Exemple #1
0
int RandFourierMap(int nKernelType, const fvec& x, const std::vector<fvec> &W, const fvec &b, fvec &result)
{
    int nErrCode = 0;
    if(W.empty() || b.empty())
    {
        return 1;
    }
    int nKernelRank = W[0].size();
    switch(nKernelType)
    {
    case RAND_KERNEL_RBF:
        for(int rank_idx = 0; rank_idx < nKernelRank; ++rank_idx)
        {
            float sum = 0.0;
            for(int dim_idx = 0; dim_idx < x.size(); ++dim_idx)
            {
                sum += W[dim_idx][rank_idx] * x[dim_idx];
            }
            result.push_back(sqrt(2.0 / nKernelRank) * cos(sum + b[rank_idx]));
        }
        break;
    default:
        nErrCode = 1;
    }

    return nErrCode;
}
Exemple #2
0
int RandFourierFactorize(int nKernelType, int nKernelRank, float fGamma, const std::vector<fvec>& X, std::vector<fvec> &G, std::vector<fvec> &W, fvec &b)
{
    int nErrCode = 0;

    int m = X.size();
    if(m == 0)
    {
        return nErrCode;
    }

    int dim = X[0].size();
    G.clear();
    W.clear();
    b.clear();

    //generate random features

    dlib::rand r;
    std::ostringstream seed;
    seed << (unsigned int) time(0);
    r.set_seed(seed.str());

    switch(nKernelType)
    {
    case RAND_KERNEL_RBF:

        for(int ind = 0; ind < dim; ++ind)
        {
            fvec tmp_vec;
            for(int rank_idx = 0; rank_idx < nKernelRank; ++rank_idx)
            {
                tmp_vec.push_back(r.get_random_gaussian() * fGamma);
            }
            W.push_back(tmp_vec);
        }
        for(int ind = 0; ind < nKernelRank; ++ind)
        {
            b.push_back(r.get_random_float() * 2.0 * PI);
        }
        for(int ind = 0; ind < m; ++ind)
        {
            fvec tmp_vec;
            RandFourierMap(nKernelType, X[ind], W, b, tmp_vec);
            G.push_back(tmp_vec);
        }
        break;

    default:
        //unknown kernel type
        //printf("unknown type\n");
        nErrCode = 1;
        break;
    };

    return nErrCode;
}
Exemple #3
0
void search2(fvec &stat, ivec &sel_id, int &marg_id, const fvec &S, const fmat &Sigma, const int &mc){
  
  int ns = S.size();
  
	//find best marginal SNP
	int id = -1;
	double max_stat = -1.0;
	for(int j = 0; j < ns; ++j){
		double s = S[j] * S[j] / Sigma[j][j];
		if(s > max_stat){
			max_stat = s;
			id = j;
		}
	}
	
  stat = fvec(1, max_stat);
  assert(id >= 0 && id < ns);
  sel_id = ivec(1, id);
  marg_id = id;
  
	if(ns == 1){
		return;
	}
  
  //find best pair
  int id1 = -1;
  int id2 = -1;
  max_stat = -1.0;
  for(int j = 0; j < ns; ++j){
    for(int k = j + 1; k < ns; ++k){
      double a = Sigma[j][j];
      double b = Sigma[j][k];
      double d = Sigma[k][k];
      double stat = (d * S[j] * S[j] - 2 * b * S[j] * S[k] + a * S[k] * S[k]) / (a * d - b * b);
      if(stat > max_stat){
        max_stat = stat;
        id1 = j;
        id2 = k;
      }
    }
  }
  
  stat.push_back(max_stat);
  assert(id1 >= 0 && id1 < ns);
  assert(id2 >= 0 && id2 < ns);
  sel_id = ivec(1, id1);
  sel_id.push_back(id2);
  
  if(ns == 2){
    return;
  }
	
	dmat inv_Sigma22(mc + 1, dvec(mc + 1, .0));
  double a = Sigma[id1][id1];
  double b = Sigma[id1][id2];
  double d = Sigma[id2][id2];
  double e = a * d - b * b;
	inv_Sigma22[0][0] = d / e;
  inv_Sigma22[0][1] = -b / e;
  inv_Sigma22[1][0] = inv_Sigma22[0][1];
  inv_Sigma22[1][1] = a / e;
	
	dvec S2(mc + 1, .0);
	S2[0] = S[id1];
  S2[1] = S[id2];
	
	vector<bool> used(ns, false);
	used[id1] = true;
  used[id2] = true;
	
	double w = max_stat;
	
	for(int j = 2; j <= mc; ++j){//j is the number of SNPs being selected
		
		dvec v(j, .0); // v = (Sigma22)^-1 S2
		for(int i = 0; i < j; ++i){
			v[i] = .0;
			for(int k = 0; k < j; ++k){
				v[i] += inv_Sigma22[i][k] * S2[k];
			}
		}
		
		max_stat = -1.0;
		double max_qf2 = -1.0;
		id = -1;
		for(int k = 0; k < ns; ++k){
			if(used[k]){
				continue;
			}
			
			double S1 = S[k];
			double qf1 = .0; //qf1 = sigma12 (Sigma22)^-1 S2
			double qf2 = .0; //qf2 = sigma12 (Sigma22)^-1 sigma21
			for(int l = 0; l < j; ++l){
				qf1 += Sigma[k][sel_id[l]] * v[l];
				double tmp = .0; // tmp = the l-th column of sigma12 (Sigma22)^-1
				for(int t = 0; t < j; ++t){
					tmp += Sigma[k][sel_id[t]] * inv_Sigma22[t][l];
				}
				qf2 += tmp * Sigma[sel_id[l]][k];
			}
			
			
			double stat = w + (S1 * S1 - 2.0 * S1 * qf1 + qf1 * qf1)/(Sigma[k][k] - qf2);
			if(stat > max_stat){
				max_stat = stat;
				id = k;
				max_qf2 = qf2;
			}
			
		}
		
		w = max_stat;
		stat.push_back(max_stat);
    
		sel_id.push_back(id);
		used[id] = true;
		S2[j] = S[id];
		inv_Sigma22[j][j] = 1.0 / (Sigma[id][id] - max_qf2);
		dvec tmp(j, .0);
		for(int l = 0; l < j; ++l){
			inv_Sigma22[j][l] = .0;
			for(int t = 0; t < j; ++t){
				inv_Sigma22[j][l] += Sigma[id][sel_id[t]] * inv_Sigma22[t][l];
			}
			inv_Sigma22[j][l] *= -inv_Sigma22[j][j];
			inv_Sigma22[l][j] = inv_Sigma22[j][l];
		}
		
		for(int l = 0; l < j; ++l){
			for(int t = 0; t < j; ++t){
				inv_Sigma22[l][t] +=  inv_Sigma22[l][j] * inv_Sigma22[t][j] / inv_Sigma22[j][j];
			}
		}
		
	}
	
}