void apply(cube<real>& v, real bias) noexcept override { real* d = v.data(); size_t n = v.num_elements(); for ( size_t i = 0; i < n; ++i ) d[i] = f_(d[i] + bias); }
//HELIX ANIMATION uint8_t animation::helix(cube &c){ float X = 0; float Y = 0; float Z = 0; slow++; if(slow < 100){ return 0; } slow = 0; c.clearVoxels(); //use my fancy pants sine function for(uint8_t i = 0; i < 3; i++){ for(uint8_t z = 0; z < 4; z++){ Z = z*52; X = get_sinA(Z + phase + 18*i); Y = get_sinA(Z + phase + 90 + 18*i); X = (X+1)*4; Y = (Y+1)*4; c.setVoxel((uint8_t)X, (uint8_t)Y, z); c.setVoxel((uint8_t)(8-X), (uint8_t)(8-Y), z+4); } } //increment the phase phase+=18; if(phase > 360){ phase -= 360; } return 1; }
cube barrel_distort_rgb(const cube &F, double offset_x) { cube G(F.n_rows, F.n_cols, F.n_slices); G.slice(0) = barrel_distort(F.slice(0), offset_x); G.slice(1) = barrel_distort(F.slice(1), offset_x); G.slice(2) = barrel_distort(F.slice(2), offset_x); return G; }
SEXP move_B(const mat& y, cube& B, const mat& kappa_star, const field<mat>& C, //const field<sp_mat>& C, mat& gamma, const mat& D, const ucolvec& s, double tau_e) { BEGIN_RCPP // N x T matrix of standardized counts, y // B = (B_1,...,B_K), where B_k is N x T matrix for iGMRF term k // N x T matrix, gamma = sum_{k=1^K}(B_k) // K x T, D, where row k contains T x 1 diagonal elements of Q_k // sample cluster assignments, s(1), ..., s(N) // Q = (Q_1,...,Q_K), where Q_k is a T x T de-scaled iGMRF precision matrix // C = (C_1,...,C_K), where C_k = D_k^-1 * Omega_k, // where Omega_k is the T x T adjacency matrix for iGMRF term, k // D is a K x T matrix where row k contains T diagonal elements of Q_k // K x M matrix, kappa_star records locations for each iGMRF term int K = B.n_slices; int N = y.n_rows; int T = D.n_cols; colvec bbar_ki(T); bbar_ki.zeros(); rowvec gammatilde_ki(T); gammatilde_ki.zeros(); rowvec ytilde_ki(T); ytilde_ki.zeros(); rowvec d_k(T); vec zro(T); zro.zeros(); double e_ij, phi_ij, bkij, h_ij; int k = 0, i = 0, j = 0; /* loop variables */ for( k = 0; k < K; k++ ) /* over iGMRF terms */ { d_k = D.row(k); for( i = 0; i < N; i++ ) /* over units */ { /* take out T x 1, b_ki, to be sampled from gamma */ //gammatilde_ki = gamma.row(i) - B.slice(k).row(i); /* 1 x T */ //ytilde_ki = y.row(i) - gammatilde_ki; gammatilde_ki = gamma.row(i); /* 1 x T */ // mean of univariate iGMRF, b_kij = 1/d_kj * (omega_kj(-j) * b_ki(-j)) bbar_ki = C(k,0) * B.slice(k).row(i).t(); /* T x 1 */ for( j = 0; j < T; j++ ) /* over time points */ { gammatilde_ki(j) -= B.slice(k)(i,j); ytilde_ki(j) = y(i,j) - gammatilde_ki(j); // mean of univariate iGMRF, b_kij = 1/d_kj * (omega_kj(-j) * b_ki(-j)) B.slice(k)(i,j) = 0; //bbar_ki(j) = dot( C(k,0).row(j), B.slice(k).row(i) ); e_ij = tau_e*ytilde_ki(j) + d_k(j)*kappa_star(k,s(i)) * bbar_ki(j); phi_ij = tau_e + d_k(j)*kappa_star(k,s(i)); h_ij = (e_ij / phi_ij); bkij = rnorm( 1, (h_ij), sqrt(1/phi_ij) )[0]; B.slice(k)(i,j) = bkij; /* put back new sampled values for b_kij */ gammatilde_ki(j) += B.slice(k)(i,j); } /* end loop j over time points */ /* put back new sampled values for b_ki */ //gamma.row(i) = gammatilde_ki + B.slice(k).row(i); gamma.row(i) = gammatilde_ki; } /* end loop i over units */ } /* end loop k over iGMRF terms */ END_RCPP } /* end function ustep to sample B_1,...,B_K */
inline bool equal(const cube<T>& c1, const cube<T>& c2) { if ( c1.n_elem != c2.n_elem ) { return false; } return std::equal(c1.memptr(), c1.memptr() + c1.n_elem, c2.memptr()); }
typename std::enable_if<has_public_member_grad<T>::value>::type apply_grad(cube<real>& g, const cube<real>& f, const T& fn) noexcept { real* gp = g.data(); const real* fp = f.data(); size_t n = g.num_elements(); for ( size_t i = 0; i < n; ++i ) gp[i] *= fn.grad(fp[i]); }
inline void pairwise_div( cube<T>& a, const cube<T>& b ) { ZI_ASSERT(a.n_elem==b.n_elem); T* ap = a.memptr(); const T* bp = b.memptr(); for ( size_t i = 0; i < a.n_elem; ++i ) ap[i] /= bp[i]; }
inline void convolve_constant( cube<T> const & a, identity_t<T> b, cube<T> & r) noexcept { ZI_ASSERT(size(a)==size(r)); T const * ap = a.data(); T * rp = r.data(); for ( size_t i = 0; i < r.num_elements(); ++i ) rp[i] = ap[i] * b; }
// REALIZATION OF FUNCTIONS void rotationMain(int x) { if (x<=90) { glutTimerFunc(5,rotationMain,x+1); animating = true; Cube.rotateCubesAnim(direction,x); glutPostRedisplay(); } else { Cube.rotateCubesAnim(direction,0); Cube.rotateCubesFace(direction); animating = false; glutPostRedisplay(); } }
inline T convolve_constant_flipped( cube<T> const & a, cube<T> const & b ) noexcept { ZI_ASSERT(size(a)==size(b)); T r = 0; T const * ap = a.data(); T const * bp = b.data(); for ( size_t i = 0; i < a.num_elements(); ++i ) r += ap[i] * bp[i]; return r; }
/********************************************************************** * MSE Class ***********************************************************************/ double MSE::cost(cube pred, cube y){ dbg_assert(y.n_cols == 1 && y.n_slices == 1); pred.reshape(pred.n_elem,1,1); y.reshape(y.n_elem,1,1); double retn = 0.0f; for(int i=0; i < y.n_elem; i++) { retn += pow(pred(i,0,0) - y(i,0,0),2); } retn /= y.n_elem; retn *= 0.5f; //return(retn); return(0.5 * mean(mean(square(pred.slice(0) - y.slice(0))))); }
//RANDOM LIGHTS uint8_t animation::randomExpand(cube &c){ uint16_t count = 0; uint8_t rX, rY, rZ; slow++; if(slow < 20){ return 0; } slow = 0; randomSeed(analogRead(0)); rX = rand()%8+0; rY = rand()%8+0; rZ = rand()%8+0; //find an empty voxel while(c.getVoxel(rX, rY, rZ) == 1 && dir == 1){ rX = random(0, 8); rY = random(0, 8); rZ = random(0, 8); count++; if(count > 200){ dir *= -1; } } count = 0; //find a full voxel while(c.getVoxel(rX, rY, rZ) == 0 && dir == -1){ rX = random(0, 8); rY = random(0, 8); rZ = random(0, 8); count++; if(count > 200){ dir *= -1; } } //fill or clear the voxel found if(dir == 1){ c.setVoxel(rX, rY, rZ); }else{ c.clearVoxel(rX, rY, rZ); } return 1; }
cube Utils::conv3(cube body, cube kernel) { if (body.max() <= 0) { return zeros(body.n_rows, body.n_cols, body.n_slices); } cube Q(body); for (int i = 1; i < body.n_slices - 1; i++) { Q.slice(i) = conv2(body.slice(i), kernel.slice(1), "same") + conv2(body.slice(i - 1), kernel.slice(0), "same") + conv2(body.slice(i + 1), kernel.slice(2), "same"); } return Q; }
// performs inplace dropout backward inline void dropout_backward(cube<real> & g) { ZI_ASSERT(mask_); size_t s = g.num_elements(); for ( size_t i = 0; i < s; ++i ) { if ( mask_->data()[i] ) g.data()[i] *= scale(); else g.data()[i] = static_cast<real>(0); } // Should we reset mask_ here? }
//SINGLE PLANE BOUNCING uint8_t animation::bouncePlane(cube &c, uint8_t axis){ slow++; if(slow < 200){ return 0; } slow = 0; //the X animation looks the same but actually clears everything in its path //rather than clear everything at the start, it makes a simple but cool //transition between some animations if(axis != 'X'){ c.clearVoxels(); } switch(axis){ case 'X': for(uint8_t z = 0; z < Zd; z++){ for(uint8_t y = 0; y < Yd; y++){ for(uint8_t x = 0; x < Xd; x++){ if(x == pos - dir){ c.clearVoxel(x, y, z); } c.setVoxel(pos, y, z); } } } break; case 'Y': for(uint8_t x = 0; x < Xd; x++){ for(uint8_t z = 0; z < Zd; z++){ c.setVoxel(x, pos, z); } } break; case 'Z': for(uint8_t x = 0; x < Xd; x++){ for(uint8_t y = 0; y < Yd; y++){ c.setVoxel(x, y, pos); } } break; } //bounce the pos variable between 0 and 7 bouncePos(); return 1; }
cube imresize2(const cube &C, uword m, uword n) { cube F(m, n, C.n_slices); for (uword k = 0; k < C.n_slices; k++) { F.slice(k) = imresize2(C.slice(k), m, n); } return F; }
cube noncont_slices(const cube & X, const uvec & index, int r_start, int c_start, int r_stop, int c_stop){ cube Xsub(r_stop-r_start+1, c_stop-c_start+1, index.n_elem); for(unsigned int i=0; i<index.n_elem; i++){ Xsub.slice(i) = X.slice(index[i]).submat(r_start, c_start, r_stop, c_stop); } return Xsub; }
cube Utils::erode(cube body, cube kernel) { int minx, miny, minz, maxx, maxy, maxz; Utils::bounds(body, minx, miny, minz, maxx, maxy, maxz); cube result = cube(body); int size_x = kernel.n_cols / 2; int size_y = kernel.n_rows / 2; int size_z = kernel.n_slices / 2; maxx -= kernel.n_cols; maxy -= kernel.n_rows; maxz -= kernel.n_slices; for (int i = minx; i <= maxx; i++) { for (int j = miny; j <= maxy; j++) { for (int k = minz; k <= maxz; k++) { cube subcube = body.subcube(j, i, k, size(kernel)); subcube -= kernel; result(j + size_y, i + size_x, k + size_z) = subcube.min() < 0 ? 0 : 1; } } } return result; }
cube conv2(const cube &F, const mat &H) { cube G(F.n_rows, F.n_cols, F.n_slices); for (uword i = 0; i < F.n_slices; i++) { G.slice(i) = conv2(F.slice(i), H); } return G; }
inline unique_cube<T> crop_right( const cube<T>& in, const vec3s& s ) { auto r = pool<T>::get_unique(s); vec3s b = size(in) - s; *r = in.subcube(b[0], b[1], b[2], b[0]+s[0]-1, b[1]+s[1]-1, b[2]+s[2]-1); return r; }
//! compute (trial)point-to-(model)point Mahalanobis distance //! @param[in] index index of the points (in trial and model) to be compared //! @param[in] &trial reference to the trial //! @param[in] &model reference to the model //! @param[in] &variance reference to the model variance //! @return Mahalanobis distance between trial-point and model-point float Classifier::mahalanobisDist(int index,mat &trial,mat &model,cube &variance) { mat difference = trial.col(index) - model.col(index); mat distance = (difference.t() * (variance.slice(index)).i()) * difference; return distance(0,0); }
// Volumetric 2D Convolution mat conv2d(cube image, cube kernel){ dbg_assert(image.n_rows == image.n_cols); dbg_assert(kernel.n_rows == kernel.n_cols); dbg_assert(kernel.n_rows <= image.n_rows); dbg_assert(kernel.n_slices == image.n_slices); int kernel_size = kernel.n_rows; int image_size = image.n_rows; int result_size = image_size - kernel_size + 1; mat result = zeros<mat>(result_size, result_size); for(int row=0; row < result_size; row++){ for(int col=0; col < result_size; col++){ result(row, col) = accu( image.tube( row, col, row + kernel_size - 1, col + kernel_size - 1 ) % kernel ); } } return(result); }
void initScene() { // Clear glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Set drawing mode glMatrixMode(GL_MODELVIEW); // Draw scene glLoadIdentity(); glTranslatef(0.0f,0.0f,-7.0f); // Draw lighting GLfloat ambientColor[] = {0.2f, 0.2f, 0.2f, 1.0f}; //Color (0.2, 0.2, 0.2) glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientColor); //Add positioned light GLfloat lightColor0[] = {0.5f, 0.5f, 0.5f, 1.0f}; //Color (0.5, 0.5, 0.5) GLfloat lightPos0[] = {4.0f, 0.0f, 8.0f, 1.0f}; //Positioned at (4, 0, 8) glLightfv(GL_LIGHT0, GL_DIFFUSE, lightColor0); glLightfv(GL_LIGHT0, GL_POSITION, lightPos0); //Add directed light GLfloat lightColor1[] = {0.7f, 0.7f, 0.7f, 1.0f}; //Color (0.5, 0.2, 0.2) //Coming from the direction (-1, 0.5, 0.5) GLfloat lightPos1[] = {-1.0f, 0.5f, 0.5f, 0.0f}; glLightfv(GL_LIGHT1, GL_DIFFUSE, lightColor1); glLightfv(GL_LIGHT1, GL_POSITION, lightPos1); // Draw the cube Cube.draw(_textureId); glutSwapBuffers(); }
void connected_cube_list::add( const cube& c ) { /* check if cube already exists */ auto it = _connected_cubes.find( c ); if ( it != _connected_cubes.end() ) return; /* find matching cubes */ cube_common_vec_t commons; int weight = 0; for ( const auto& other : _cubes ) { int m = other.match_intersect( c ); if ( m != -1 ) { commons += std::make_pair( other, (unsigned)m ); weight += c.dimension() - m - 1; _connected_cubes[other] += std::make_pair( c, (unsigned)m ); cube_weights[other] += other.dimension() - m - 1; } } /* add cube */ _cubes += c; _connected_cubes[c] = commons; cube_weights[c] = weight; }
void lmMean(const cube& wX, const rowvec& vec_beta, mat& mean){ int n = wX.n_slices, P=wX.n_cols; mean = zeros(n,P); for(int i=0;i<n;i++){ mean.row(i) = vec_beta* wX.slice(i); } }
cube noncont_slices(const cube & X, const uvec & index){ cube Xsub(X.n_rows, X.n_cols, index.n_elem); for(unsigned int i=0; i<index.n_elem; i++){ Xsub.slice(i) = X.slice(index[i]); } return Xsub; }
inline cube_p<T> convolve_sparse( cube<T> const & a, cube<T> const & b, vec3i const & s ) { if ( s == vec3i::one ) { return convolve(a,b); } vec3i as = size(a); vec3i bs = size(b); vec3i rs = size(a) - (size(b) - vec3i::one) * s; cube_p<T> r = get_cube<T>(rs); int a_strides[3] = { s[2], as[2]*s[1], as[2]*as[1]*s[0] }; int r_strides[3] = { s[2], rs[2]*s[1], rs[2]*rs[1]*s[0] }; // sparseness for (int xs=0; xs<s[0]; xs++) for (int ys=0; ys<s[1]; ys++) for (int zs=0; zs<s[2]; zs++) { vec3i in_size( (as[0]-1)/s[0] + (xs == 0 ? 1 : 0), (as[1]-1)/s[1] + (ys == 0 ? 1 : 0), (as[2]-1)/s[2] + (zs == 0 ? 1 : 0) ); const T* in_ptr = &(a[xs][ys][zs]); T* out_ptr = &((*r)[xs][ys][zs]); #ifdef ZNN_USE_FLOATS int status = vslsConvExec( conv_plans.get(in_size, bs), in_ptr, a_strides, b.data(), NULL, out_ptr, r_strides); #else int status = vsldConvExec( conv_plans.get(in_size, bs), in_ptr, a_strides, b.data(), NULL, out_ptr, r_strides); #endif } return r; }
inline void fill_indices(cube<T>& c) { T idx = 0; T* mem = c.memptr(); for ( size_t i = 0; i < c.n_elem; ++i, ++idx ) mem[i] = idx; }
sseq compute_szabo_sseq (const cube<Z2> &c) { mod_map<Z2> d = c.compute_d (0, 0, 0, 0, 0); sseq_builder builder (c.khC, d); return builder.build_sseq (); }
void white(const mat& y, const mat& y_center, const uvec& sti, const cube& matphi1, const cube& matphi2, mat& wy, mat& wy_center, const uvec& WTIME){ int L=matphi1.n_slices, wT = WTIME.n_elem, t=0; mat multiply; if(L==0){wy=y; wy_center = y_center;} else{ wy = y.rows(WTIME); wy_center = y_center.rows(WTIME); for(int wt=0; wt<wT ; wt++){ t = WTIME[wt]; for(int l=0; l<L; l++){ multiply = (sti[t-l-1])?(matphi1.slice(l)):(matphi2.slice(l)); wy.row(wt) -= y.row(t-l-1)*multiply; wy_center.row(wt) -= y_center.row(t-l-1)*multiply; } } } }