) ); // } if(opt.Contains("comov")) hDen1D[i]->GetXaxis()->SetTitle("#zeta [#mum]"); else hDen1D[i]->GetXaxis()->SetTitle("z [#mum]"); if(hCur1D[i]) { hCur1D[i]->SetBins(NbinsX,xMin,xMax); Double_t binSize = (xMax - xMin)/NbinsX; // bin size in um. Double_t dV = skindepth * skindepth * skindepth; Double_t lightspeed = PConst::c_light / (PUnits::um/PUnits::femtosecond); hCur1D[i]->Scale(TMath::Abs(n0 * dV * (PConst::ElectronCharge/PUnits::picocoulomb) * (kp * PConst::c_light * PUnits::femtosecond))); hCur1D[i]->GetYaxis()->SetTitle("I[kA]"); hCur1D[i]->GetYaxis()->SetTitle(""); if(opt.Contains("comov")) hCur1D[i]->GetXaxis()->SetTitle("#zeta [#mum]"); else hCur1D[i]->GetXaxis()->SetTitle("z [#mum]"); Float_t Charge = hCur1D[i]->Integral() * (binSize / lightspeed); cout << Form(" Integrated charge of specie %3i = %8f pC",i,Charge) << endl; } } for(Int_t i=0; i<Nfields; i++) { Int_t NbinsX = hE2D[i]->GetNbinsX(); Float_t xMin = skindepth * hE2D[i]->GetXaxis()->GetXmin() / PUnits::um; Float_t xMax = skindepth * hE2D[i]->GetXaxis()->GetXmax() / PUnits::um; Int_t NbinsY = hE2D[i]->GetNbinsY(); Float_t ymin = skindepth * hE2D[i]->GetYaxis()->GetXmin() / PUnits::um; Float_t ymax = skindepth * hE2D[i]->GetYaxis()->GetXmax() / PUnits::um; hE2D[i]->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax); hE1D[i]->SetBins(NbinsX,xMin,xMax); for(Int_t j=0; j<hE2D[i]->GetNbinsX(); j++) { for(Int_t k=0; k<hE2D[i]->GetNbinsY(); k++) { hE2D[i]->SetBinContent(j,k, hE2D[i]->GetBinContent(j,k) * ( E0 / (PUnits::GV/PUnits::m) ) ); } hE1D[i]->SetBinContent(j, hE1D[i]->GetBinContent(j) * ( E0 / (PUnits::GV/PUnits::m) ) ); } if(pData->IsCyl()) hE2D[i]->GetYaxis()->SetTitle("r [#mum]"); else hE2D[i]->GetYaxis()->SetTitle("y [#mum]"); if(opt.Contains("comov")) hE2D[i]->GetXaxis()->SetTitle("#zeta [#mum]"); else hE2D[i]->GetXaxis()->SetTitle("z [#mum]"); if(i==0) hE2D[i]->GetZaxis()->SetTitle("E_{z} [GV/m]"); else if(i==1) hE2D[i]->GetZaxis()->SetTitle("E_{y} [GV/m]"); else if(i==2) hE2D[i]->GetZaxis()->SetTitle("E_{x} [GV/m]"); if(opt.Contains("comov")) hE1D[i]->GetXaxis()->SetTitle("#zeta [mm]"); else hE1D[i]->GetXaxis()->SetTitle("z [mm]"); if(i==0) hE1D[i]->GetYaxis()->SetTitle("E_{z} [GV/m]"); else if(i==1) hE1D[i]->GetYaxis()->SetTitle("E_{y} [GV/m]"); else if(i==2) hE1D[i]->GetYaxis()->SetTitle("E_{x} [GV/m]"); if(i==0) { hV2D->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax); hETotal2D->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax); hIonProb2D->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax); hV1D->SetBins(NbinsX,xMin,xMax); hETotal1D->SetBins(NbinsX,xMin,xMax); hIonProb1D->SetBins(NbinsX,xMin,xMax); for(Int_t j=0; j<NbinsX; j++) { for(Int_t k=0; k<NbinsY; k++) { hV2D->SetBinContent(j,k, hV2D->GetBinContent(j,k) * E0 * skindepth / (PUnits::MV)); hETotal2D->SetBinContent(j,k, hETotal2D->GetBinContent(j,k) * ( E0 / (PUnits::GV/PUnits::m) ) ); } hV1D->SetBinContent(j, hV1D->GetBinContent(j) * ( E0 * skindepth / (PUnits::MV) ) ); hETotal1D->SetBinContent(j, hETotal1D->GetBinContent(j) * ( E0 / (PUnits::GV/PUnits::m) ) ); } if(pData->IsCyl()) { hV2D->GetYaxis()->SetTitle("r [#mum]"); hETotal2D->GetYaxis()->SetTitle("r [#mum]"); } else { hV2D->GetYaxis()->SetTitle("y [#mum]"); hETotal2D->GetYaxis()->SetTitle("y [#mum]"); } if(opt.Contains("comov")) { hV2D->GetXaxis()->SetTitle("#zeta [#mum]"); hV1D->GetXaxis()->SetTitle("#zeta [#mum]"); hETotal2D->GetXaxis()->SetTitle("#zeta [#mum]"); hETotal1D->GetXaxis()->SetTitle("#zeta [#mum]"); } else { hV2D->GetXaxis()->SetTitle("z [#mum]"); hV2D->GetXaxis()->SetTitle("z [#mum]"); hETotal2D->GetXaxis()->SetTitle("z [#mum]"); hETotal1D->GetXaxis()->SetTitle("z [#mum]"); } hV2D->GetZaxis()->SetTitle("#Psi-#Psi_{t} [MV]"); hV1D->GetYaxis()->SetTitle("#Psi-#Psi_{t} [MV]"); hETotal2D->GetZaxis()->SetTitle("E [GV/m]"); hETotal1D->GetYaxis()->SetTitle("E [GV/m]"); } } } // --------------------------------------------------- Vertical Zoom ------------ Float_t yRange = (hDen2D[0]->GetYaxis()->GetXmax() - hDen2D[0]->GetYaxis()->GetXmin())/zoom; Float_t midPoint = (hDen2D[0]->GetYaxis()->GetXmax() + hDen2D[0]->GetYaxis()->GetXmin())/2.; Float_t yMin = midPoint-yRange/2; Float_t yMax = midPoint+yRange/2; if(pData->IsCyl()) { yMin = pData->GetXMin(1); yMax = yRange; } for(Int_t i=0; i<Nspecies; i++) { if(!hDen2D[i]) continue; hDen2D[i]->GetYaxis()->SetRangeUser(yMin,yMax); } for(Int_t i=0; i<Nfields; i++) { if(!hE2D[i]) continue; hE2D[i]->GetYaxis()->SetRangeUser(yMin,yMax); } hETotal2D->GetYaxis()->SetRangeUser(yMin,yMax); Float_t xMin = hDen2D[0]->GetXaxis()->GetXmin(); Float_t xMax = hDen2D[0]->GetXaxis()->GetXmax(); Float_t xRange = xMax - xMin; // ------------- z Zoom --------------------------------- Plasma palette ----------- // Set the range of the plasma charge density histogram for maximum constrast // using a dynamic palette wich adjust the nominal value to a certain color. Float_t density = 1; Float_t Base = density; Float_t *Max = new Float_t[Nspecies]; Float_t *Min = new Float_t[Nspecies]; for(Int_t i=0; i<Nspecies; i++) { if(!hDen2D[i]) continue; Max[i] = hDen2D[i]->GetMaximum(); Min[i] = 1.01E-1 * Base; if(i==1) Min[i] = 1.01E-1 * Base; if(i==2) Min[i] = 1.01E-4 * Base; hDen2D[i]->GetZaxis()->SetRangeUser(Min[i],Max[i]); } // Dynamic plasma palette const Int_t plasmaDNRGBs = 3; const Int_t plasmaDNCont = 64; Float_t basePos = 0.5; if(Max[0]!=Min[0]) { if(opt.Contains("logz")) { Float_t a = 1.0/(TMath::Log10(Max[0])-TMath::Log10(Min[0])); Float_t b = TMath::Log10(Min[0]); basePos = a*(TMath::Log10(Base) - b); } else { basePos = (1.0/(Max[0]-Min[0]))*(Base - Min[0]); } } Double_t plasmaDStops[plasmaDNRGBs] = { 0.00, basePos, 1.00 }; Double_t plasmaDRed[plasmaDNRGBs] = { 0.99, 0.90, 0.00 }; Double_t plasmaDGreen[plasmaDNRGBs] = { 0.99, 0.90, 0.00 }; Double_t plasmaDBlue[plasmaDNRGBs] = { 0.99, 0.90, 0.00 }; PPalette * plasmaPalette = (PPalette*) gROOT->FindObject("plasma"); plasmaPalette->CreateGradientColorTable(plasmaDNRGBs, plasmaDStops, plasmaDRed, plasmaDGreen, plasmaDBlue, plasmaDNCont); // Change the range of z axis for the fields to be symmetric. Float_t *Emax = new Float_t[Nfields]; Float_t *Emin = new Float_t[Nfields]; for(Int_t i=0; i<Nfields; i++) { Emax[i] = hE2D[i]->GetMaximum(); Emin[i] = hE2D[i]->GetMinimum(); if(Emax[i] > TMath::Abs(Emin[i])) Emin[i] = -Emax[i]; else Emax[i] = -Emin[i]; hE2D[i]->GetZaxis()->SetRangeUser(Emin[i],Emax[i]); } // Potential if(opt.Contains("units")) { trapPotential *= ( E0 * skindepth / (PUnits::MV) ); } Float_t Vmin = hV1D->GetMinimum(); { // Shift potential Int_t NbinsX = hV2D->GetNbinsX(); Int_t NbinsY = hV2D->GetNbinsY(); for(Int_t j=0; j<NbinsX; j++) { for(Int_t k=0; k<NbinsY; k++) { hV2D->SetBinContent(j,k, hV2D->GetBinContent(j,k) - Vmin -trapPotential); } hV1D->SetBinContent(j, hV1D->GetBinContent(j) - Vmin -trapPotential); } } Vmin = hV1D->GetMinimum(); Float_t Vmax = hV1D->GetMaximum(); // Dynamic potential palette const Int_t potPNRGBs = 5; const Int_t potPNCont = 64; Float_t zeroPos = -Vmin/(Vmax-Vmin); Double_t potPStops[potPNRGBs] = { 0.00, zeroPos-3.0/potPNCont,zeroPos, zeroPos+3.0/potPNCont, 1.00 }; Double_t potPRed[potPNRGBs] = { 0.518, 0.965, 0.90, 0.498, 0.106 }; Double_t potPGreen[potPNRGBs] = { 0.078, 0.925, 0.90, 0.718, 0.078 }; Double_t potPBlue[potPNRGBs] = { 0.106, 0.353, 0.90, 0.780, 0.518 }; PPalette * potentialPalette = (PPalette*) gROOT->FindObject("rbow2inv"); potentialPalette->CreateGradientColorTable(potPNRGBs, potPStops, potPRed, potPGreen, potPBlue, potPNCont); // Extract contours TCanvas* c = new TCanvas("c","Contour List",0,0,600,600); c->cd(); // Potential TH2F *hV2Dc = (TH2F*) hV2D->Clone("hV2Dc"); const Int_t Ncontours = 25; Double_t contours[Ncontours]; for(Int_t i=0; i<Ncontours; i++) { contours[i] = i*(trapPotential/5.0) - trapPotential; } hV2Dc->SetContour(Ncontours, contours); hV2Dc->Draw("cont list"); c->Update(); TObjArray *contsV2D = (TObjArray*) gROOT->GetListOfSpecials()->FindObject("contours"); TClonesArray graphsV2D("TGraph",Ncontours); { Int_t ncontours = contsV2D->GetSize(); TList* clist = NULL; Int_t nGraphs = 0; TGraph *gr = NULL; for(Int_t i = 0; i < ncontours; i++) { if(i==0) continue; clist = (TList*) contsV2D->At(i); for(Int_t j = 0 ; j < clist->GetSize(); j++) { gr = (TGraph*) clist->At(j); if(!gr) continue; gr->SetLineWidth(1); gr->SetLineColor(kGray+1); if( !((i)%5) ) { gr->SetLineWidth(2); gr->SetLineColor(kGray+2); } new(graphsV2D[nGraphs]) TGraph(*gr) ; nGraphs++; } } } // Ion probability hIonProb2D->GetZaxis()->SetRangeUser(0.00501,80); TH2F *hIonProb2Dc = (TH2F*) hIonProb2D->Clone("hIonProb2Dc"); const Int_t NcontI = 4; Double_t contI[NcontI] = {0.01,0.1,1.0,10.0}; hIonProb2Dc->SetContour(NcontI, contI); hIonProb2Dc->Draw("cont list"); c->Update(); TObjArray *contsI2D = (TObjArray*) gROOT->GetListOfSpecials()->FindObject("contours"); TClonesArray graphsI2D("TGraph",NcontI); { Int_t ncontours = contsI2D->GetSize(); TList* clist = NULL; Int_t nGraphs = 0; TGraph *gr = NULL; for(Int_t i = 0; i < ncontours; i++) { clist = (TList*) contsI2D->At(i); for(Int_t j = 0 ; j < clist->GetSize(); j++) { gr = (TGraph*) clist->At(j); if(!gr) continue; if( !(i%2) ) { gr->SetLineWidth(1); gr->SetLineStyle(2); gr->SetLineColor(kOrange-3); } else { gr->SetLineWidth(1); gr->SetLineStyle(1); gr->SetLineColor(kOrange-3); } new(graphsI2D[nGraphs]) TGraph(*gr) ; nGraphs++; } } } // "Axis range" in Osiris units: Double_t ylow = hDen2D[0]->GetYaxis()->GetBinLowEdge(FirstyBin); Double_t yup = hDen2D[0]->GetYaxis()->GetBinUpEdge(LastyBin); Double_t xmin = hDen2D[0]->GetXaxis()->GetXmin(); Double_t xmax = hDen2D[0]->GetXaxis()->GetXmax(); TLine *lineYzero = new TLine(xmin,0.0,xmax,0.0); lineYzero->SetLineColor(kGray+2); lineYzero->SetLineStyle(2); TLine *lineYup = new TLine(xmin,yup,xmax,yup); lineYup->SetLineColor(kGray+1); lineYup->SetLineStyle(2); TLine *lineYdown = new TLine(xmin,ylow,xmax,ylow); lineYdown->SetLineColor(kGray+1); lineYdown->SetLineStyle(2); zStartPlasma -= shiftz; zStartNeutral -= shiftz; zEndNeutral -= shiftz; if(opt.Contains("units")) { zStartPlasma *= skindepth / PUnits::um; zStartNeutral *= skindepth / PUnits::um; zEndNeutral *= skindepth / PUnits::um; } // cout << "Start plasma = " << zStartPlasma << endl; TLine *lineStartPlasma = new TLine(zStartPlasma,yMin,zStartPlasma,yMax); lineStartPlasma->SetLineColor(kGray+2); lineStartPlasma->SetLineStyle(2); lineStartPlasma->SetLineWidth(3); // cout << "Start plasma = " << zStartNeutral << endl; TLine *lineStartNeutral = new TLine(zStartNeutral,yMin,zStartNeutral,yMax); lineStartNeutral->SetLineColor(kGray+1); lineStartNeutral->SetLineStyle(2); lineStartNeutral->SetLineWidth(3); // cout << "End plasma = " << zEndNeutral << endl; TLine *lineEndNeutral = new TLine(zEndNeutral,yMin,zEndNeutral,yMax); lineEndNeutral->SetLineColor(kGray+1); lineEndNeutral->SetLineStyle(2); lineEndNeutral->SetLineWidth(3); // Plotting // ----------------------------------------------- // Canvas setup TCanvas *C = new TCanvas("C","2D Charge density and Electric field",750,666); // Palettes setup TExec *exPlasma = new TExec("exPlasma","plasmaPalette->cd();"); TExec *exElec = new TExec("exElec","redelectronPalette->cd();"); TExec *exHot = new TExec("exHot","hotPalette->cd();"); TExec *exField = new TExec("exField","rbow2Palette->cd();"); TExec *exFieldT = new TExec("exFieldT","redPalette->cd();"); TExec *exIonP = new TExec("exIonP","redPalette->cd();"); TExec *exPot = new TExec("exPot","rbow2invPalette->cd();"); // Actual Plotting! // ------------------------------------------------------------ // Output file TString fOutName = Form("./%s/Plots/Potential2D/Potential2D",pData->GetPath().c_str()); fOutName += Form("-%s_%i",pData->GetName(),time); // Setup Pad layout: Float_t lMargin = 0.15; Float_t rMargin = 0.18; Float_t bMargin = 0.15; Float_t tMargin = 0.04; Float_t factor = 1.0; PlasmaGlob::CanvasAsymPartition(C,2,lMargin,rMargin,bMargin,tMargin,factor); TPad *pad[2]; TString sLabels[] = {"(a)","(b)"}; // Text objects TPaveText **textLabel = new TPaveText*[2]; C->cd(0); char pname[16]; sprintf(pname,"pad_%i",1); pad[0] = (TPad*) gROOT->FindObject(pname); pad[0]->Draw(); pad[0]->cd(); // <---------------------------------------------- Top Plot --------- if(opt.Contains("logz")) { pad[0]->SetLogz(1); } else { pad[0]->SetLogz(0); } pad[0]->SetFrameLineWidth(3); pad[0]->SetTickx(1); // Re-range: for(Int_t i=0; i<Nspecies; i++) { if(!hDen2D[i]) continue; hDen2D[i]->GetYaxis()->SetRangeUser(yMin -(factor-1)*yRange, yMax); } TH2F *hFrame = (TH2F*) gROOT->FindObject("hFrame1"); if(hFrame) delete hFrame; hFrame = (TH2F*) hDen2D[0]->Clone("hFrame1"); hFrame->Reset(); hFrame->SetLabelFont(42,"xyz"); hFrame->SetTitleFont(42,"xyz"); hFrame->GetYaxis()->SetNdivisions(505); hFrame->GetYaxis()->SetLabelSize(0.085); hFrame->GetYaxis()->SetTitleSize(0.09); hFrame->GetYaxis()->SetTitleOffset(0.7); hFrame->GetYaxis()->SetTickLength(0.02); hFrame->GetXaxis()->SetLabelOffset(999.); hFrame->GetXaxis()->SetTitleOffset(999.); hFrame->GetXaxis()->SetTickLength(0.04); // Frame asymmetry: hFrame->Draw("col"); // hDen2D[0]->GetZaxis()->SetNdivisions(505); // Injected electrons if any if(Nspecies>=3) { if(hDen2D[2]) { exHot->Draw(); hDen2D[2]->Draw("colz same"); } } // Plasma hDen2D[0]->GetZaxis()->SetTitleFont(42); exPlasma->Draw(); hDen2D[0]->Draw("colz same"); // Beam driver. if(hDen2D[1]) { // hDen2D[1]->GetZaxis()->SetNdivisions(505); exElec->Draw(); hDen2D[1]->Draw("colz same"); } { TGraph *gr = (TGraph*) graphsV2D.At(4); gr->Draw("C"); } { TGraph *gr = (TGraph*) graphsI2D.At(1); gr->Draw("C"); } if(opt.Contains("1dline")) { lineYzero->Draw(); lineYdown->Draw(); lineYup->Draw(); } if(opt.Contains("sline")) { if(zStartPlasma>xmin && zStartPlasma<xmax) lineStartPlasma->Draw(); if(zStartNeutral>xmin && zStartNeutral<xmax) lineStartNeutral->Draw(); if(zEndNeutral>xmin && zEndNeutral<xmax) lineEndNeutral->Draw(); } // lineYdown->Draw(); // lineYup->Draw(); // Palettes re-arrangement pad[0]->Update(); Float_t y1 = pad[0]->GetBottomMargin(); Float_t y2 = 1 - pad[0]->GetTopMargin(); Float_t x1 = pad[0]->GetLeftMargin(); Float_t x2 = 1 - pad[0]->GetRightMargin(); TPaletteAxis *palette = NULL; if(Nspecies>=3) { if(hDen2D[2]) { palette = (TPaletteAxis*)hDen2D[2]->GetListOfFunctions()->FindObject("palette"); } } if(palette) { palette->SetY2NDC(y2 - 0.00); palette->SetY1NDC(0.66*(y1+y2) + 0.00); palette->SetX1NDC(x2 + 0.005); palette->SetX2NDC(x2 + 0.03); // palette->SetTitleFont(42); // palette->SetTitleOffset(0.85); palette->SetTitleOffset(999.9); palette->SetTitleSize(0.075); palette->SetLabelFont(42); palette->SetLabelSize(0.075); palette->SetLabelOffset(0.001); palette->SetBorderSize(2); palette->SetLineColor(1); } palette = (TPaletteAxis*)hDen2D[0]->GetListOfFunctions()->FindObject("palette"); if(palette) { palette->SetY2NDC(0.66*(y1+y2) - 0.00); palette->SetY1NDC(0.33*(y1+y2) + 0.00); palette->SetX1NDC(x2 + 0.005); palette->SetX2NDC(x2 + 0.03); // palette->SetTitleFont(42); palette->SetTitleOffset(0.80); palette->SetTitleSize(0.075); palette->SetLabelFont(42); palette->SetLabelSize(0.075); palette->SetLabelOffset(0.001); palette->SetBorderSize(2); palette->SetLineColor(1); } palette = (TPaletteAxis*)hDen2D[1]->GetListOfFunctions()->FindObject("palette"); if(palette) { palette->SetY2NDC(0.33*(y1+y2) - 0.00); palette->SetY1NDC(y1 + 0.00); palette->SetX1NDC(x2 + 0.005); palette->SetX2NDC(x2 + 0.03); //palette->SetTitleFont(42); //palette->SetTitleOffset(0.85); palette->SetTitleOffset(999.9); palette->SetTitleSize(0.075); palette->SetLabelFont(42); palette->SetLabelSize(0.075); palette->SetLabelOffset(0.001); palette->SetBorderSize(2); palette->SetLineColor(1); } // 1D charge density plots: Float_t yaxismin = pad[0]->GetUymin(); Float_t yaxismax = pad[0]->GetUymin() + 0.33*(pad[0]->GetUymax() - pad[0]->GetUymin()) - 0.00; Float_t denmin = Min[1]; Float_t denmax = Max[1]; if(opt.Contains("logz")) { denmin = TMath::Log10(denmin); denmax = TMath::Log10(denmax); } Float_t curmin = 0.0; Float_t curmax = 0.0; if(opt.Contains("curr")) { curmin = 0.0; curmax = hCur1D[1]->GetMaximum(); cout << Form(" Maximum driver current = %6.2f kA ", curmax) << endl ; if(Nspecies>=3) if(hCur1D[2]) cout << Form(" Maximum witness current = %6.2f kA ", hCur1D[2]->GetMaximum()) << endl ; // Round for better plotting curmax = 0.1*TMath::Nint(curmax*10); } for(Int_t i=0; i<Nspecies; i++) { if(!hDen1D[i]) continue; Float_t slope = (yaxismax - yaxismin)/(denmax - denmin); for(Int_t j=0; j<hDen1D[i]->GetNbinsX(); j++) { Float_t content = hDen1D[i]->GetBinContent(j+1); if(opt.Contains("logz")) content = TMath::Log10(content); if(content<denmin) hDen1D[i]->SetBinContent(j+1,yaxismin); else hDen1D[i]->SetBinContent(j+1,(content - denmin) * slope + yaxismin); } if(hCur1D[i]) { slope = (yaxismax - yaxismin)/(curmax - curmin); for(Int_t j=0; j<hCur1D[i]->GetNbinsX(); j++) { Float_t content = hCur1D[i]->GetBinContent(j+1); if(content<curmin) hCur1D[i]->SetBinContent(j+1,yaxismin); else hCur1D[i]->SetBinContent(j+1,(content - curmin) * slope + yaxismin); } } } // Plasma on-axis density: // hDen1D[0]->SetLineWidth(2); // hDen1D[0]->SetLineColor(kGray+1); // // // PlasmaGlob::SetH1Style(hDen1D[0],1); // hDen1D[0]->Draw("same C"); if(opt.Contains("curr")) { hCur1D[1]->SetLineWidth(2); hCur1D[1]->SetLineColor(PlasmaGlob::elecLine); hCur1D[1]->Draw("same C"); } else { hDen1D[1]->SetLineWidth(2); hDen1D[1]->SetLineColor(PlasmaGlob::elecLine); // hDen1D[1]->Draw("same C"); } if(Nspecies>=3) { if(hDen1D[2]) { if(opt.Contains("curr")) { hCur1D[2]->SetLineWidth(2); hCur1D[2]->SetLineColor(kOrange+8); hCur1D[2]->Draw("same C"); } else { hDen1D[2]->SetLineWidth(2); hDen1D[2]->SetLineColor(kOrange+8); // hDen1D[2]->Draw("same C"); } } } // Current axis TGaxis *axis = NULL; if(opt.Contains("curr")) { axis = new TGaxis(xMax-xRange/6.0,yMin - (factor-1)*yRange, xMax-xRange/6.0,yaxismax, 0.001,curmax,503,"+LS"); axis->SetLineWidth(1); axis->SetLineColor(kGray+3);//PlasmaGlob::elecLine); axis->SetLabelColor(kGray+3);//PlasmaGlob::elecLine); axis->SetLabelSize(0.06); axis->SetLabelOffset(0.01); axis->SetLabelFont(42); axis->SetTitleColor(kGray+3);//PlasmaGlob::elecLine); axis->SetTitleSize(0.06); axis->SetTitleOffset(0.6); axis->SetTitleFont(42); axis->SetTickSize(0.03); axis->SetTitle("I [kA]"); axis->CenterTitle(); axis->SetNdivisions(505); axis->Draw(); } TPaveText *textTime = new TPaveText(xMax - 0.3*xRange, yMax-0.15*yRange, xMax-0.1, yMax-0.05*yRange); //x2-0.17,y2-0.12,x2-0.02,y2-0.02,"NDC"); PlasmaGlob::SetPaveTextStyle(textTime,32); char ctext[128]; if(opt.Contains("units") && n0) sprintf(ctext,"z = %5.1f #mum", Time * skindepth / PUnits::um); else sprintf(ctext,"t = %5.1f #omega_{p}^{-1}",Time); textTime->SetTextFont(42); textTime->AddText(ctext); textTime->Draw(); // textDen->Draw(); // if(opt.Contains("units")) // textWav->Draw(); textLabel[0] = new TPaveText(xMin + 0.02*xRange, yMax-0.2*yRange, xMin+0.30*xRange, yMax-0.05*yRange); PlasmaGlob::SetPaveTextStyle(textLabel[0],12); textLabel[0]->SetTextFont(42); textLabel[0]->AddText(sLabels[0]); textLabel[0]->Draw(); pad[0]->RedrawAxis(); C->cd(0); sprintf(pname,"pad_%i",0); pad[1] = (TPad*) gROOT->FindObject(pname); pad[1]->Draw(); pad[1]->cd(); // <--------------------------------------------------------- Bottom Plot pad[1]->SetFrameLineWidth(3); pad[1]->SetTickx(1); hFrame = (TH2F*) gROOT->FindObject("hFrame2"); if(hFrame) delete hFrame; hFrame = (TH2F*) hDen2D[0]->Clone("hFrame2"); hFrame->Reset(); Float_t yFactor = pad[0]->GetAbsHNDC()/pad[1]->GetAbsHNDC(); hFrame->GetYaxis()->SetLabelSize(yFactor*0.085); hFrame->GetYaxis()->SetTitleSize(yFactor*0.09); hFrame->GetYaxis()->SetTitleOffset(0.7/yFactor); hFrame->GetYaxis()->SetTickLength(0.02/yFactor); hFrame->GetXaxis()->SetTitleSize(0.10); hFrame->GetXaxis()->SetLabelSize(0.08); hFrame->GetXaxis()->SetLabelOffset(0.02); hFrame->GetXaxis()->SetTitleOffset(1.0); hFrame->GetXaxis()->SetTickLength(0.04*yFactor); hFrame->SetLabelFont(42,"xyz"); hFrame->SetTitleFont(42,"xyz"); hFrame->Draw("col"); // hE2D[0]->GetZaxis()->SetNdivisions(505); hV2D->GetZaxis()->SetTitleFont(42); hV2D->GetZaxis()->SetTickLength(0.02/yFactor); exPot->Draw(); hV2D->Draw("col z same"); for(Int_t i=0; i<graphsV2D.GetEntriesFast(); i++) { TGraph *gr = (TGraph*) graphsV2D.At(i); if(!gr) continue; gr->Draw("C"); } for(Int_t i=0; i<graphsI2D.GetEntriesFast(); i++) { //if(i!=2) continue; TGraph *gr = (TGraph*) graphsI2D.At(i); if(!gr) continue; gr->Draw("C"); } if(opt.Contains("1dline")) { lineYzero->Draw(); lineYdown->Draw(); lineYup->Draw(); } if(opt.Contains("sline")) { if(zStartPlasma>xmin && zStartPlasma<xmax) lineStartPlasma->Draw(); if(zStartNeutral>xmin && zStartNeutral<xmax) lineStartNeutral->Draw(); if(zEndNeutral>xmin && zEndNeutral<xmax) lineEndNeutral->Draw(); } pad[1]->Update(); y1 = pad[1]->GetBottomMargin(); y2 = 1 - pad[1]->GetTopMargin(); x1 = pad[1]->GetLeftMargin(); x2 = 1 - pad[1]->GetRightMargin(); palette = (TPaletteAxis*)hV2D->GetListOfFunctions()->FindObject("palette"); if(palette) { palette->SetY2NDC(y2 - 0.00); palette->SetY1NDC(y1 + 0.00); palette->SetX1NDC(x2 + 0.005); palette->SetX2NDC(x2 + 0.03); // palette->SetTitleFont(42); palette->SetTitleSize(yFactor*0.075); palette->SetTitleOffset(0.80/yFactor); palette->SetLabelSize(yFactor*0.075); palette->SetLabelFont(42); palette->SetLabelOffset(0.01/yFactor); palette->SetBorderSize(2); palette->SetLineColor(1); } pad[1]->RedrawAxis(); textLabel[1] = new TPaveText(xMin + 0.02*xRange, yMax-0.2*yRange, xMin+0.30*xRange, yMax-0.05*yRange); PlasmaGlob::SetPaveTextStyle(textLabel[1],12); textLabel[1]->SetTextFont(42); textLabel[1]->AddText(sLabels[1]); textLabel[1]->Draw(); C->cd(); // Print to a file PlasmaGlob::imgconv(C,fOutName,opt); // --------------------------------------------------------- PlasmaGlob::DestroyCanvases(); }
void PlotDensity1D( const TString &sim, Int_t time, Int_t Nbins=1, const TString &options="") { #ifdef __CINT__ gSystem->Load("libplasma.so"); #endif PlasmaGlob::Initialize(); // Init Units table PUnits::UnitsTable::Get(); // Load PData PData *pData = PData::Get(sim.Data()); pData->LoadFileNames(time); if(!pData->IsInit()) return; TString opt = options; gStyle->SetPadRightMargin(0.20); // Margin right axis if(opt.Contains("grid")) { gStyle->SetPadGridX(1); gStyle->SetPadGridY(1); } Bool_t CYL = kFALSE; if(sim.Contains("cyl")) { CYL = kTRUE; opt += "cyl"; } Bool_t ThreeD = kFALSE; if(sim.Contains("3D")) ThreeD = kTRUE; Bool_t INT = kTRUE; // Integrate instead of averaging. // Some plasma constants Float_t n0 = pData->GetPlasmaDensity(); Float_t kp = pData->GetPlasmaK(); Float_t skindepth = (1/kp); Float_t E0 = pData->GetPlasmaE0(); // Some beam properties: Double_t Ebeam = pData->GetBeamEnergy(); Double_t gamma = pData->GetBeamGamma(); Double_t vbeam = pData->GetBeamVelocity(); Double_t kbeta = PFunc::BeamBetatronWavenumber(gamma,n0); Double_t rms0 = pData->GetBeamRmsY() * kp; if(CYL) rms0 = pData->GetBeamRmsR() * kp; cout << Form(" - Bunch gamma = %8.4f", gamma ) << endl; cout << Form(" - Bunch velocity = %8.4f c", vbeam ) << endl; cout << Form(" - Bunch betatron k = %8.4f mm-1", kbeta * PUnits::mm) << endl; cout << Form(" - Bunch RMS_0 = %8.4f um", rms0 * skindepth / PUnits::um) << endl; cout << endl; // Time in OU Float_t Time = pData->GetRealTime(); // z start of the plasma in normalized units. Float_t zStartPlasma = pData->GetPlasmaStart()*kp; // z start of the beam in normalized units. Float_t zStartBeam = pData->GetBeamStart()*kp; if(opt.Contains("center")) { Time -= zStartPlasma; if(opt.Contains("comov")) // Centers on the head of the beam. Time += zStartBeam; } // Get charge density histos Int_t Nspecies = pData->NSpecies(); TH1F **hDen1D = new TH1F*[Nspecies]; TH2F *hDen2D = NULL; for(Int_t i=0;i<Nspecies;i++) { hDen1D[i] = NULL; if(!pData->GetChargeFileName(i)) continue; if(i==0) { if(ThreeD) hDen2D = pData->GetCharge2DSliceZY(i,-1,Nbins); else hDen2D = pData->GetCharge(i,opt); char hName[24]; sprintf(hName,"hDen_%i",i); hDen2D->SetName(hName); hDen2D->GetXaxis()->CenterTitle(); hDen2D->GetYaxis()->CenterTitle(); hDen2D->GetZaxis()->CenterTitle(); hDen2D->GetXaxis()->SetTitle("z [c/#omega_{p}]"); hDen2D->GetYaxis()->SetTitle("y [c/#omega_{p}]"); if(i==0) hDen2D->GetZaxis()->SetTitle("#LTn_{e}#GT [n_{0}]"); else hDen2D->GetZaxis()->SetTitle("#LTn_{b}#GT [n_{0}]"); } if(Nbins==0) { Nbins = TMath::Nint(rms0 / hDen2D->GetYaxis()->GetBinWidth(1)) ; // cout << Form(" Rms0 = %6.2f Dx = %6.2f Nbins = %4i .", // rms0, hDen2D[i]->GetYaxis()->GetBinWidth(1), Nbins) << endl; } // 1D histograms TString opth1 = opt; opth1 += "avg"; if(CYL) opth1 += "cyl"; if(ThreeD) { hDen1D[i] = pData->GetH1SliceZ3D(pData->GetChargeFileName(i)->c_str(),"charge",-1,Nbins,-1,Nbins); } else if(CYL) { // Cylindrical: The first bin with r>0 is actually the number 1 (not the 0). hDen1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",1,Nbins,opth1.Data()); } else { // 2D cartesian hDen1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",-1,Nbins,opth1.Data()); } char hName[24]; sprintf(hName,"hDen_%i",i); hDen1D[i]->SetName(hName); hDen1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]"); hDen1D[i]->GetYaxis()->SetTitle("#LTn_{e}#GT [n_{0}]"); } // Get electric fields const Int_t Nfields = 2; TH1F **hE1D = new TH1F*[Nfields]; for(Int_t i=0;i<Nfields;i++) { hE1D[i] = NULL; if(!pData->GetEfieldFileName(i)) continue; // 1D histograms TString opth1 = opt; opth1 += "avg"; if(CYL) opth1 += "cyl"; char nam[3]; sprintf(nam,"e%i",i+1); if(ThreeD) { if(i==0) hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,-1,Nbins); else hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,-Nbins,Nbins); } else if(CYL) { // Cylindrical: The firt bin with r>0 is actually the number 1 (not the 0). if(i==0) hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opth1.Data()); else hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opth1.Data()); } else { // 2D cartesian if(i==0) hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,opth1.Data()); else hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,opth1.Data()); } char hName[24]; sprintf(hName,"hE_%i",i); hE1D[i]->SetName(hName); hE1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]"); hE1D[i]->GetYaxis()->SetTitle("E [E_{e}]"); } // Y range: Int_t NbinsY = (Int_t) hDen2D->GetNbinsY(); Int_t midyBin = NbinsY/2; if(!CYL && (Nbins > midyBin) ) Nbins = midyBin; if(CYL && (Nbins >= NbinsY ) ) Nbins = NbinsY-1; Int_t FirstyBin = midyBin + 1 - Nbins; Int_t LastyBin = midyBin + Nbins; if(CYL) { FirstyBin = 1; LastyBin = Nbins; } if(LastyBin>=NbinsY) LastyBin = NbinsY - 1; Float_t ymin = hDen2D->GetYaxis()->GetBinLowEdge(FirstyBin); Float_t ymax = hDen2D->GetYaxis()->GetBinLowEdge(LastyBin+1); cout << Form(" Nbins = %i. Firstbin = %i Lastbin = %i -> ymin = %7.2f , ymax = %7.2f",Nbins,FirstyBin,LastyBin,ymin,ymax) << endl; // ---- // Tunning the Histograms // --------------------- // Chaning to user units: // cout << Form(" n0 = %10e ", n0 * PUnits::cm3) << endl; if(opt.Contains("units") && n0) { Int_t NbinsX = hDen2D->GetNbinsX(); Float_t xMin = skindepth * hDen2D->GetXaxis()->GetXmin() / PUnits::mm; Float_t xMax = skindepth * hDen2D->GetXaxis()->GetXmax() / PUnits::mm; Int_t NbinsY = hDen2D->GetNbinsY(); Float_t yMin = skindepth * hDen2D->GetYaxis()->GetXmin() / PUnits::mm; Float_t yMax = skindepth * hDen2D->GetYaxis()->GetXmax() / PUnits::mm; hDen2D->SetBins(NbinsX,xMin,xMax,NbinsY,yMin,yMax); for(Int_t j=0;j<hDen2D->GetNbinsX();j++) { for(Int_t k=0;k<hDen2D->GetNbinsY();k++) { hDen2D->SetBinContent(j,k, hDen2D->GetBinContent(j,k) * n0 / (1e15/PUnits::cm3) ); } } hDen2D->GetYaxis()->SetTitle("y [mm]"); if(opt.Contains("comov")) hDen2D->GetXaxis()->SetTitle("#zeta [mm]"); else hDen2D->GetXaxis()->SetTitle("z [mm]"); hDen2D->GetZaxis()->SetTitle("#LTn_{b}#GT [10^{15}/cm^{3}]"); for(Int_t i=0;i<Nspecies;i++) { Int_t NbinsX = hDen1D[i]->GetNbinsX(); Float_t xMin = skindepth * hDen1D[i]->GetXaxis()->GetXmin() / PUnits::mm; Float_t xMax = skindepth * hDen1D[i]->GetXaxis()->GetXmax() / PUnits::mm; hDen1D[i]->SetBins(NbinsX,xMin,xMax); for(Int_t j=0;j<hDen1D[i]->GetNbinsX();j++) { Float_t bincontent = (hDen1D[i]->GetBinContent(j) * n0 / (1e15/PUnits::cm3)); hDen1D[i]->SetBinContent(j,bincontent); } hDen1D[i]->GetYaxis()->SetTitle("#LTn_{e}#GT [10^{15}/cm^{3}]"); if(opt.Contains("comov")) hDen1D[i]->GetXaxis()->SetTitle("#zeta [mm]"); else hDen1D[i]->GetXaxis()->SetTitle("z [mm]"); } for(Int_t i=0;i<Nfields;i++) { Int_t NbinsX = hE1D[i]->GetNbinsX(); Float_t xMin = skindepth * hE1D[i]->GetXaxis()->GetXmin() / PUnits::mm; Float_t xMax = skindepth * hE1D[i]->GetXaxis()->GetXmax() / PUnits::mm; hE1D[i]->SetBins(NbinsX,xMin,xMax); for(Int_t j=0;j<hE1D[i]->GetNbinsX();j++) { hE1D[i]->SetBinContent(j, hE1D[i]->GetBinContent(j) * ( E0 / (PUnits::GV/PUnits::m) ) ); } hE1D[i]->GetYaxis()->SetTitle("E [GV/m]"); if(opt.Contains("comov")) hE1D[i]->GetXaxis()->SetTitle("#zeta [mm]"); else hE1D[i]->GetXaxis()->SetTitle("z [mm]"); } } // Set the range of the histogram for maximum constrast Float_t density = 1; if(opt.Contains("units") && n0) density = 1e-15 * 1e-6 * n0; Float_t Max = 1.1*hDen1D[0]->GetMaximum(); Float_t Min = 0; // Float_t Base = density; // Float_t Min = 2.* Base - Max; // if(Max >= 2. * Base) { // Max = 2. * Base; // Min = 2. * Base - Max; // } else if(Max<1.0 * Base) { // Max = 1.1 * Base; // Min = 0.; // } hDen1D[0]->GetYaxis()->SetRangeUser(0.,Max); // Plotting // ----------------------------------------------- // Canvas setup TCanvas *C = new TCanvas("C","Charge density and Electric field on axis",850,500); TPaveText *textTime = new TPaveText(0.63,0.87,0.78,0.92,"NDC"); PlasmaGlob::SetPaveTextStyle(textTime); textTime->SetTextColor(kGray+2); char ctext[128]; if(opt.Contains("units") && n0) sprintf(ctext,"Z = %5.1f mm", 1e3 * skindepth * Time); else sprintf(ctext,"T = %5.1f 1/#omega_{p}",Time); textTime->AddText(ctext); TPaveText *textRange = new TPaveText(0.13,0.87,0.38,0.92,"NDC"); PlasmaGlob::SetPaveTextStyle(textRange,12); textRange->SetTextColor(kGray+2); if(opt.Contains("units") && n0) sprintf(ctext,"%5.3f < y < %5.3f mm",ymin,ymax); else sprintf(ctext,"%5.3f < y < %5.3f c/#omega_{p}",ymin,ymax); textRange->AddText(ctext); // Actual Plotting! // ------------------------------------------------------------ // Output file TString fOutName = Form("./%s/Plots/Density1D/Density1D",sim.Data()); fOutName += Form("-%s_%i",sim.Data(),time); // Colors Int_t plasmaC = kGray+1; Int_t beamC = kAzure-5; Int_t fieldC = kOrange+10; Int_t fieldCb = kGray+1; C->cd(0); gPad->SetFrameLineWidth(2); hDen1D[0]->SetLineColor(plasmaC); hDen1D[0]->SetLineWidth(1); hDen1D[0]->Draw("C"); hDen1D[0]->GetYaxis()->CenterTitle(); hDen1D[0]->GetXaxis()->CenterTitle(); C->Update(); TLine *line0 = new TLine(hDen1D[0]->GetXaxis()->GetXmin(), (gPad->GetUymin()+gPad->GetUymax())/2., hDen1D[0]->GetXaxis()->GetXmax(), (gPad->GetUymin()+gPad->GetUymax())/2.); line0->SetLineColor(kGray+1); line0->SetLineStyle(2); line0->Draw(); Float_t rightmax = 2.5 * hDen1D[1]->GetMaximum(); Float_t slope = (gPad->GetUymax() - gPad->GetUymin())/rightmax; for(Int_t i=0;i<hDen1D[1]->GetNbinsX();i++) { hDen1D[1]->SetBinContent(i+1,hDen1D[1]->GetBinContent(i+1)*slope + Min); } hDen1D[1]->SetLineWidth(2); hDen1D[1]->SetLineColor(beamC); hDen1D[1]->Draw("same C"); // hTest->Draw("same"); //draw an axis on the right side TGaxis *axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),gPad->GetUxmax(), gPad->GetUymax(),0,rightmax,505,"+L"); axis->SetLineWidth(1); axis->SetLineColor(beamC); axis->SetLabelColor(beamC); if(opt.Contains("units") && n0) axis->SetTitle("#LTn_{b}#GT [10^{15}/cm^{3}]"); else axis->SetTitle("#LTn_{b}#GT [n_{0}]"); axis->CenterTitle(); axis->SetTitleColor(beamC); axis->SetTitleOffset(1.2); axis->Draw(); // Longitudinal Electric field Float_t factor = 1.5; Float_t rightmin = factor * hE1D[0]->GetMinimum(); rightmax = factor * hE1D[0]->GetMaximum(); if(hE1D[1]) { if(hE1D[1]->GetMaximum() > hE1D[0]->GetMaximum()) rightmax = factor * hE1D[1]->GetMaximum(); } if(rightmax > TMath::Abs(rightmin)) rightmin = -rightmax; else rightmax = - rightmin; slope = (gPad->GetUymax() - gPad->GetUymin())/(rightmax-rightmin); for(Int_t i=0;i<hE1D[0]->GetNbinsX();i++) { hE1D[0]->SetBinContent(i+1,(hE1D[0]->GetBinContent(i+1)-rightmin)*slope + Min); } hE1D[0]->SetLineStyle(1); hE1D[0]->SetLineWidth(2); hE1D[0]->SetLineColor(fieldC); hE1D[0]->Draw("same C"); // Transverse field for(Int_t i=0;i<hE1D[1]->GetNbinsX();i++) { hE1D[1]->SetBinContent(i+1,(hE1D[1]->GetBinContent(i+1)-rightmin)*slope + Min); } hE1D[1]->SetLineStyle(2); hE1D[1]->SetLineWidth(1); hE1D[1]->SetLineColor(fieldC); hE1D[1]->Draw("same C"); //draw an axis on the right side Float_t rightmargin = 0.08; Float_t ux = gPad->PixeltoX(gPad->UtoPixel(1-rightmargin)); TGaxis *axisE = new TGaxis(ux,gPad->GetUymin(),ux, gPad->GetUymax(),rightmin,rightmax,505,"+L"); axisE->SetLineWidth(1); axisE->SetLineColor(fieldC); axisE->SetLabelColor(fieldC); axisE->SetTitleColor(fieldC); if(opt.Contains("units") && n0) axisE->SetTitle("E [GV/m]"); else axisE->SetTitle("E [E_{0}]"); axisE->CenterTitle(); axisE->SetTitleOffset(0.8); axisE->Draw(); textTime->Draw(); textRange->Draw(); C->cd(); // Print to a file PlasmaGlob::imgconv(C,fOutName,opt); // --------------------------------------------------------- }
void PlotField1D( const TString &sim, Int_t time, Int_t Nbins=1, const TString &options="") { #ifdef __CINT__ gSystem->Load("libplasma.so"); #endif PlasmaGlob::Initialize(); TString opt = options; gStyle->SetPadLeftMargin(0.10); // Margin left axis gStyle->SetPadRightMargin(0.12); // Margin right axis if(opt.Contains("grid")) { gStyle->SetPadGridX(1); gStyle->SetPadGridY(1); } // Load PData PData *pData = PData::Get(sim.Data()); pData->LoadFileNames(time); if(!pData->IsInit()) return; Bool_t CYL = kFALSE; if(sim.Contains("cyl")) { CYL = kTRUE; opt += "cyl"; } Bool_t ThreeD = kFALSE; if(sim.Contains("3D")) ThreeD = kTRUE; // Some plasma constants Double_t n0 = pData->GetPlasmaDensity(); Double_t kp = pData->GetPlasmaK(); Double_t skindepth = 1/kp; Double_t E0 = pData->GetPlasmaE0(); // Some beam properties: Float_t Ebeam = pData->GetBeamEnergy() * PUnits::MeV; Float_t gamma = Ebeam / PConst::ElectronMassE; Float_t vbeam = TMath::Sqrt(1 - 1/(gamma*gamma)); // cout << Form(" - Bunch gamma = %8.4f", gamma ) << endl; // cout << Form(" - Bunch velocity = %8.4f c", vbeam ) << endl; Float_t Time = pData->GetRealTime(); // z start of the plasma in normalized units. Float_t zStartPlasma = pData->GetPlasmaStart()*kp; // z start of the beam in normalized units. Float_t zStartBeam = pData->GetBeamStart()*kp; Time -= zStartPlasma - zStartBeam; // 1D histograms TString opth1 = opt; opth1 += "avg"; // Get electric fields const Int_t Nfields = 1; TH1F **hE1D = new TH1F*[Nfields]; for(Int_t i=0;i<Nfields;i++) { hE1D[i] = NULL; if(!pData->GetEfieldFileName(i)) continue; char nam[3]; sprintf(nam,"e%i",i+1); if(ThreeD) { if(i==0) hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,-1,Nbins,opth1.Data()); else hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,-Nbins,Nbins,opth1.Data()); } else if(CYL) { // Cylindrical: The firt bin with r>0 is actually the number 1 (not the 0). if(i==0) hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opth1.Data()); else hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opth1.Data()); } else { // 2D cartesian if(i==0) hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,opth1.Data()); else hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,opth1.Data()); } char hName[24]; sprintf(hName,"hE_%i",i); hE1D[i]->SetName(hName); if(opt.Contains("comov")) hE1D[i]->GetXaxis()->SetTitle("#zeta [c/#omega_{p}]"); else hE1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]"); if(i==0) hE1D[i]->GetYaxis()->SetTitle("E_{z} [E_{0}]"); else if(i==1) hE1D[i]->GetYaxis()->SetTitle("E_{y} [E_{0}}]"); else if(i==2) hE1D[i]->GetYaxis()->SetTitle("E_{x} [E_{0}}]"); } // Chaning to user units: if(opt.Contains("units") && n0) { for(Int_t i=0;i<Nfields;i++) { Int_t NbinsX = hE1D[i]->GetNbinsX(); Float_t xMin = (skindepth/PUnits::mm) * hE1D[i]->GetXaxis()->GetXmin(); Float_t xMax = (skindepth/PUnits::mm) * hE1D[i]->GetXaxis()->GetXmax(); hE1D[i]->SetBins(NbinsX,xMin,xMax); for(Int_t j=0;j<NbinsX;j++) { hE1D[i]->SetBinContent(j, hE1D[i]->GetBinContent(j) * ( E0 / (PUnits::GV/PUnits::m) ) ); } if(opt.Contains("comov")) hE1D[i]->GetXaxis()->SetTitle("#zeta [mm]"); else hE1D[i]->GetXaxis()->SetTitle("z [mm]"); if(i==0) hE1D[i]->GetYaxis()->SetTitle("E_{z} [GV/m]"); else if(i==1) hE1D[i]->GetYaxis()->SetTitle("E_{y} [GV/m]"); else if(i==2) hE1D[i]->GetYaxis()->SetTitle("E_{x} [GV/m]"); } } // Calculate wave positions: // ---------------------------------------------------------------- // Retrieve the previous time TGraph if any; // Open TGraph TString filename = Form("./%s/Plots/Field1D/Field1D-%s.root",sim.Data(),sim.Data()); TFile * ifile = (TFile*) gROOT->GetListOfFiles()->FindObject(filename); // if doesn't exist the directory should be created if (!ifile) { TString f = filename; TString dir2 = f.Remove( f.Last( '/' ), f.Length() - f.Last( '/' ) ); TString dir1 = f.Remove( f.Last( '/' ), f.Length() - f.Last( '/' ) ); gSystem->mkdir( dir1 ); gSystem->mkdir( dir2 ); ifile = new TFile(filename,"UPDATE"); } Float_t *EMaxPos = new Float_t[Nfields]; Float_t *EMaxValue = new Float_t[Nfields]; // Get the Graph with the x1 positions of the maximum E_1 TGraph **graph = new TGraph*[Nfields]; char gName[24]; for(Int_t i=0;i<Nfields;i++) { if(!hE1D[i]) continue; EMaxPos[i] = EMaxValue[i] = -999; // Initial time search window: Float_t xCenter = (hE1D[i]->GetXaxis()->GetXmin()+hE1D[i]->GetXaxis()->GetXmax())/2.; Float_t xs1min = 0.5*(hE1D[i]->GetXaxis()->GetXmin()+xCenter); Float_t xs1max = xCenter; // For focusing fields i==1,2 we use a narrower window based on the previosly found // minimum for the accelerating fields i==0. if(i>0) { xCenter = EMaxPos[0]; if(opt.Contains("units") && n0) { xs1min = xCenter - (0.25*TMath::Pi() * 1e3 * skindepth); xs1max = xCenter + (0.25*TMath::Pi() * 1e3 * skindepth); } else { xs1min = xCenter - 0.25*TMath::Pi(); xs1max = xCenter + 0.25*TMath::Pi(); } } sprintf(gName,"gEMaxPos_%i",i); graph[i] = (TGraph*) ifile->Get(gName); if(graph[i]) { Double_t *y = graph[i]->GetY(); // Setup the searching windows to +/- pi/2 respect the last found minimum. if(opt.Contains("units") && n0) { xs1min = y[graph[i]->GetN()-1] - (0.5*TMath::Pi() * 1e3 * skindepth); xs1max = y[graph[i]->GetN()-1] + (0.5*TMath::Pi() * 1e3 * skindepth); } else { xs1min = y[graph[i]->GetN()-1] - 0.5*TMath::Pi(); xs1max = y[graph[i]->GetN()-1] + 0.5*TMath::Pi(); } delete graph[i]; } TH1F *htemp = (TH1F*) hE1D[i]->Clone("htemp"); htemp->GetXaxis()->SetRangeUser(xs1min,xs1max); //htemp->Smooth(1,"R"); Int_t binMax = htemp->GetMinimumBin(); EMaxPos[i] = (Float_t) htemp->GetBinCenter(binMax); EMaxValue[i] = (Float_t) htemp->GetBinContent(binMax); delete htemp; } // Tunning the Histograms // --------------------- // Plotting // ----------------------------------------------- // Output file TString fOutName = Form("./%s/Plots/Field1D/Field1D",sim.Data()); fOutName += Form("-%s_%i",sim.Data(),time); // Canvas setup TCanvas *C = new TCanvas("C","Electric wakefield on axis",850,1000); C->Divide(1,2); // Draw objects TPaveText *textTime = new TPaveText(0.70,0.87,0.85,0.92,"NDC"); PlasmaGlob::SetPaveTextStyle(textTime); char ctext[128]; if(opt.Contains("units") && n0) sprintf(ctext,"Z = %5.1f mm", 1e3 * skindepth * Time); else sprintf(ctext,"T = %5.1f 1/#omega_{p}",Time); textTime->AddText(ctext); // Colors Int_t fieldC = PlasmaGlob::fieldLine; Int_t phaseC = kGray+1; // Actual Plotting! // ------------------------------------------------------------ // More makeup C->cd(1); gPad->SetGridy(0); gPad->SetGridx(0); gPad->SetFrameLineWidth(2); hE1D[0]->SetLineWidth(1); hE1D[0]->GetYaxis()->CenterTitle(); hE1D[0]->GetXaxis()->CenterTitle(); hE1D[0]->SetLineStyle(1); hE1D[0]->SetLineWidth(3); hE1D[0]->SetLineColor(fieldC); hE1D[0]->SetMarkerStyle(20); if(Nfields>1) { hE1D[1]->GetYaxis()->CenterTitle(); hE1D[1]->GetXaxis()->CenterTitle(); hE1D[1]->SetLineStyle(1); hE1D[1]->SetLineWidth(1); hE1D[1]->SetLineColor(fieldC); hE1D[1]->SetMarkerStyle(24); } Float_t factor = 1.5; Float_t minimum = factor * hE1D[0]->GetMinimum(); Float_t maximum = factor * hE1D[0]->GetMaximum(); if(Nfields>1) { if(hE1D[1]->GetMaximum() > hE1D[0]->GetMaximum()) { maximum = factor * hE1D[1]->GetMaximum(); } if(hE1D[1]->GetMinimum() < hE1D[0]->GetMinimum()) { minimum = factor * hE1D[1]->GetMinimum(); } } if( maximum >= TMath::Abs(minimum)) minimum = -maximum; else maximum = - minimum; hE1D[0]->GetYaxis()->SetRangeUser(minimum,maximum); hE1D[0]->Draw("C"); if(Nfields>1) hE1D[1]->Draw("C same"); C->Update(); TLine *line0 = new TLine(hE1D[0]->GetXaxis()->GetXmin(), (gPad->GetUymin()+gPad->GetUymax())/2., hE1D[0]->GetXaxis()->GetXmax(), (gPad->GetUymin()+gPad->GetUymax())/2.); line0->SetLineColor(kGray+1); line0->SetLineStyle(2); line0->Draw(); TMarker *markEMax0 = new TMarker(EMaxPos[0],EMaxValue[0], 24); markEMax0->SetMarkerColor(fieldC); markEMax0->SetMarkerSize(1.6); markEMax0->Draw(); if(Nfields>1) { TMarker *markEMax1 = new TMarker(EMaxPos[1],EMaxValue[1], 24); markEMax1->SetMarkerColor(fieldC); markEMax1->SetMarkerSize(1.4); markEMax1->Draw(); } textTime->Draw(); // ---- // Define the TGraphs Int_t nPoints = 0; TGraph **gEMaxPos = new TGraph*[Nfields]; TGraph **gEMaxValue = new TGraph*[Nfields]; for(Int_t i=0;i<Nfields;i++) { if(!hE1D[i]) continue; sprintf(gName,"gEMaxPos_%i",i); gEMaxPos[i] = (TGraph*) ifile->Get(gName); if(gEMaxPos[i]==NULL) { gEMaxPos[i] = new TGraph(); gEMaxPos[i]->SetName(gName); } else { nPoints = gEMaxPos[i]->GetN(); } gEMaxPos[i]->Set(nPoints+1); if(opt.Contains("units") && n0) gEMaxPos[i]->SetPoint(nPoints, 1e3 * skindepth * Time,EMaxPos[i]); else gEMaxPos[i]->SetPoint(nPoints,Time,EMaxPos[i]); if(opt.Contains("units") && n0) { gEMaxPos[i]->GetYaxis()->SetTitle("#zeta_{min} [mm]"); gEMaxPos[i]->GetXaxis()->SetTitle("Z [mm]"); } else { gEMaxPos[i]->GetYaxis()->SetTitle("#zeta_{min} [c/#omega_{p}]"); gEMaxPos[i]->GetXaxis()->SetTitle("T [c/#omega_{p}]"); } gEMaxPos[i]->Write(gEMaxPos[i]->GetName(),TObject::kOverwrite); sprintf(gName,"gEMaxValue_%i",i); gEMaxValue[i] = (TGraph*) ifile->Get(gName); if(gEMaxValue[i]==NULL) { gEMaxValue[i] = new TGraph(); gEMaxValue[i]->SetName(gName); } else { nPoints = gEMaxValue[i]->GetN(); } gEMaxValue[i]->Set(nPoints+1); if(opt.Contains("units") && n0) gEMaxValue[i]->SetPoint(nPoints, 1e3 * skindepth * Time,EMaxValue[i]); else gEMaxValue[i]->SetPoint(nPoints,Time,EMaxValue[i]); if(opt.Contains("units") && n0) { gEMaxValue[i]->GetYaxis()->SetTitle("E_{min} [GV/m]"); gEMaxValue[i]->GetXaxis()->SetTitle("Z [mm]"); } else { gEMaxValue[i]->GetYaxis()->SetTitle("E_{min} [E_{0}]"); gEMaxValue[i]->GetXaxis()->SetTitle("T [c/#omega_{p}]"); } gEMaxValue[i]->Write(gEMaxValue[i]->GetName(),TObject::kOverwrite); } C->cd(2); gPad->SetGridy(1); gPad->SetGridx(0); gPad->SetFrameLineWidth(2); Float_t minPhase = 99.; Float_t maxPhase = -99.; Float_t minField = 99.; Float_t maxField = -99.; Double_t *yEMaxPos[Nfields]; Double_t *yEMaxValue[Nfields]; for(Int_t i=0;i<Nfields;i++) { yEMaxPos[i] = gEMaxPos[i]->GetY(); yEMaxValue[i] = gEMaxValue[i]->GetY(); for(Int_t j=0;j<gEMaxPos[0]->GetN();j++) { if(yEMaxPos[i][j]>maxPhase) maxPhase = yEMaxPos[i][j]; if(yEMaxPos[i][j]<minPhase) minPhase = yEMaxPos[i][j]; if(yEMaxValue[i][j]>maxField) maxField = yEMaxValue[i][j]; if(yEMaxValue[i][j]<minField) minField = yEMaxValue[i][j]; } } Float_t margin = (maxPhase - minPhase)/10; gEMaxPos[0]->GetYaxis()->SetRangeUser(minPhase-margin,maxPhase+margin); gEMaxPos[0]->GetYaxis()->CenterTitle(); gEMaxPos[0]->GetXaxis()->CenterTitle(); gEMaxPos[0]->SetLineColor(phaseC); gEMaxPos[0]->SetMarkerColor(phaseC); gEMaxPos[0]->SetLineWidth(3); gEMaxPos[0]->SetMarkerStyle(20); gEMaxPos[0]->SetMarkerSize(1.4); gEMaxPos[0]->Draw("APC"); if(Nfields>1) { gEMaxPos[1]->SetLineStyle(1); gEMaxPos[1]->SetLineColor(phaseC); gEMaxPos[1]->SetMarkerColor(phaseC); gEMaxPos[1]->SetLineWidth(1); gEMaxPos[1]->SetMarkerStyle(24); gEMaxPos[1]->SetMarkerSize(1.4); gEMaxPos[1]->Draw("PC"); } // Emax value // New axis first: C->Update(); // Needed for the axis! margin = (maxField - minField)/10; if (margin==0) margin = 1; Float_t rightmin = minField-margin; Float_t rightmax = maxField+margin; Float_t slope = (gPad->GetUymax() - gPad->GetUymin())/(rightmax-rightmin); TGaxis *axisEmax = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),gPad->GetUxmax(), gPad->GetUymax(),rightmin,rightmax,505,"+L"); axisEmax->SetLineWidth(1); axisEmax->SetLineColor(fieldC); axisEmax->SetLabelColor(fieldC); axisEmax->SetTitleColor(fieldC); if(opt.Contains("units") && n0) axisEmax->SetTitle("E_{min} [GV/m]"); else axisEmax->SetTitle("E_{min} [E_{0}]"); axisEmax->CenterTitle(); axisEmax->SetTitleSize(0.05); axisEmax->SetTitleOffset(1.2); axisEmax->SetLabelSize(0.05); axisEmax->SetLabelOffset(0.006); axisEmax->Draw(); // Adjust the TGraph Double_t *x = gEMaxValue[0]->GetX(); Double_t *y = gEMaxValue[0]->GetY(); for(Int_t i=0;i<gEMaxValue[0]->GetN();i++) { gEMaxValue[0]->SetPoint(i,x[i],(y[i]-rightmin)*slope + gPad->GetUymin()); } gEMaxValue[0]->SetLineColor(fieldC); gEMaxValue[0]->SetMarkerColor(fieldC); gEMaxValue[0]->SetLineWidth(3); gEMaxValue[0]->SetMarkerStyle(20); gEMaxValue[0]->SetMarkerSize(1.4); gEMaxValue[0]->Draw("PC"); if(Nfields>1) { x = gEMaxValue[1]->GetX(); y = gEMaxValue[1]->GetY(); for(Int_t i=0;i<gEMaxValue[1]->GetN();i++) { gEMaxValue[1]->SetPoint(i,x[i],(y[i]-rightmin)*slope + gPad->GetUymin()); } gEMaxValue[1]->SetLineColor(fieldC); gEMaxValue[1]->SetMarkerColor(fieldC); gEMaxValue[1]->SetLineWidth(1); gEMaxValue[1]->SetMarkerStyle(24); gEMaxValue[1]->SetMarkerSize(1.4); gEMaxValue[1]->Draw("PC"); } // Emax value // New axis first: C->Update(); // Needed for the axis! C->cd(); ifile->Close(); // Print to a file PlasmaGlob::imgconv(C,fOutName,opt); // --------------------------------------------------------- }