int mpfr_cbrt (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpz_t m; mpfr_exp_t e, r, sh; mpfr_prec_t n, size_m, tmp; int inexact, negative; MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC ( ("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode), ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact)); /* special values */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) { MPFR_SET_INF (y); MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); } /* case 0: cbrt(+/- 0) = +/- 0 */ else /* x is necessarily 0 */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (y); MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); } } /* General case */ MPFR_SAVE_EXPO_MARK (expo); mpz_init (m); e = mpfr_get_z_2exp (m, x); /* x = m * 2^e */ if ((negative = MPFR_IS_NEG(x))) mpz_neg (m, m); r = e % 3; if (r < 0) r += 3; /* x = (m*2^r) * 2^(e-r) = (m*2^r) * 2^(3*q) */ MPFR_MPZ_SIZEINBASE2 (size_m, m); n = MPFR_PREC (y) + (rnd_mode == MPFR_RNDN); /* we want 3*n-2 <= size_m + 3*sh + r <= 3*n i.e. 3*sh + size_m + r <= 3*n */ sh = (3 * (mpfr_exp_t) n - (mpfr_exp_t) size_m - r) / 3; sh = 3 * sh + r; if (sh >= 0) { mpz_mul_2exp (m, m, sh); e = e - sh; } else if (r > 0) { mpz_mul_2exp (m, m, r); e = e - r; } /* invariant: x = m*2^e, with e divisible by 3 */ /* we reuse the variable m to store the cube root, since it is not needed any more: we just need to know if the root is exact */ inexact = mpz_root (m, m, 3) == 0; MPFR_MPZ_SIZEINBASE2 (tmp, m); sh = tmp - n; if (sh > 0) /* we have to flush to 0 the last sh bits from m */ { inexact = inexact || ((mpfr_exp_t) mpz_scan1 (m, 0) < sh); mpz_fdiv_q_2exp (m, m, sh); e += 3 * sh; } if (inexact) { if (negative) rnd_mode = MPFR_INVERT_RND (rnd_mode); if (rnd_mode == MPFR_RNDU || rnd_mode == MPFR_RNDA || (rnd_mode == MPFR_RNDN && mpz_tstbit (m, 0))) inexact = 1, mpz_add_ui (m, m, 1); else inexact = -1; } /* either inexact is not zero, and the conversion is exact, i.e. inexact is not changed; or inexact=0, and inexact is set only when rnd_mode=MPFR_RNDN and bit (n+1) from m is 1 */ inexact += mpfr_set_z (y, m, MPFR_RNDN); MPFR_SET_EXP (y, MPFR_GET_EXP (y) + e / 3); if (negative) { MPFR_CHANGE_SIGN (y); inexact = -inexact; } mpz_clear (m); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }
/* return non zero iff x^y is exact. Assumes x and y are ordinary numbers, y is not an integer, x is not a power of 2 and x is positive If x^y is exact, it computes it and sets *inexact. */ static int mpfr_pow_is_exact (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd_mode, int *inexact) { mpz_t a, c; mpfr_exp_t d, b; unsigned long i; int res; MPFR_ASSERTD (!MPFR_IS_SINGULAR (y)); MPFR_ASSERTD (!MPFR_IS_SINGULAR (x)); MPFR_ASSERTD (!mpfr_integer_p (y)); MPFR_ASSERTD (mpfr_cmp_si_2exp (x, MPFR_INT_SIGN (x), MPFR_GET_EXP (x) - 1) != 0); MPFR_ASSERTD (MPFR_IS_POS (x)); if (MPFR_IS_NEG (y)) return 0; /* x is not a power of two => x^-y is not exact */ /* compute d such that y = c*2^d with c odd integer */ mpz_init (c); d = mpfr_get_z_2exp (c, y); i = mpz_scan1 (c, 0); mpz_fdiv_q_2exp (c, c, i); d += i; /* now y=c*2^d with c odd */ /* Since y is not an integer, d is necessarily < 0 */ MPFR_ASSERTD (d < 0); /* Compute a,b such that x=a*2^b */ mpz_init (a); b = mpfr_get_z_2exp (a, x); i = mpz_scan1 (a, 0); mpz_fdiv_q_2exp (a, a, i); b += i; /* now x=a*2^b with a is odd */ for (res = 1 ; d != 0 ; d++) { /* a*2^b is a square iff (i) a is a square when b is even (ii) 2*a is a square when b is odd */ if (b % 2 != 0) { mpz_mul_2exp (a, a, 1); /* 2*a */ b --; } MPFR_ASSERTD ((b % 2) == 0); if (!mpz_perfect_square_p (a)) { res = 0; goto end; } mpz_sqrt (a, a); b = b / 2; } /* Now x = (a'*2^b')^(2^-d) with d < 0 so x^y = ((a'*2^b')^(2^-d))^(c*2^d) = ((a'*2^b')^c with c odd integer */ { mpfr_t tmp; mpfr_prec_t p; MPFR_MPZ_SIZEINBASE2 (p, a); mpfr_init2 (tmp, p); /* prec = 1 should not be possible */ res = mpfr_set_z (tmp, a, MPFR_RNDN); MPFR_ASSERTD (res == 0); res = mpfr_mul_2si (tmp, tmp, b, MPFR_RNDN); MPFR_ASSERTD (res == 0); *inexact = mpfr_pow_z (z, tmp, c, rnd_mode); mpfr_clear (tmp); res = 1; } end: mpz_clear (a); mpz_clear (c); return res; }
/* y <- exp(p/2^r) within 1 ulp, using 2^m terms from the series Assume |p/2^r| < 1. We use the following binary splitting formula: P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise Q(a,b) = a*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise T(a,b) = P(a,b) if a+1=b, Q(c,b)*T(a,c)+P(a,c)*T(c,b) otherwise Then exp(p/2^r) ~ T(0,i)/Q(0,i) for i so that (p/2^r)^i/i! is small enough. Since P(a,b) = p^(b-a), and we consider only values of b-a of the form 2^j, we don't need to compute P(), we only precompute p^(2^j) in the ptoj[] array below. Since Q(a,b) is divisible by 2^(r*(b-a-1)), we don't compute the power of two part. */ static void mpfr_exp_rational (mpfr_ptr y, mpz_ptr p, long r, int m, mpz_t *Q, mp_prec_t *mult) { unsigned long n, i, j; mpz_t *S, *ptoj; mp_prec_t *log2_nb_terms; mp_exp_t diff, expo; mp_prec_t precy = MPFR_PREC(y), prec_i_have, prec_ptoj; int k, l; MPFR_ASSERTN ((size_t) m < sizeof (long) * CHAR_BIT - 1); S = Q + (m+1); ptoj = Q + 2*(m+1); /* ptoj[i] = mantissa^(2^i) */ log2_nb_terms = mult + (m+1); /* Normalize p */ MPFR_ASSERTD (mpz_cmp_ui (p, 0) != 0); n = mpz_scan1 (p, 0); /* number of trailing zeros in p */ mpz_tdiv_q_2exp (p, p, n); r -= n; /* since |p/2^r| < 1 and p >= 1, r >= 1 */ /* Set initial var */ mpz_set (ptoj[0], p); for (k = 1; k < m; k++) mpz_mul (ptoj[k], ptoj[k-1], ptoj[k-1]); /* ptoj[k] = p^(2^k) */ mpz_set_ui (Q[0], 1); mpz_set_ui (S[0], 1); k = 0; mult[0] = 0; /* the multiplier P[k]/Q[k] for the remaining terms satisfies P[k]/Q[k] <= 2^(-mult[k]) */ log2_nb_terms[0] = 0; /* log2(#terms) [exact in 1st loop where 2^k] */ prec_i_have = 0; /* Main Loop */ n = 1UL << m; for (i = 1; (prec_i_have < precy) && (i < n); i++) { /* invariant: Q[0]*Q[1]*...*Q[k] equals i! */ k++; log2_nb_terms[k] = 0; /* 1 term */ mpz_set_ui (Q[k], i + 1); mpz_set_ui (S[k], i + 1); j = i + 1; /* we have computed j = i+1 terms so far */ l = 0; while ((j & 1) == 0) /* combine and reduce */ { /* invariant: S[k] corresponds to 2^l consecutive terms */ mpz_mul (S[k], S[k], ptoj[l]); mpz_mul (S[k-1], S[k-1], Q[k]); /* Q[k] corresponds to 2^l consecutive terms too. Since it does not contains the factor 2^(r*2^l), when going from l to l+1 we need to multiply by 2^(r*2^(l+1))/2^(r*2^l) = 2^(r*2^l) */ mpz_mul_2exp (S[k-1], S[k-1], r << l); mpz_add (S[k-1], S[k-1], S[k]); mpz_mul (Q[k-1], Q[k-1], Q[k]); log2_nb_terms[k-1] ++; /* number of terms in S[k-1] is a power of 2 by construction */ MPFR_MPZ_SIZEINBASE2 (prec_i_have, Q[k]); MPFR_MPZ_SIZEINBASE2 (prec_ptoj, ptoj[l]); mult[k-1] += prec_i_have + (r << l) - prec_ptoj - 1; prec_i_have = mult[k] = mult[k-1]; /* since mult[k] >= mult[k-1] + nbits(Q[k]), we have Q[0]*...*Q[k] <= 2^mult[k] = 2^prec_i_have */ l ++; j >>= 1; k --; } } /* accumulate all products in S[0] and Q[0]. Warning: contrary to above, here we do not have log2_nb_terms[k-1] = log2_nb_terms[k]+1. */ l = 0; /* number of accumulated terms in the right part S[k]/Q[k] */ while (k > 0) { j = log2_nb_terms[k-1]; mpz_mul (S[k], S[k], ptoj[j]); mpz_mul (S[k-1], S[k-1], Q[k]); l += 1 << log2_nb_terms[k]; mpz_mul_2exp (S[k-1], S[k-1], r * l); mpz_add (S[k-1], S[k-1], S[k]); mpz_mul (Q[k-1], Q[k-1], Q[k]); k--; } /* Q[0] now equals i! */ MPFR_MPZ_SIZEINBASE2 (prec_i_have, S[0]); diff = (mp_exp_t) prec_i_have - 2 * (mp_exp_t) precy; expo = diff; if (diff >= 0) mpz_div_2exp (S[0], S[0], diff); else mpz_mul_2exp (S[0], S[0], -diff); MPFR_MPZ_SIZEINBASE2 (prec_i_have, Q[0]); diff = (mp_exp_t) prec_i_have - (mp_prec_t) precy; expo -= diff; if (diff > 0) mpz_div_2exp (Q[0], Q[0], diff); else mpz_mul_2exp (Q[0], Q[0], -diff); mpz_tdiv_q (S[0], S[0], Q[0]); mpfr_set_z (y, S[0], GMP_RNDD); MPFR_SET_EXP (y, MPFR_GET_EXP (y) + expo - r * (i - 1) ); }
/* If x = p/2^r, put in y an approximation of atan(x)/x using 2^m terms for the series expansion, with an error of at most 1 ulp. Assumes |x| < 1. If X=x^2, we want 1 - X/3 + X^2/5 - ... + (-1)^k*X^k/(2k+1) + ... Assume p is non-zero. When we sum terms up to x^k/(2k+1), the denominator Q[0] is 3*5*7*...*(2k+1) ~ (2k/e)^k. */ static void mpfr_atan_aux (mpfr_ptr y, mpz_ptr p, long r, int m, mpz_t *tab) { mpz_t *S, *Q, *ptoj; unsigned long n, i, k, j, l; mpfr_exp_t diff, expo; int im, done; mpfr_prec_t mult, *accu, *log2_nb_terms; mpfr_prec_t precy = MPFR_PREC(y); MPFR_ASSERTD(mpz_cmp_ui (p, 0) != 0); accu = (mpfr_prec_t*) (*__gmp_allocate_func) ((2 * m + 2) * sizeof (mpfr_prec_t)); log2_nb_terms = accu + m + 1; /* Set Tables */ S = tab; /* S */ ptoj = S + 1*(m+1); /* p^2^j Precomputed table */ Q = S + 2*(m+1); /* Product of Odd integer table */ /* From p to p^2, and r to 2r */ mpz_mul (p, p, p); MPFR_ASSERTD (2 * r > r); r = 2 * r; /* Normalize p */ n = mpz_scan1 (p, 0); mpz_tdiv_q_2exp (p, p, n); /* exact */ MPFR_ASSERTD (r > n); r -= n; /* since |p/2^r| < 1, and p is a non-zero integer, necessarily r > 0 */ MPFR_ASSERTD (mpz_sgn (p) > 0); MPFR_ASSERTD (m > 0); /* check if p=1 (special case) */ l = 0; /* We compute by binary splitting, with X = x^2 = p/2^r: P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise Q(a,b) = (2a+1)*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise S(a,b) = p*(2a+1) if a+1=b, Q(c,b)*S(a,c)+Q(a,c)*P(a,c)*S(c,b) otherwise Then atan(x)/x ~ S(0,i)/Q(0,i) for i so that (p/2^r)^i/i is small enough. The factor 2^(r*(b-a)) in Q(a,b) is implicit, thus we have to take it into account when we compute with Q. */ accu[0] = 0; /* accu[k] = Mult[0] + ... + Mult[k], where Mult[j] is the number of bits of the corresponding term S[j]/Q[j] */ if (mpz_cmp_ui (p, 1) != 0) { /* p <> 1: precompute ptoj table */ mpz_set (ptoj[0], p); for (im = 1 ; im <= m ; im ++) mpz_mul (ptoj[im], ptoj[im - 1], ptoj[im - 1]); /* main loop */ n = 1UL << m; /* the ith term being X^i/(2i+1) with X=p/2^r, we can stop when p^i/2^(r*i) < 2^(-precy), i.e. r*i > precy + log2(p^i) */ for (i = k = done = 0; (i < n) && (done == 0); i += 2, k ++) { /* initialize both S[k],Q[k] and S[k+1],Q[k+1] */ mpz_set_ui (Q[k+1], 2 * i + 3); /* Q(i+1,i+2) */ mpz_mul_ui (S[k+1], p, 2 * i + 1); /* S(i+1,i+2) */ mpz_mul_2exp (S[k], Q[k+1], r); mpz_sub (S[k], S[k], S[k+1]); /* S(i,i+2) */ mpz_mul_ui (Q[k], Q[k+1], 2 * i + 1); /* Q(i,i+2) */ log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */ for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l ++, j >>= 1, k --) { /* invariant: S[k-1]/Q[k-1] and S[k]/Q[k] correspond to 2^l terms each. We combine them into S[k-1]/Q[k-1] */ MPFR_ASSERTD (k > 0); mpz_mul (S[k], S[k], Q[k-1]); mpz_mul (S[k], S[k], ptoj[l]); mpz_mul (S[k-1], S[k-1], Q[k]); mpz_mul_2exp (S[k-1], S[k-1], r << l); mpz_add (S[k-1], S[k-1], S[k]); mpz_mul (Q[k-1], Q[k-1], Q[k]); log2_nb_terms[k-1] = l + 1; /* now S[k-1]/Q[k-1] corresponds to 2^(l+1) terms */ MPFR_MPZ_SIZEINBASE2(mult, ptoj[l+1]); /* FIXME: precompute bits(ptoj[l+1]) outside the loop? */ mult = (r << (l + 1)) - mult - 1; accu[k-1] = (k == 1) ? mult : accu[k-2] + mult; if (accu[k-1] > precy) done = 1; } } }
/* compute in y an approximation of sum(x^k/k/k!, k=1..infinity), and return e such that the absolute error is bound by 2^e ulp(y) */ static mp_exp_t mpfr_eint_aux (mpfr_t y, mpfr_srcptr x) { mpfr_t eps; /* dynamic (absolute) error bound on t */ mpfr_t erru, errs; mpz_t m, s, t, u; mp_exp_t e, sizeinbase; mp_prec_t w = MPFR_PREC(y); unsigned long k; MPFR_GROUP_DECL (group); /* for |x| <= 1, we have S := sum(x^k/k/k!, k=1..infinity) = x + R(x) where |R(x)| <= (x/2)^2/(1-x/2) <= 2*(x/2)^2 thus |R(x)/x| <= |x|/2 thus if |x| <= 2^(-PREC(y)) we have |S - o(x)| <= ulp(y) */ if (MPFR_GET_EXP(x) <= - (mp_exp_t) w) { mpfr_set (y, x, GMP_RNDN); return 0; } mpz_init (s); /* initializes to 0 */ mpz_init (t); mpz_init (u); mpz_init (m); MPFR_GROUP_INIT_3 (group, 31, eps, erru, errs); e = mpfr_get_z_exp (m, x); /* x = m * 2^e */ MPFR_ASSERTD (mpz_sizeinbase (m, 2) == MPFR_PREC (x)); if (MPFR_PREC (x) > w) { e += MPFR_PREC (x) - w; mpz_tdiv_q_2exp (m, m, MPFR_PREC (x) - w); } /* remove trailing zeroes from m: this will speed up much cases where x is a small integer divided by a power of 2 */ k = mpz_scan1 (m, 0); mpz_tdiv_q_2exp (m, m, k); e += k; /* initialize t to 2^w */ mpz_set_ui (t, 1); mpz_mul_2exp (t, t, w); mpfr_set_ui (eps, 0, GMP_RNDN); /* eps[0] = 0 */ mpfr_set_ui (errs, 0, GMP_RNDN); for (k = 1;; k++) { /* let eps[k] be the absolute error on t[k]: since t[k] = trunc(t[k-1]*m*2^e/k), we have eps[k+1] <= 1 + eps[k-1]*m*2^e/k + t[k-1]*m*2^(1-w)*2^e/k = 1 + (eps[k-1] + t[k-1]*2^(1-w))*m*2^e/k = 1 + (eps[k-1]*2^(w-1) + t[k-1])*2^(1-w)*m*2^e/k */ mpfr_mul_2ui (eps, eps, w - 1, GMP_RNDU); mpfr_add_z (eps, eps, t, GMP_RNDU); MPFR_MPZ_SIZEINBASE2 (sizeinbase, m); mpfr_mul_2si (eps, eps, sizeinbase - (w - 1) + e, GMP_RNDU); mpfr_div_ui (eps, eps, k, GMP_RNDU); mpfr_add_ui (eps, eps, 1, GMP_RNDU); mpz_mul (t, t, m); if (e < 0) mpz_tdiv_q_2exp (t, t, -e); else mpz_mul_2exp (t, t, e); mpz_tdiv_q_ui (t, t, k); mpz_tdiv_q_ui (u, t, k); mpz_add (s, s, u); /* the absolute error on u is <= 1 + eps[k]/k */ mpfr_div_ui (erru, eps, k, GMP_RNDU); mpfr_add_ui (erru, erru, 1, GMP_RNDU); /* and that on s is the sum of all errors on u */ mpfr_add (errs, errs, erru, GMP_RNDU); /* we are done when t is smaller than errs */ if (mpz_sgn (t) == 0) sizeinbase = 0; else MPFR_MPZ_SIZEINBASE2 (sizeinbase, t); if (sizeinbase < MPFR_GET_EXP (errs)) break; } /* the truncation error is bounded by (|t|+eps)/k*(|x|/k + |x|^2/k^2 + ...) <= (|t|+eps)/k*|x|/(k-|x|) */ mpz_abs (t, t); mpfr_add_z (eps, eps, t, GMP_RNDU); mpfr_div_ui (eps, eps, k, GMP_RNDU); mpfr_abs (erru, x, GMP_RNDU); /* |x| */ mpfr_mul (eps, eps, erru, GMP_RNDU); mpfr_ui_sub (erru, k, erru, GMP_RNDD); if (MPFR_IS_NEG (erru)) { /* the truncated series does not converge, return fail */ e = w; } else { mpfr_div (eps, eps, erru, GMP_RNDU); mpfr_add (errs, errs, eps, GMP_RNDU); mpfr_set_z (y, s, GMP_RNDN); mpfr_div_2ui (y, y, w, GMP_RNDN); /* errs was an absolute error bound on s. We must convert it to an error in terms of ulp(y). Since ulp(y) = 2^(EXP(y)-PREC(y)), we must divide the error by 2^(EXP(y)-PREC(y)), but since we divided also y by 2^w = 2^PREC(y), we must simply divide by 2^EXP(y). */ e = MPFR_GET_EXP (errs) - MPFR_GET_EXP (y); } MPFR_GROUP_CLEAR (group); mpz_clear (s); mpz_clear (t); mpz_clear (u); mpz_clear (m); return e; }