Esempio n. 1
0
static void system_SystickConfig(uint32_t ui32_msInterval)
{
	ROM_SysTickPeriodSet(ROM_SysCtlClockGet() * ui32_msInterval / 1000);
	SysTickIntRegister(&SysTickIntHandle);
	ROM_SysTickIntEnable();
	ROM_SysTickEnable();
}
Esempio n. 2
0
void init()
{
    ROM_FPUEnable();
    ROM_FPULazyStackingEnable();

    ROM_SysCtlClockSet(SYSCTL_SYSDIV_2_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ | SYSCTL_OSC_MAIN);

    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    GPIO_PORTB_DIR_R = 0x00;
    GPIO_PORTB_DEN_R = 0xff;

    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, LED_RED|LED_GREEN|LED_BLUE);

    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    ROM_GPIOPinConfigure(GPIO_PA0_U0RX);
    ROM_GPIOPinConfigure(GPIO_PA1_U0TX);
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
    UARTStdioInit(0);

    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / 1000000);
    ROM_SysTickEnable();
    ROM_SysTickIntEnable();

    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);
    ROM_TimerConfigure(TIMER0_BASE, TIMER_CFG_32_BIT_PER);

    reset();
}
//****************************************************************************
//
// This is the main loop that runs the application.
//
//****************************************************************************
int
main(void)
{
    //
    // Set the clocking to run from the PLL at 50MHz.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Set the system tick to fire 100 times per second.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Pass the USB library our device information, initialize the USB
    // controller and connect the device to the bus.
    //
    g_psCompDevices[0].pvInstance =
        USBDHIDMouseCompositeInit(0, (tUSBDHIDMouseDevice *)&g_sMouseDevice);
    g_psCompDevices[1].pvInstance =
        USBDCDCCompositeInit(0, (tUSBDCDCDevice *)&g_sCDCDevice);

    //
    // Set the USB stack mode to Device mode with VBUS monitoring.
    //
    USBStackModeSet(0, USB_MODE_DEVICE, 0);

    //
    // Pass the device information to the USB library and place the device
    // on the bus.
    //
    USBDCompositeInit(0, &g_sCompDevice, DESCRIPTOR_DATA_SIZE,
                      g_pucDescriptorData);

    //
    // Initialize the mouse and serial devices.
    //
    MouseInit();
    SerialInit();

    //
    // Drop into the main loop.
    //
    while(1)
    {
        //
        // Allow the main mouse routine to run.
        //
        MouseMain();

        //
        // Allow the main serial routine to run.
        //
        SerialMain();
    }
}
Esempio n. 4
0
File: wiring.c Progetto: Osuga/TivaC
void timerInit()
{

#if F_CPU >= 80000000
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_2_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|
                SYSCTL_OSC_MAIN);
#elif F_CPU >= 50000000
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|
                SYSCTL_OSC_MAIN);
#elif F_CPU >= 40000000
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|
                SYSCTL_OSC_MAIN);
#elif F_CPU >= 25000000
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_8|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|
                SYSCTL_OSC_MAIN);
#elif F_CPU >= 16200000
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_1|SYSCTL_USE_OSC|SYSCTL_XTAL_16MHZ|
                SYSCTL_OSC_MAIN);	//NOT PLL
#elif F_CPU >= 16100000
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_1|SYSCTL_USE_OSC|SYSCTL_OSC_INT|
                SYSCTL_OSC_MAIN);	//NOT PLL, INT OSC
#elif F_CPU >= 16000000
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_12_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|
                SYSCTL_OSC_MAIN);
#elif F_CPU >= 10000000
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_20|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|
                SYSCTL_OSC_MAIN);
#elif F_CPU >= 8000000
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_25|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|
                SYSCTL_OSC_MAIN);
#else
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_2_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|
                SYSCTL_OSC_MAIN);
#endif

    //
    //  SysTick is used for delay() and delayMicroseconds()
    //
//	ROM_SysTickPeriodSet(0x00FFFFFF);
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / TICKS_PER_SECOND);
    ROM_SysTickEnable();

    //
    //Initialize Timer5 to be used as time-tracker since beginning of time
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER5); //not tied to launchpad pin
    ROM_TimerConfigure(TIMER5_BASE, TIMER_CFG_PERIODIC_UP);

    ROM_TimerLoadSet(TIMER5_BASE, TIMER_A, ROM_SysCtlClockGet()/1000);

    ROM_IntEnable(INT_TIMER5A);
    ROM_TimerIntEnable(TIMER5_BASE, TIMER_TIMA_TIMEOUT);

    ROM_TimerEnable(TIMER5_BASE, TIMER_A);

    ROM_IntMasterEnable();

}
void initSysTick(void)
{
	ROM_SysTickDisable();
	ROM_SysTickPeriodSet( SYSTICK_PERIOD );

	/* Write 0 to STCURRENT to clear counter */
	*((volatile uint32_t *)NVIC_ST_CURRENT) = 0;

	ROM_SysTickIntEnable();
	ROM_SysTickEnable();
	return;
}
Esempio n. 6
0
//*****************************************************************************
//
// This is the main application entry function.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32TxCount;
    uint32_t ui32RxCount;
    //uint32_t ui32Loop;

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the clocking to run from the PLL at 50MHz
    //
#if 1
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Configure the required pins for USB operation.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTD_BASE, GPIO_PIN_5 | GPIO_PIN_4);
       //ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / 100);

    /* This code taken from: http://e2e.ti.com/support/microcontrollers/tiva_arm/f/908/t/311237.aspx
    */
#else       
#include "hw_nvic.h"
       FlashErase(0x00000000);
       ROM_IntMasterDisable();
       ROM_SysTickIntDisable();
       ROM_SysTickDisable();
       uint32_t ui32SysClock;
       ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);
       ui32SysClock = ROM_SysCtlClockGet();
       ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
       ROM_GPIOPinTypeUSBAnalog(GPIO_PORTD_BASE, GPIO_PIN_4 | GPIO_PIN_5);
       ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / 100);
       HWREG(NVIC_DIS0) = 0xffffffff;
       HWREG(NVIC_DIS1) = 0xffffffff;
       HWREG(NVIC_DIS2) = 0xffffffff;
       HWREG(NVIC_DIS3) = 0xffffffff;
       HWREG(NVIC_DIS4) = 0xffffffff;
       int ui32Addr;
       for(ui32Addr = NVIC_PRI0; ui32Addr <= NVIC_PRI34; ui32Addr+=4)
       {
          HWREG(ui32Addr) = 0;
       }
       HWREG(NVIC_SYS_PRI1) = 0;
       HWREG(NVIC_SYS_PRI2) = 0;
       HWREG(NVIC_SYS_PRI3) = 0;
       ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_USB0);
       ROM_SysCtlPeripheralReset(SYSCTL_PERIPH_USB0);
       ROM_SysCtlUSBPLLEnable();
       ROM_SysCtlDelay(ui32SysClock*2 / 3);
       ROM_IntMasterEnable();
       ROM_UpdateUSB(0);
       while(1)
           {
           }
#endif
#define BOOTLOADER_TEST 0
#if BOOTLOADER_TEST
#include "hw_nvic.h"
    
    //ROM_UpdateUART();
    // May need to do the following here:
    //  0. See if this will cause bootloader to start
    //ROM_FlashErase(0); 
    //ROM_UpdateUSB(0);
    
#define SYSTICKS_PER_SECOND 100
    uint32_t ui32SysClock = ROM_SysCtlClockGet();
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();
    
    //USBDCDTerm(0);
    
    // Disable all interrupts
    ROM_IntMasterDisable();
    ROM_SysTickIntDisable();
    ROM_SysTickDisable();
    HWREG(NVIC_DIS0) = 0xffffffff;
    HWREG(NVIC_DIS1) = 0xffffffff;
    HWREG(NVIC_DIS2) = 0xffffffff;
    HWREG(NVIC_DIS3) = 0xffffffff;
    HWREG(NVIC_DIS4) = 0xffffffff;
       int ui32Addr;
       for(ui32Addr = NVIC_PRI0; ui32Addr <= NVIC_PRI34; ui32Addr+=4)
       {
          HWREG(ui32Addr) = 0;
       }
       HWREG(NVIC_SYS_PRI1) = 0;
       HWREG(NVIC_SYS_PRI2) = 0;
       HWREG(NVIC_SYS_PRI3) = 0;
    
    //  1. Enable USB PLL
    //ROM_SysCtlUSBPLLEnable();
    //  2. Enable USB controller
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_USB0);
    ROM_SysCtlPeripheralReset(SYSCTL_PERIPH_USB0);
    //USBClockEnable(USB0_BASE, 8, USB_CLOCK_INTERNAL);
    //HWREG(USB0_BASE + USB_O_CC) = (8 - 1) | USB_CLOCK_INTERNAL;

    ROM_SysCtlUSBPLLEnable();
    
    //  3. Enable USB D+ D- pins

    //  4. Activate USB DFU
    ROM_SysCtlDelay(ui32SysClock * 2 / 3);
    ROM_IntMasterEnable();  // Re-enable interrupts at NVIC level
    ROM_UpdateUSB(0);
    //  5. Should never get here since update is in progress
#endif // BOOTLOADER_TEST

    //
    // Enable the GPIO port that is used for the on-board LED.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);    // gjs Our board uses GPIOB for LEDs
    // gjs original ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

    //
    // Enable the GPIO pins for the LED (PF2 & PF3).
    //
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTB_BASE, GPIO_PIN_0|GPIO_PIN_1);
    // gjs original ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_3|GPIO_PIN_2);

    //
    // Not configured initially.
    //
    g_bUSBConfigured = false;

    //
    // Enable the UART that we will be redirecting.
    //
    ROM_SysCtlPeripheralEnable(USB_UART_PERIPH);

    //
    // Enable and configure the UART RX and TX pins
    //
    ROM_SysCtlPeripheralEnable(TX_GPIO_PERIPH);
    ROM_SysCtlPeripheralEnable(RX_GPIO_PERIPH);
    ROM_GPIOPinTypeUART(TX_GPIO_BASE, TX_GPIO_PIN);
    ROM_GPIOPinTypeUART(RX_GPIO_BASE, RX_GPIO_PIN);

    //
    // TODO: Add code to configure handshake GPIOs if required.
    //

    //
    // Set the default UART configuration.
    //
    ROM_UARTConfigSetExpClk(USB_UART_BASE, ROM_SysCtlClockGet(),
                            DEFAULT_BIT_RATE, DEFAULT_UART_CONFIG);
    ROM_UARTFIFOLevelSet(USB_UART_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);

    //
    // Configure and enable UART interrupts.
    //
    ROM_UARTIntClear(USB_UART_BASE, ROM_UARTIntStatus(USB_UART_BASE, false));
    ROM_UARTIntEnable(USB_UART_BASE, (UART_INT_OE | UART_INT_BE | UART_INT_PE |
                      UART_INT_FE | UART_INT_RT | UART_INT_TX | UART_INT_RX));

    //
    // Enable the system tick.
    //
#if 0    
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();
#endif
    //
    // Initialize the transmit and receive buffers.
    //
    USBBufferInit(&g_sTxBuffer);
    USBBufferInit(&g_sRxBuffer);

    //
    // Set the USB stack mode to Device mode with VBUS monitoring.
    //
    USBStackModeSet(0, eUSBModeDevice, 0);

    //
    // Pass our device information to the USB library and place the device
    // on the bus.
    //
    USBDCDCInit(0, &g_sCDCDevice);

    //
    // Clear our local byte counters.
    //
    ui32RxCount = 0;
    ui32TxCount = 0;

    //
    // Enable interrupts now that the application is ready to start.
    //
    ROM_IntEnable(USB_UART_INT);

    // Enable FreeRTOS
    mainA(); // FreeRTOS. Will not return
    
#if 0    
    //
    // Main application loop.
    //
    while(1)
    {
        //
        // Have we been asked to update the status display?
        //
        if(g_ui32Flags & COMMAND_STATUS_UPDATE)
        {
            //
            // Clear the command flag
            //
            ROM_IntMasterDisable();
            g_ui32Flags &= ~COMMAND_STATUS_UPDATE;
            ROM_IntMasterEnable();
        }

        //
        // Has there been any transmit traffic since we last checked?
        //
        if(ui32TxCount != g_ui32UARTTxCount)
        {
            //
            // Turn on the Green LED.
            //
            // gjs ROM_UARTCharPutNonBlocking(USB_UART_BASE, 'b');

#if 1
            if (ui32TxCount & 1) {
                GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_0, GPIO_PIN_0);
            } else {
                GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_0, 0);
            }
#else            
            if (1 || g_ui32UARTTxCount & 0x01) {
                GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, GPIO_PIN_3);
            } else {
                //GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, 0);
            }

            //
            // Delay for a bit.
            //
            for(uint32_t ui32Loop = 0; ui32Loop < 150000; ui32Loop++)
            {
            }

            //
            // Turn off the Green LED.
            //
            GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, 0);
#endif            

            //
            // Take a snapshot of the latest transmit count.
            //
            ui32TxCount = g_ui32UARTTxCount;
        }

        //
        // Has there been any receive traffic since we last checked?
        //
        if(ui32RxCount != g_ui32UARTRxCount)
        {
            //
            // Turn on the Blue LED.
            //
#if 1
            if (ui32RxCount & 1) {
                GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_1, GPIO_PIN_1);
            } else {
                GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_1, 0);
            }
#else            
            GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);

            //
            // Delay for a bit.
            //
            for(uint32_t ui32Loop = 0; ui32Loop < 150000; ui32Loop++)
            {
            }

            //
            // Turn off the Blue LED.
            //
            GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);
#endif
            //
            // Take a snapshot of the latest receive count.
            //
            ui32RxCount = g_ui32UARTRxCount;

        }
    }
#endif    
}
Esempio n. 7
0
//*****************************************************************************
//
// This is the main loop that runs the application.
//
//*****************************************************************************
int
main(void)
{
    //
    // Turn on stacking of FPU registers if FPU is used in the ISR.
    //
    FPULazyStackingEnable();

    //
    // Set the clocking to run from the PLL at 40MHz.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_5 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Set the system tick to fire 100 times per second.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Enable the Debug UART.
    //
    ConfigureUART();

    //
    // Print the welcome message to the terminal.
    //
    UARTprintf("\033[2JAir Mouse Application\n");

    //
    // Configure desired interrupt priorities. This makes certain that the DCM
    // is fed data at a consistent rate. Lower numbers equal higher priority.
    //
    ROM_IntPrioritySet(INT_I2C3, 0x00);
    ROM_IntPrioritySet(INT_GPIOB, 0x10);
    ROM_IntPrioritySet(FAULT_SYSTICK, 0x20);
    ROM_IntPrioritySet(INT_UART1, 0x60);
    ROM_IntPrioritySet(INT_UART0, 0x70);
    ROM_IntPrioritySet(INT_WTIMER5B, 0x80);

    //
    // Configure the USB D+ and D- pins.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTD_BASE, GPIO_PIN_5 | GPIO_PIN_4);

    //
    // Pass the USB library our device information, initialize the USB
    // controller and connect the device to the bus.
    //
    USBDHIDMouseCompositeInit(0, &g_sMouseDevice, &g_psCompDevices[0]);
    USBDHIDKeyboardCompositeInit(0, &g_sKeyboardDevice, &g_psCompDevices[1]);

    //
    // Set the USB stack mode to Force Device mode.
    //
    USBStackModeSet(0, eUSBModeForceDevice, 0);

    //
    // Pass the device information to the USB library and place the device
    // on the bus.
    //
    USBDCompositeInit(0, &g_sCompDevice, DESCRIPTOR_DATA_SIZE,
                      g_pui8DescriptorData);

    //
    // User Interface Init
    //
    ButtonsInit();
    RGBInit(0);
    RGBEnable();

    //
    // Initialize the motion sub system.
    //
    MotionInit();

    //
    // Initialize the Radio Systems.
    //
    LPRFInit();

    //
    // Drop into the main loop.
    //
    while(1)
    {

        //
        // Check for and handle timer tick events.
        //
        if(HWREGBITW(&g_ui32Events, USB_TICK_EVENT) == 1)
        {
            //
            // Clear the Tick event flag. Set in SysTick interrupt handler.
            //
            HWREGBITW(&g_ui32Events, USB_TICK_EVENT) = 0;

            //
            // Each tick period handle wired mouse and keyboard.
            //
            if(HWREGBITW(&g_ui32USBFlags, FLAG_CONNECTED) == 1)
            {
                MouseMoveHandler();
                KeyboardMain();
            }
        }

        //
        // Check for LPRF tick events.  LPRF Ticks are slower since UART to
        // RNP is much slower data connection than the USB.
        //
        if(HWREGBITW(&g_ui32Events, LPRF_TICK_EVENT) == 1)
        {
            //
            // Clear the event flag.
            //
            HWREGBITW(&g_ui32Events, LPRF_TICK_EVENT) = 0;

            //
            // Perform the LPRF Main task handling
            //
            LPRFMain();

        }

        //
        // Check for and handle motion events.
        //
        if((HWREGBITW(&g_ui32Events, MOTION_EVENT) == 1) ||
           (HWREGBITW(&g_ui32Events, MOTION_ERROR_EVENT) == 1))
        {
            //
            // Clear the motion event flag. Set in the Motion I2C interrupt
            // handler when an I2C transaction to get sensor data is complete.
            //
            HWREGBITW(&g_ui32Events, MOTION_EVENT) = 0;

            //
            // Process the motion data that has been captured
            //
            MotionMain();
        }
    }
}
//*****************************************************************************
//
// This example demonstrates how to use the uDMA controller to transfer data
// between memory buffers and to and from a peripheral, in this case a UART.
// The uDMA controller is configured to repeatedly transfer a block of data
// from one memory buffer to another.  It is also set up to repeatedly copy a
// block of data from a buffer to the UART output.  The UART data is looped
// back so the same data is received, and the uDMA controlled is configured to
// continuously receive the UART data using ping-pong buffers.
//
// The processor is put to sleep when it is not doing anything, and this allows
// collection of CPU usage data to see how much CPU is being used while the
// data transfers are ongoing.
//
//*****************************************************************************
int
main(void)
{
    static uint32_t ui32PrevSeconds;
    static uint32_t ui32PrevXferCount;
    static uint32_t ui32PrevUARTCount = 0;
    uint32_t ui32XfersCompleted;
    uint32_t ui32BytesTransferred;

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the clocking to run from the PLL at 50 MHz.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Enable peripherals to operate when CPU is in sleep.
    //
    ROM_SysCtlPeripheralClockGating(true);

    //
    // Enable the GPIO port that is used for the on-board LED.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

    //
    // Enable the GPIO pins for the LED (PF2).
    //
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2);

    //
    // Initialize the UART.
    //
    ConfigureUART();

    UARTprintf("\033[2JuDMA Example\n");

    //
    // Show the clock frequency on the display.
    //
    UARTprintf("Tiva C Series @ %u MHz\n\n", ROM_SysCtlClockGet() / 1000000);

    //
    // Show statistics headings.
    //
    UARTprintf("CPU    Memory     UART       Remaining\n");
    UARTprintf("Usage  Transfers  Transfers  Time\n");

    //
    // Configure SysTick to occur 100 times per second, to use as a time
    // reference.  Enable SysTick to generate interrupts.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Initialize the CPU usage measurement routine.
    //
    CPUUsageInit(ROM_SysCtlClockGet(), SYSTICKS_PER_SECOND, 2);

    //
    // Enable the uDMA controller at the system level.  Enable it to continue
    // to run while the processor is in sleep.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);

    //
    // Enable the uDMA controller error interrupt.  This interrupt will occur
    // if there is a bus error during a transfer.
    //
    ROM_IntEnable(INT_UDMAERR);

    //
    // Enable the uDMA controller.
    //
    ROM_uDMAEnable();

    //
    // Point at the control table to use for channel control structures.
    //
    ROM_uDMAControlBaseSet(ui8ControlTable);

    //
    // Initialize the uDMA memory to memory transfers.
    //
    InitSWTransfer();

    //
    // Initialize the uDMA UART transfers.
    //
    InitUART1Transfer();

    //
    // Remember the current SysTick seconds count.
    //
    ui32PrevSeconds = g_ui32Seconds;

    //
    // Remember the current count of memory buffer transfers.
    //
    ui32PrevXferCount = g_ui32MemXferCount;

    //
    // Loop until the button is pressed.  The processor is put to sleep
    // in this loop so that CPU utilization can be measured.
    //
    while(1)
    {
        //
        // Check to see if one second has elapsed.  If so, the make some
        // updates.
        //
        if(g_ui32Seconds != ui32PrevSeconds)
        {
            //
            // Turn on the LED as a heartbeat
            //
            GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);

            //
            // Print a message to the display showing the CPU usage percent.
            // The fractional part of the percent value is ignored.
            //
            UARTprintf("\r%3d%%   ", g_ui32CPUUsage >> 16);

            //
            // Remember the new seconds count.
            //
            ui32PrevSeconds = g_ui32Seconds;

            //
            // Calculate how many memory transfers have occurred since the last
            // second.
            //
            ui32XfersCompleted = g_ui32MemXferCount - ui32PrevXferCount;

            //
            // Remember the new transfer count.
            //
            ui32PrevXferCount = g_ui32MemXferCount;

            //
            // Compute how many bytes were transferred in the memory transfer
            // since the last second.
            //
            ui32BytesTransferred = ui32XfersCompleted * MEM_BUFFER_SIZE * 4;

            //
            // Print a message showing the memory transfer rate.
            //
            if(ui32BytesTransferred >= 100000000)
            {
                UARTprintf("%3d MB/s   ", ui32BytesTransferred / 1000000);
            }
            else if(ui32BytesTransferred >= 10000000)
            {
                UARTprintf("%2d.%01d MB/s  ", ui32BytesTransferred / 1000000,
                           (ui32BytesTransferred % 1000000) / 100000);
            }
            else if(ui32BytesTransferred >= 1000000)
            {
                UARTprintf("%1d.%02d MB/s  ", ui32BytesTransferred / 1000000,
                           (ui32BytesTransferred % 1000000) / 10000);
            }
            else if(ui32BytesTransferred >= 100000)
            {
                UARTprintf("%3d KB/s   ", ui32BytesTransferred / 1000);
            }
            else if(ui32BytesTransferred >= 10000)
            {
                UARTprintf("%2d.%01d KB/s  ", ui32BytesTransferred / 1000,
                           (ui32BytesTransferred % 1000) / 100);
            }
            else if(ui32BytesTransferred >= 1000)
            {
                UARTprintf("%1d.%02d KB/s  ", ui32BytesTransferred / 1000,
                           (ui32BytesTransferred % 1000) / 10);
            }
            else if(ui32BytesTransferred >= 100)
            {
                UARTprintf("%3d B/s    ", ui32BytesTransferred);
            }
            else if(ui32BytesTransferred >= 10)
            {
                UARTprintf("%2d B/s     ", ui32BytesTransferred);
            }
            else
            {
                UARTprintf("%1d B/s      ", ui32BytesTransferred);
            }

            //
            // Calculate how many UART transfers have occurred since the last
            // second.
            //
            ui32XfersCompleted = (g_ui32RxBufACount + g_ui32RxBufBCount -
                                  ui32PrevUARTCount);

            //
            // Remember the new UART transfer count.
            //
            ui32PrevUARTCount = g_ui32RxBufACount + g_ui32RxBufBCount;

            //
            // Compute how many bytes were transferred by the UART.  The number
            // of bytes received is multiplied by 2 so that the TX bytes
            // transferred are also accounted for.
            //
            ui32BytesTransferred = ui32XfersCompleted * UART_RXBUF_SIZE * 2;

            //
            // Print a message showing the UART transfer rate.
            //
            if(ui32BytesTransferred >= 1000000)
            {
                UARTprintf("%1d.%02d MB/s  ", ui32BytesTransferred / 1000000,
                           (ui32BytesTransferred % 1000000) / 10000);
            }
            else if(ui32BytesTransferred >= 100000)
            {
                UARTprintf("%3d KB/s   ", ui32BytesTransferred / 1000);
            }
            else if(ui32BytesTransferred >= 10000)
            {
                UARTprintf("%2d.%01d KB/s  ", ui32BytesTransferred / 1000,
                           (ui32BytesTransferred % 1000) / 100);
            }
            else if(ui32BytesTransferred >= 1000)
            {
                UARTprintf("%1d.%02d KB/s  ", ui32BytesTransferred / 1000,
                           (ui32BytesTransferred % 1000) / 10);
            }
            else if(ui32BytesTransferred >= 100)
            {
                UARTprintf("%3d B/s    ", ui32BytesTransferred);
            }
            else if(ui32BytesTransferred >= 10)
            {
                UARTprintf("%2d B/s     ", ui32BytesTransferred);
            }
            else
            {
                UARTprintf("%1d B/s      ", ui32BytesTransferred);
            }

            //
            // Print a spinning line to make it more apparent that there is
            // something happening.
            //
            UARTprintf("%2ds", 10 - ui32PrevSeconds);

            //
            // Turn off the LED.
            //
            GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);
        }

        //
        // Put the processor to sleep if there is nothing to do.  This allows
        // the CPU usage routine to measure the number of free CPU cycles.
        // If the processor is sleeping a lot, it can be hard to connect to
        // the target with the debugger.
        //
        ROM_SysCtlSleep();

        //
        // See if we have run int32_t enough and exit the loop if so.
        //
        if(g_ui32Seconds >= 10)
        {
            break;
        }
    }
Esempio n. 9
0
//*****************************************************************************
//
// This is the main application entry function.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32TxCount;
    uint32_t ui32RxCount;
    tRectangle sRect;
    char pcBuffer[16];
    uint32_t ui32Fullness;

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the clocking to run from the PLL at 50MHz
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Configure the required pins for USB operation.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);
    ROM_GPIOPinConfigure(GPIO_PG4_USB0EPEN);
    ROM_GPIOPinTypeUSBDigital(GPIO_PORTG_BASE, GPIO_PIN_4);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTL_BASE, GPIO_PIN_6 | GPIO_PIN_7);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Erratum workaround for silicon revision A1.  VBUS must have pull-down.
    //
    if(CLASS_IS_BLIZZARD && REVISION_IS_A1)
    {
        HWREG(GPIO_PORTB_BASE + GPIO_O_PDR) |= GPIO_PIN_1;
    }

    //
    // Not configured initially.
    //
    g_bUSBConfigured = false;

    //
    // Initialize the display driver.
    //
    CFAL96x64x16Init();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sCFAL96x64x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.i16XMin = 0;
    sRect.i16YMin = 0;
    sRect.i16XMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.i16YMax = 9;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_psFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "usb-dev-serial", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 4, 0);

    //
    // Show the various static text elements on the color STN display.
    //
    GrStringDraw(&g_sContext, "Tx #",-1, 0, 12, false);
    GrStringDraw(&g_sContext, "Tx buf", -1, 0, 22, false);
    GrStringDraw(&g_sContext, "Rx #", -1, 0, 32, false);
    GrStringDraw(&g_sContext, "Rx buf", -1, 0, 42, false);
    DrawBufferMeter(&g_sContext, 40, 22);
    DrawBufferMeter(&g_sContext, 40, 42);

    //
    // Enable the UART that we will be redirecting.
    //
    ROM_SysCtlPeripheralEnable(USB_UART_PERIPH);

    //
    // Enable and configure the UART RX and TX pins
    //
    ROM_SysCtlPeripheralEnable(TX_GPIO_PERIPH);
    ROM_SysCtlPeripheralEnable(RX_GPIO_PERIPH);
    ROM_GPIOPinTypeUART(TX_GPIO_BASE, TX_GPIO_PIN);
    ROM_GPIOPinTypeUART(RX_GPIO_BASE, RX_GPIO_PIN);

    //
    // TODO: Add code to configure handshake GPIOs if required.
    //

    //
    // Set the default UART configuration.
    //
    ROM_UARTConfigSetExpClk(USB_UART_BASE, ROM_SysCtlClockGet(),
                            DEFAULT_BIT_RATE, DEFAULT_UART_CONFIG);
    ROM_UARTFIFOLevelSet(USB_UART_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);

    //
    // Configure and enable UART interrupts.
    //
    ROM_UARTIntClear(USB_UART_BASE, ROM_UARTIntStatus(USB_UART_BASE, false));
    ROM_UARTIntEnable(USB_UART_BASE, (UART_INT_OE | UART_INT_BE | UART_INT_PE |
                      UART_INT_FE | UART_INT_RT | UART_INT_TX | UART_INT_RX));

    //
    // Enable the system tick.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Tell the user what we are up to.
    //
    DisplayStatus(&g_sContext, " Configuring... ");

    //
    // Initialize the transmit and receive buffers.
    //
    USBBufferInit(&g_sTxBuffer);
    USBBufferInit(&g_sRxBuffer);

    //
    // Set the USB stack mode to Device mode with VBUS monitoring.
    //
    USBStackModeSet(0, eUSBModeDevice, 0);

    //
    // Pass our device information to the USB library and place the device
    // on the bus.
    //
    USBDCDCInit(0, &g_sCDCDevice);

    //
    // Wait for initial configuration to complete.
    //
    DisplayStatus(&g_sContext, "Waiting for host");

    //
    // Clear our local byte counters.
    //
    ui32RxCount = 0;
    ui32TxCount = 0;

    //
    // Enable interrupts now that the application is ready to start.
    //
    ROM_IntEnable(USB_UART_INT);

    //
    // Main application loop.
    //
    while(1)
    {

        //
        // Have we been asked to update the status display?
        //
        if(g_ui32Flags & COMMAND_STATUS_UPDATE)
        {
            //
            // Clear the command flag
            //
            ROM_IntMasterDisable();
            g_ui32Flags &= ~COMMAND_STATUS_UPDATE;
            ROM_IntMasterEnable();

            DisplayStatus(&g_sContext, g_pcStatus);
        }

        //
        // Has there been any transmit traffic since we last checked?
        //
        if(ui32TxCount != g_ui32UARTTxCount)
        {
            //
            // Take a snapshot of the latest transmit count.
            //
            ui32TxCount = g_ui32UARTTxCount;

            //
            // Update the display of bytes transmitted by the UART.
            //
            usnprintf(pcBuffer, 16, "%d ", ui32TxCount);
            GrStringDraw(&g_sContext, pcBuffer, -1, 40, 12, true);

            //
            // Update the RX buffer fullness. Remember that the buffers are
            // named relative to the USB whereas the status display is from
            // the UART's perspective. The USB's receive buffer is the UART's
            // transmit buffer.
            //
            ui32Fullness = ((USBBufferDataAvailable(&g_sRxBuffer) * 100) /
                          UART_BUFFER_SIZE);

            UpdateBufferMeter(&g_sContext, ui32Fullness, 40, 22);
        }

        //
        // Has there been any receive traffic since we last checked?
        //
        if(ui32RxCount != g_ui32UARTRxCount)
        {
            //
            // Take a snapshot of the latest receive count.
            //
            ui32RxCount = g_ui32UARTRxCount;

            //
            // Update the display of bytes received by the UART.
            //
            usnprintf(pcBuffer, 16, "%d ", ui32RxCount);
            GrStringDraw(&g_sContext, pcBuffer, -1, 40, 32, true);

            //
            // Update the TX buffer fullness. Remember that the buffers are
            // named relative to the USB whereas the status display is from
            // the UART's perspective. The USB's transmit buffer is the UART's
            // receive buffer.
            //
            ui32Fullness = ((USBBufferDataAvailable(&g_sTxBuffer) * 100) /
                          UART_BUFFER_SIZE);

            UpdateBufferMeter(&g_sContext, ui32Fullness, 40, 42);
        }
    }
}
//*****************************************************************************
//
// This is the main application entry function.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32TxCount, ui32RxCount, ui32Fullness, ui32SysClock, ui32PLLRate;
    tRectangle sRect;
    char pcBuffer[16];
#ifdef USE_ULPI
    uint32_t ui32Setting;
#endif

    //
    // Set the system clock to run at 120MHz from the PLL.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

#ifdef USE_ULPI
    //
    // Switch the USB ULPI Pins over.
    //
    USBULPIPinoutSet();

    //
    // Enable USB ULPI with high speed support.
    //
    ui32Setting = USBLIB_FEATURE_ULPI_HS;
    USBOTGFeatureSet(0, USBLIB_FEATURE_USBULPI, &ui32Setting);

    //
    // Setting the PLL frequency to zero tells the USB library to use the
    // external USB clock.
    //
    ui32PLLRate = 0;
#else
    //
    // Save the PLL rate used by this application.
    //
    ui32PLLRate = 480000000;
#endif

    //
    // Enable the system tick.
    //
    ROM_SysTickPeriodSet(ui32SysClock / TICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Not configured initially.
    //
    g_ui32Flags = 0;

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&g_sContext, "usb-dev-serial");

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.i16XMin = 0;
    sRect.i16YMin = 0;
    sRect.i16XMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.i16YMax = 23;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Show the various static text elements on the color STN display.
    //
    GrContextFontSet(&g_sContext, TEXT_FONT);
    GrStringDraw(&g_sContext, "Tx bytes:", -1, 8, 80, false);
    GrStringDraw(&g_sContext, "Tx buffer:", -1, 8, 105, false);
    GrStringDraw(&g_sContext, "Rx bytes:", -1, 8, 160, false);
    GrStringDraw(&g_sContext, "Rx buffer:", -1, 8, 185, false);
    DrawBufferMeter(&g_sContext, 150, 105);
    DrawBufferMeter(&g_sContext, 150, 185);

    //
    // Enable the UART that we will be redirecting.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Change the UART clock to the 16 MHz PIOSC.
    //
    UARTClockSourceSet(UART0_BASE, UART_CLOCK_PIOSC);

    //
    // Set the default UART configuration.
    //
    ROM_UARTConfigSetExpClk(UART0_BASE, UART_CLOCK,
                            DEFAULT_BIT_RATE, DEFAULT_UART_CONFIG);
    ROM_UARTFIFOLevelSet(UART0_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);

    //
    // Configure and enable UART interrupts.
    //
    ROM_UARTIntClear(UART0_BASE, ROM_UARTIntStatus(UART0_BASE, false));
    ROM_UARTIntEnable(UART0_BASE, (UART_INT_OE | UART_INT_BE | UART_INT_PE |
                      UART_INT_FE | UART_INT_RT | UART_INT_TX | UART_INT_RX));

    //
    // Tell the user what we are up to.
    //
    DisplayStatus(&g_sContext, " Configuring USB... ");

    //
    // Initialize the transmit and receive buffers.
    //
    USBBufferInit(&g_sTxBuffer);
    USBBufferInit(&g_sRxBuffer);

    //
    // Set the USB stack mode to Device mode with VBUS monitoring.
    //
    USBStackModeSet(0, eUSBModeDevice, 0);

    //
    // Tell the USB library the CPU clock and the PLL frequency.  This is a
    // new requirement for TM4C129 devices.
    //
    USBDCDFeatureSet(0, USBLIB_FEATURE_CPUCLK, &ui32SysClock);
    USBDCDFeatureSet(0, USBLIB_FEATURE_USBPLL, &ui32PLLRate);

    //
    // Pass our device information to the USB library and place the device
    // on the bus.
    //
    USBDCDCInit(0, (tUSBDCDCDevice *)&g_sCDCDevice);

    //
    // Wait for initial configuration to complete.
    //
    DisplayStatus(&g_sContext, " Waiting for host... ");

    //
    // Clear our local byte counters.
    //
    ui32RxCount = 0;
    ui32TxCount = 0;
    g_ui32UARTTxCount = 0;
    g_ui32UARTRxCount = 0;
#ifdef DEBUG
    g_ui32UARTRxErrors = 0;
#endif

    //
    // Enable interrupts now that the application is ready to start.
    //
    ROM_IntEnable(INT_UART0);

    //
    // Main application loop.
    //
    while(1)
    {
        //
        // Have we been asked to update the status display?
        //
        if(HWREGBITW(&g_ui32Flags, FLAG_STATUS_UPDATE))
        {
            //
            // Clear the command flag
            //
            HWREGBITW(&g_ui32Flags, FLAG_STATUS_UPDATE) = 0;

            DisplayStatus(&g_sContext, g_pcStatus);
        }

        //
        // Has there been any transmit traffic since we last checked?
        //
        if(ui32TxCount != g_ui32UARTTxCount)
        {
            //
            // Take a snapshot of the latest transmit count.
            //
            ui32TxCount = g_ui32UARTTxCount;

            //
            // Update the display of bytes transmitted by the UART.
            //
            usnprintf(pcBuffer, 16, "%d ", ui32TxCount);
            GrStringDraw(&g_sContext, pcBuffer, -1, 150, 80, true);

            //
            // Update the RX buffer fullness. Remember that the buffers are
            // named relative to the USB whereas the status display is from
            // the UART's perspective. The USB's receive buffer is the UART's
            // transmit buffer.
            //
            ui32Fullness = ((USBBufferDataAvailable(&g_sRxBuffer) * 100) /
                          UART_BUFFER_SIZE);

            UpdateBufferMeter(&g_sContext, ui32Fullness, 150, 105);
        }

        //
        // Has there been any receive traffic since we last checked?
        //
        if(ui32RxCount != g_ui32UARTRxCount)
        {
            //
            // Take a snapshot of the latest receive count.
            //
            ui32RxCount = g_ui32UARTRxCount;

            //
            // Update the display of bytes received by the UART.
            //
            usnprintf(pcBuffer, 16, "%d ", ui32RxCount);
            GrStringDraw(&g_sContext, pcBuffer, -1, 150, 160, true);

            //
            // Update the TX buffer fullness. Remember that the buffers are
            // named relative to the USB whereas the status display is from
            // the UART's perspective. The USB's transmit buffer is the UART's
            // receive buffer.
            //
            ui32Fullness = ((USBBufferDataAvailable(&g_sTxBuffer) * 100) /
                          UART_BUFFER_SIZE);

            UpdateBufferMeter(&g_sContext, ui32Fullness, 150, 185);
        }
    }
}
//*****************************************************************************
//
// Main application entry function.
//
//*****************************************************************************
int
main(void)
{
    tBoolean bRetcode;

    //
    // Set the system clock to run at 50MHz from the PLL
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // NB: We don't call PinoutSet() in this testcase since the EM header
    // expansion board doesn't currently have an I2C ID EEPROM.  If we did
    // call PinoutSet() this would configure all the EPI pins for SDRAM and
    // we don't want to do this.
    //
    g_eDaughterType = DAUGHTER_NONE;

    //
    // Enable peripherals required to drive the LCD.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOH);

    //
    // Configure SysTick for a 10Hz interrupt.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / TICKS_PER_SECOND);
    ROM_SysTickEnable();
    ROM_SysTickIntEnable();

    //
    // Initialize the display driver.
    //
    Kitronix320x240x16_SSD2119Init();

    //
    // Initialize the touch screen driver.
    //
    TouchScreenInit();

    //
    // Set the touch screen event handler.
    //
    TouchScreenCallbackSet(WidgetPointerMessage);

    //
    // Add the compile-time defined widgets to the widget tree.
    //
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sHeading);

    //
    // Initialize the status string.
    //
    UpdateStatus(true, "Monitoring...");

    //
    // Paint the widget tree to make sure they all appear on the display.
    //
    WidgetPaint(WIDGET_ROOT);

    //
    // Initialize the SimpliciTI BSP.
    //
    BSP_Init();

    //
    // Set the SimpliciTI device address using the current Ethernet MAC address
    // to ensure something like uniqueness.
    //
    bRetcode = SetSimpliciTIAddress();

    //
    // Did we have a problem with the address?
    //
    if(!bRetcode)
    {
        //
        // Yes - make sure the display is updated then hang the app.
        //
        WidgetMessageQueueProcess();
        while(1)
        {
            //
            // MAC address is not set so hang the app.
            //
        }
    }

    //
    // Initialize the SimpliciTI stack but don't set any receive callback.
    //
    SMPL_Init(0);

    //
    // Start monitoring for alert messages from other devices.  This function
    // doesn't return.
    //
    MonitorForBadNews();
}
//*****************************************************************************
//
// Main application entry function.
//
//*****************************************************************************
int
main(void)
{
    tBoolean bRetcode;
    smplStatus_t eRetcode;
    ioctlScanChan_t sScan;
    freqEntry_t pFreq[NWK_FREQ_TBL_SIZE];
    tBoolean bFirstTimeThrough;
    unsigned long ulLoop;
    uint8_t ucLast;

    //
    // Set the system clock to run at 50MHz from the PLL
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // NB: We don't call PinoutSet() in this testcase since the EM header
    // expansion board doesn't currently have an I2C ID EEPROM.  If we did
    // call PinoutSet() this would configure all the EPI pins for SDRAM and
    // we don't want to do this.
    //
    g_eDaughterType = DAUGHTER_NONE;

    //
    // Enable peripherals required to drive the LCD.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOH);

    //
    // Configure SysTick for a 10Hz interrupt.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / TICKS_PER_SECOND);
    ROM_SysTickEnable();
    ROM_SysTickIntEnable();

    //
    // Initialize the display driver.
    //
    Kitronix320x240x16_SSD2119Init();

    //
    // Initialize the touch screen driver.
    //
    TouchScreenInit();

    //
    // Set the touch screen event handler.
    //
    TouchScreenCallbackSet(WidgetPointerMessage);

    //
    // Add the compile-time defined widgets to the widget tree.
    //
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sHeading);

    //
    // Initialize the status string.
    //
    UpdateStatus("Initializing...");

    //
    // Paint the widget tree to make sure they all appear on the display.
    //
    WidgetPaint(WIDGET_ROOT);

    //
    // Initialize the SimpliciTI BSP.
    //
    BSP_Init();

    //
    // Set the SimpliciTI device address using the current Ethernet MAC address
    // to ensure something like uniqueness.
    //
    bRetcode = SetSimpliciTIAddress();

    //
    // Did we have a problem with the address?
    //
    if(!bRetcode)
    {
        //
        // Yes - make sure the display is updated then hang the app.
        //
        WidgetMessageQueueProcess();
        while(1)
        {
            //
            // MAC address is not set so hang the app.
            //
        }
    }

    //
    // Turn on both our LEDs
    //
    SetLED(1, true);
    SetLED(2, true);

    UpdateStatus("Joining network...");

    //
    // Initialize the SimpliciTI stack but don't set any receive callback.
    //
    while(1)
    {
        eRetcode = SMPL_Init((uint8_t (*)(linkID_t))0);

        if(eRetcode == SMPL_SUCCESS)
        {
            break;
        }

        ToggleLED(1);
        ToggleLED(2);
        SPIN_ABOUT_A_SECOND;
    }

    //
    // Tell the user what's up.
    //
    UpdateStatus("Sniffing...");

    //
    // Set up for our first sniff.
    //
    sScan.freq = pFreq;
    bFirstTimeThrough = true;
    ucLast = 0xFF;

    //
    // Keep sniffing forever.
    //
    while (1)
    {
        //
        // Wait a while.
        //
        SPIN_ABOUT_A_QUARTER_SECOND;

        //
        // Scan for the active channel.
        //
        SMPL_Ioctl(IOCTL_OBJ_FREQ, IOCTL_ACT_SCAN, &sScan);

        //
        // Did we find a signal?
        //
        if (1 == sScan.numChan)
        {
            if (bFirstTimeThrough)
            {
                //
                // Set the initial LED state.
                //
                SetLED(1, false);
                SetLED(2, true);

                //
                // Wait a while.
                //
                for(ulLoop = 0; ulLoop < 15; ulLoop--)
                {
                    //
                    // Toggle both LEDs and wait a bit.
                    //
                    ToggleLED(1);
                    ToggleLED(2);
                    SPIN_ABOUT_A_QUARTER_SECOND;
                }
                bFirstTimeThrough = false;
            }

            //
            // Has the channel changed since the last time we updated the
            // display?
            //
            if(pFreq[0].logicalChan != ucLast)
            {
                //
                // Remember the channel we just detected.
                //
                ucLast = pFreq[0].logicalChan;

                //
                // Tell the user which channel we found to be active.
                //
                UpdateStatus("Active channel is %d.", pFreq[0].logicalChan);

                //
                // Set the "LEDs" to mimic the behavior of the MSP430 versions
                // of this application.
                //
                switch(pFreq[0].logicalChan)
                {
                    case 0:
                    {
                        /* GREEN OFF */
                        /* RED   OFF */
                        SetLED(1, false);
                        SetLED(2, false);
                        break;
                    }

                    case 1:
                    {
                        /* GREEN OFF */
                        /* RED   ON */
                        SetLED(1, false);
                        SetLED(2, true);
                        break;
                    }

                    case 2:
                    {
                        /* GREEN ON */
                        /* RED   OFF */
                        SetLED(1, true);
                        SetLED(2, false);
                        break;
                    }

                    case 3:
                    {
                        /* GREEN ON */
                        /* RED   ON */
                        SetLED(1, true);
                        SetLED(2, true);
                        break;
                    }

                    case 4:
                    {
                        /* blink them both... */
                        SetLED(1, false);
                        SetLED(2, false);
                        SPIN_ABOUT_A_QUARTER_SECOND;
                        SetLED(1, true);
                        SetLED(2, true);
                        SPIN_ABOUT_A_QUARTER_SECOND;
                        SetLED(1, false);
                        SetLED(2, false);
                    }
                }
            }
        }
    }
}
//*****************************************************************************
//
// This is the main application entry function.
//
//*****************************************************************************
int
main(void)
{
    unsigned long ulTxCount;
    unsigned long ulRxCount;

    //
    // Set the clocking to run from the PLL at 50MHz
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Enable the UART.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    GPIOPinConfigure(GPIO_PA0_U0RX);
    GPIOPinConfigure(GPIO_PA1_U0TX);
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
    UARTStdioInit(0);
    UARTprintf("\033[2JBulk device application\n");

    //
    // Not configured initially.
    //
    g_bUSBConfigured = false;

    //
    // Enable the system tick.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Initialize the transmit and receive buffers.
    //
    USBBufferInit(&g_sTxBuffer);
    USBBufferInit(&g_sRxBuffer);

    //
    // Set the USB stack mode to Device mode with VBUS monitoring.
    //
    USBStackModeSet(0, USB_MODE_DEVICE, 0);

    //
    // Pass our device information to the USB library and place the device
    // on the bus.
    //
    USBDBulkInit(0, &g_sBulkDevice);

    //
    // Wait for initial configuration to complete.
    //
    UARTprintf("Waiting for host...\n");

    //
    // Clear our local byte counters.
    //
    ulRxCount = 0;
    ulTxCount = 0;

    //
    // Main application loop.
    //
    while(1)
    {
        //
        // See if any data has been transferred.
        //
        if((ulTxCount != g_ulTxCount) || (ulRxCount != g_ulRxCount))
        {
            //
            // Take a snapshot of the latest transmit and receive counts.
            //
            ulTxCount = g_ulTxCount;
            ulRxCount = g_ulRxCount;

            //
            // Update the display of bytes transferred.
            //
            UARTprintf("\rTx: %d  Rx: %d", ulTxCount, ulRxCount);
        }
    }
}
Esempio n. 14
0
//*****************************************************************************
//
// This is the main loop that runs the application.
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;
    uint_fast32_t ui32Retcode;

    //
    // Set the system clock to run at 50MHz from the PLL.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Configure SysTick for a 100Hz interrupt.  The FatFs driver wants a 10 ms
    // tick.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / 100);
    ROM_SysTickEnable();
    ROM_SysTickIntEnable();

    //
    // Configure and enable uDMA
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
    SysCtlDelay(10);
    ROM_uDMAControlBaseSet(&sDMAControlTable[0]);
    ROM_uDMAEnable();

    //
    // Initialize the display driver.
    //
    CFAL96x64x16Init();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sCFAL96x64x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.i16XMin = 0;
    sRect.i16YMin = 0;
    sRect.i16XMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.i16YMax = DISPLAY_BANNER_HEIGHT - 1;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_psFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "usb-dev-msc", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 5, 0);

    //
    // Initialize the idle timeout and reset all flags.
    //
    g_ui32IdleTimeout = 0;
    g_ui32Flags = 0;

    //
    // Initialize the state to idle.
    //
    g_eMSCState = MSC_DEV_DISCONNECTED;

    //
    // Draw the status bar and set it to idle.
    //
    UpdateStatus("Disconnected", 1);

    //
    // Enable the USB controller.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_USB0);

    //
    // Set the USB pins to be controlled by the USB controller.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);
    ROM_GPIOPinConfigure(GPIO_PG4_USB0EPEN);
    ROM_GPIOPinTypeUSBDigital(GPIO_PORTG_BASE, GPIO_PIN_4);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTL_BASE, GPIO_PIN_6 | GPIO_PIN_7);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Set the USB stack mode to Device mode with VBUS monitoring.
    //
    USBStackModeSet(0, eUSBModeDevice, 0);

    //
    // Pass our device information to the USB library and place the device
    // on the bus.
    //
    USBDMSCInit(0, &g_sMSCDevice);

    //
    // Determine whether or not an SDCard is installed.  If not, print a
    // warning and have the user install one and restart.
    //
    ui32Retcode = disk_initialize(0);

    GrContextFontSet(&g_sContext, g_psFontFixed6x8);
    if(ui32Retcode != RES_OK) {
        GrStringDrawCentered(&g_sContext, "No SDCard Found", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 16, 0);
        GrStringDrawCentered(&g_sContext, "Please insert",
                             -1, GrContextDpyWidthGet(&g_sContext) / 2, 26, 0);
        GrStringDrawCentered(&g_sContext, "a card and",
                             -1, GrContextDpyWidthGet(&g_sContext) / 2, 36, 0);
        GrStringDrawCentered(&g_sContext, "reset the board.",
                             -1, GrContextDpyWidthGet(&g_sContext) / 2, 46, 0);
    } else {
        GrStringDrawCentered(&g_sContext, "SDCard Found",  -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 30, 0);
    }

    //
    // Drop into the main loop.
    //
    while(1) {
        switch(g_eMSCState) {
            case MSC_DEV_READ: {
                //
                // Update the screen if necessary.
                //
                if(g_ui32Flags & FLAG_UPDATE_STATUS) {
                    UpdateStatus("Reading", 0);
                    g_ui32Flags &= ~FLAG_UPDATE_STATUS;
                }

                //
                // If there is no activity then return to the idle state.
                //
                if(g_ui32IdleTimeout == 0) {
                    UpdateStatus("Idle", 0);
                    g_eMSCState = MSC_DEV_IDLE;
                }

                break;
            }
            case MSC_DEV_WRITE: {
                //
                // Update the screen if necessary.
                //
                if(g_ui32Flags & FLAG_UPDATE_STATUS) {
                    UpdateStatus("Writing", 0);
                    g_ui32Flags &= ~FLAG_UPDATE_STATUS;
                }

                //
                // If there is no activity then return to the idle state.
                //
                if(g_ui32IdleTimeout == 0) {
                    UpdateStatus("Idle", 0);
                    g_eMSCState = MSC_DEV_IDLE;
                }
                break;
            }
            case MSC_DEV_DISCONNECTED: {
                //
                // Update the screen if necessary.
                //
                if(g_ui32Flags & FLAG_UPDATE_STATUS) {
                    UpdateStatus("Disconnected", 0);
                    g_ui32Flags &= ~FLAG_UPDATE_STATUS;
                }
                break;
            }
            case MSC_DEV_IDLE: {
                break;
            }
            default: {
                break;
            }
        }
    }
}
//*****************************************************************************
//
// This is the main example program.  It checks to see that the interrupts are
// processed in the correct order when they have identical priorities,
// increasing priorities, and decreasing priorities.  This exercises interrupt
// preemption and tail chaining.
//
//*****************************************************************************
int
main(void)
{
    unsigned long ulError;

    //
    // Set the clocking to run directly from the crystal.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Enable the peripherals used by this example.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

    //
    // Initialize the UART.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    GPIOPinConfigure(GPIO_PA0_U0RX);
    GPIOPinConfigure(GPIO_PA1_U0TX);
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
    UARTStdioInit(0);
    UARTprintf("\033[2JInterrupts\n");

    //
    // Configure the F0, D1 and D2 to be outputs to indicate entry/exit of one
    // of the interrupt handlers.
    //
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTB_BASE,
                              GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2);
    ROM_GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2, 0);

    //
    // Set up and enable the SysTick timer.  It will be used as a reference
    // for delay loops in the interrupt handlers.  The SysTick timer period
    // will be set up for one second.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet());
    ROM_SysTickEnable();

    //
    // Reset the error indicator.
    //
    ulError = 0;

    //
    // Enable interrupts to the processor.
    //
    ROM_IntMasterEnable();

    //
    // Enable the interrupts.
    //
    ROM_IntEnable(INT_GPIOA);
    ROM_IntEnable(INT_GPIOB);
    ROM_IntEnable(INT_GPIOC);

    //
    // Indicate that the equal interrupt priority test is beginning.
    //
    UARTprintf("\nEqual Priority\n");

    //
    // Set the interrupt priorities so they are all equal.
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x00);
    ROM_IntPrioritySet(INT_GPIOB, 0x00);
    ROM_IntPrioritySet(INT_GPIOC, 0x00);

    //
    // Reset the interrupt flags.
    //
    g_ulGPIOa = 0;
    g_ulGPIOb = 0;
    g_ulGPIOc = 0;
    g_ulIndex = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the LCD.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ulGPIOa != 3) || (g_ulGPIOb != 2) || (g_ulGPIOc != 1))
    {
        ulError |= 1;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Indicate that the decreasing interrupt priority test is beginning.
    //
    UARTprintf("\nDecreasing Priority\n");

    //
    // Set the interrupt priorities so that they are decreasing (i.e. C > B >
    // A).
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x80);
    ROM_IntPrioritySet(INT_GPIOB, 0x40);
    ROM_IntPrioritySet(INT_GPIOC, 0x00);

    //
    // Reset the interrupt flags.
    //
    g_ulGPIOa = 0;
    g_ulGPIOb = 0;
    g_ulGPIOc = 0;
    g_ulIndex = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the UART.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ulGPIOa != 3) || (g_ulGPIOb != 2) || (g_ulGPIOc != 1))
    {
        ulError |= 2;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Indicate that the increasing interrupt priority test is beginning.
    //
    UARTprintf("\nIncreasing Priority\n");

    //
    // Set the interrupt priorities so that they are increasing (i.e. C < B <
    // A).
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x00);
    ROM_IntPrioritySet(INT_GPIOB, 0x40);
    ROM_IntPrioritySet(INT_GPIOC, 0x80);

    //
    // Reset the interrupt flags.
    //
    g_ulGPIOa = 0;
    g_ulGPIOb = 0;
    g_ulGPIOc = 0;
    g_ulIndex = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the UART.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ulGPIOa != 1) || (g_ulGPIOb != 2) || (g_ulGPIOc != 3))
    {
        ulError |= 4;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Disable the interrupts.
    //
    ROM_IntDisable(INT_GPIOA);
    ROM_IntDisable(INT_GPIOB);
    ROM_IntDisable(INT_GPIOC);

    //
    // Disable interrupts to the processor.
    //
    ROM_IntMasterDisable();

    //
    // Print out the test results.
    //
    UARTprintf("\nInterrupt Priority =: %s  >: %s  <: %s\n",
               (ulError & 1) ? "Fail" : "Pass",
               (ulError & 2) ? "Fail" : "Pass",
               (ulError & 4) ? "Fail" : "Pass");

    //
    // Finished.
    //
    while(1)
    {
    }
}
Esempio n. 16
0
//*****************************************************************************
//
// This is the main application entry function.
//
//*****************************************************************************
int
main(void)
{
    volatile uint32_t ui32Loop;
    uint32_t ui32TxCount;
    uint32_t ui32RxCount;

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the clocking to run from the PLL at 50MHz
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Enable the GPIO port that is used for the on-board LED.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

    //
    // Enable the GPIO pins for the LED (PF2 & PF3).
    //
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_3 | GPIO_PIN_2);

    //
    // Open UART0 and show the application name on the UART.
    //
    ConfigureUART();

    UARTprintf("\033[2JTiva C Series USB bulk device example\n");
    UARTprintf("---------------------------------\n\n");

    //
    // Not configured initially.
    //
    g_bUSBConfigured = false;

    //
    // Enable the GPIO peripheral used for USB, and configure the USB
    // pins.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTD_BASE, GPIO_PIN_4 | GPIO_PIN_5);

    //
    // Enable the system tick.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Tell the user what we are up to.
    //
    UARTprintf("Configuring USB\n");

    //
    // Initialize the transmit and receive buffers.
    //
    USBBufferInit(&g_sTxBuffer);
    USBBufferInit(&g_sRxBuffer);

    //
    // Set the USB stack mode to Device mode with VBUS monitoring.
    //
    USBStackModeSet(0, eUSBModeForceDevice, 0);

    //
    // Pass our device information to the USB library and place the device
    // on the bus.
    //
    USBDBulkInit(0, &g_sBulkDevice);

    //
    // Wait for initial configuration to complete.
    //
    UARTprintf("Waiting for host...\n");

    //
    // Clear our local byte counters.
    //
    ui32RxCount = 0;
    ui32TxCount = 0;

    //
    // Main application loop.
    //
    while(1)
    {
        //
        // See if any data has been transferred.
        //
        if((ui32TxCount != g_ui32TxCount) || (ui32RxCount != g_ui32RxCount))
        {
            //
            // Has there been any transmit traffic since we last checked?
            //
            if(ui32TxCount != g_ui32TxCount)
            {
                //
                // Turn on the Green LED.
                //
                GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, GPIO_PIN_3);

                //
                // Delay for a bit.
                //
                for(ui32Loop = 0; ui32Loop < 150000; ui32Loop++)
                {
                }

                //
                // Turn off the Green LED.
                //
                GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, 0);

                //
                // Take a snapshot of the latest transmit count.
                //
                ui32TxCount = g_ui32TxCount;
            }

            //
            // Has there been any receive traffic since we last checked?
            //
            if(ui32RxCount != g_ui32RxCount)
            {
                //
                // Turn on the Blue LED.
                //
                GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);

                //
                // Delay for a bit.
                //
                for(ui32Loop = 0; ui32Loop < 150000; ui32Loop++)
                {
                }

                //
                // Turn off the Blue LED.
                //
                GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);

                //
                // Take a snapshot of the latest receive count.
                //
                ui32RxCount = g_ui32RxCount;
            }

            //
            // Update the display of bytes transferred.
            //
            UARTprintf("\rTx: %d  Rx: %d", ui32TxCount, ui32RxCount);
        }
    }
}
//*****************************************************************************
//
// The program main function.  It performs initialization, then runs a loop to
// process USB activities and operate the user interface.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32DriveTimeout;

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the system clock to run at 50MHz from the PLL.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Configure the required pins for USB operation.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);
    ROM_GPIOPinConfigure(GPIO_PG4_USB0EPEN);
    ROM_GPIOPinTypeUSBDigital(GPIO_PORTG_BASE, GPIO_PIN_4);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTL_BASE, GPIO_PIN_6 | GPIO_PIN_7);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Configure SysTick for a 100Hz interrupt.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / TICKS_PER_SECOND);
    ROM_SysTickEnable();
    ROM_SysTickIntEnable();

    //
    // Enable the uDMA controller and set up the control table base.
    // The uDMA controller is used by the USB library.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
    ROM_uDMAEnable();
    ROM_uDMAControlBaseSet(g_psDMAControlTable);

    //
    // Enable Interrupts
    //
    ROM_IntMasterEnable();

    //
    // Initialize the display driver.
    //
    CFAL96x64x16Init();

    //
    // Initialize the buttons driver.
    //
    ButtonsInit();

    //
    // Initialize two offscreen displays and assign the palette.  These
    // buffers are used by the slide menu widget to allow animation effects.
    //
    GrOffScreen4BPPInit(&g_sOffscreenDisplayA, g_pui8OffscreenBufA, 96, 64);
    GrOffScreen4BPPPaletteSet(&g_sOffscreenDisplayA, g_pui32Palette, 0,
                              NUM_PALETTE_ENTRIES);
    GrOffScreen4BPPInit(&g_sOffscreenDisplayB, g_pui8OffscreenBufB, 96, 64);
    GrOffScreen4BPPPaletteSet(&g_sOffscreenDisplayB, g_pui32Palette, 0,
                              NUM_PALETTE_ENTRIES);

    //
    // Show an initial status screen
    //
    g_pcStatusLines[0] = "Waiting";
    g_pcStatusLines[1] = "for device";
    ShowStatusScreen(g_pcStatusLines, 2);

    //
    // Add the compile-time defined widgets to the widget tree.
    //
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sFileMenuWidget);

    //
    // Initially wait for device connection.
    //
    g_eState = STATE_NO_DEVICE;

    //
    // Initialize the USB stack for host mode.
    //
    USBStackModeSet(0, eUSBModeHost, 0);

    //
    // Register the host class drivers.
    //
    USBHCDRegisterDrivers(0, g_ppHostClassDrivers, g_ui32NumHostClassDrivers);

    //
    // Open an instance of the mass storage class driver.
    //
    g_psMSCInstance = USBHMSCDriveOpen(0, MSCCallback);

    //
    // Initialize the drive timeout.
    //
    ui32DriveTimeout = USBMSC_DRIVE_RETRY;

    //
    // Initialize the power configuration. This sets the power enable signal
    // to be active high and does not enable the power fault.
    //
    USBHCDPowerConfigInit(0, USBHCD_VBUS_AUTO_HIGH | USBHCD_VBUS_FILTER);

    //
    // Initialize the USB controller for host operation.
    //
    USBHCDInit(0, g_pui8HCDPool, HCD_MEMORY_SIZE);

    //
    // Initialize the file system.
    //
    FileInit();

    //
    // Enter an infinite loop to run the user interface and process USB
    // events.
    //
    while(1)
    {
        uint32_t ui32LastTickCount = 0;

        //
        // Call the USB stack to keep it running.
        //
        USBHCDMain();

        //
        // Process any messages in the widget message queue.  This keeps the
        // display UI running.
        //
        WidgetMessageQueueProcess();

        //
        // Take action based on the application state.
        //
        switch(g_eState)
        {
            //
            // A device has enumerated.
            //
            case STATE_DEVICE_ENUM:
            {
                //
                // Check to see if the device is ready.  If not then stay
                // in this state and we will check it again on the next pass.
                //
                if(USBHMSCDriveReady(g_psMSCInstance) != 0)
                {
                    //
                    // Wait about 500ms before attempting to check if the
                    // device is ready again.
                    //
                    ROM_SysCtlDelay(ROM_SysCtlClockGet()/(3));

                    //
                    // Decrement the retry count.
                    //
                    ui32DriveTimeout--;

                    //
                    // If the timeout is hit then go to the
                    // STATE_TIMEOUT_DEVICE state.
                    //
                    if(ui32DriveTimeout == 0)
                    {
                        g_eState = STATE_TIMEOUT_DEVICE;
                    }

                    break;
                }

                //
                // Getting here means the device is ready.
                // Reset the CWD to the root directory.
                //
                g_pcCwdBuf[0] = '/';
                g_pcCwdBuf[1] = 0;

                //
                // Set the initial directory level to the root
                //
                g_ui32Level = 0;

                //
                // We need to reset the indexes of the root menu to 0, so that
                // it will start at the top of the file list, and reset the
                // slide menu widget to start with the root menu.
                //
                g_psFileMenus[g_ui32Level].ui32CenterIndex = 0;
                g_psFileMenus[g_ui32Level].ui32FocusIndex = 0;
                SlideMenuMenuSet(&g_sFileMenuWidget, &g_psFileMenus[g_ui32Level]);

                //
                // Initiate a directory change to the root.  This will
                // populate a menu structure representing the root directory.
                //
                if(ProcessDirChange("/", g_ui32Level))
                {
                    //
                    // If there were no errors reported, we are ready for
                    // MSC operation.
                    //
                    g_eState = STATE_DEVICE_READY;

                    //
                    // Set the Device Present flag.
                    //
                    g_ui32Flags = FLAGS_DEVICE_PRESENT;

                    //
                    // Request a repaint so the file menu will be shown
                    //
                    WidgetPaint(WIDGET_ROOT);
                }

                break;
            }

            //
            // If there is no device then just wait for one.
            //
            case STATE_NO_DEVICE:
            {
                if(g_ui32Flags == FLAGS_DEVICE_PRESENT)
                {
                    //
                    // Show waiting message on screen
                    //
                    g_pcStatusLines[0] = "Waiting";
                    g_pcStatusLines[1] = "for device";
                    ShowStatusScreen(g_pcStatusLines, 2);

                    //
                    // Clear the Device Present flag.
                    //
                    g_ui32Flags &= ~FLAGS_DEVICE_PRESENT;
                }
                break;
            }

            //
            // An unknown device was connected.
            //
            case STATE_UNKNOWN_DEVICE:
            {
                //
                // If this is a new device then change the status.
                //
                if((g_ui32Flags & FLAGS_DEVICE_PRESENT) == 0)
                {
                    //
                    // Clear the screen and indicate that an unknown device
                    // is present.
                    //
                    g_pcStatusLines[0] = "Unknown";
                    g_pcStatusLines[1] = "device";
                    ShowStatusScreen(g_pcStatusLines, 2);
                }

                //
                // Set the Device Present flag.
                //
                g_ui32Flags = FLAGS_DEVICE_PRESENT;

                break;
            }

            //
            // The connected mass storage device is not reporting ready.
            //
            case STATE_TIMEOUT_DEVICE:
            {
                //
                // If this is the first time in this state then print a
                // message.
                //
                if((g_ui32Flags & FLAGS_DEVICE_PRESENT) == 0)
                {
                    //
                    //
                    // Clear the screen and indicate that an unknown device
                    // is present.
                    //
                    g_pcStatusLines[0] = "Device";
                    g_pcStatusLines[1] = "Timeout";
                    ShowStatusScreen(g_pcStatusLines, 2);
                }

                //
                // Set the Device Present flag.
                //
                g_ui32Flags = FLAGS_DEVICE_PRESENT;

                break;
            }

            //
            // The device is ready and in use.
            //
            case STATE_DEVICE_READY:
            {
                //
                // Process occurrence of timer tick.  Check for user input
                // once each tick.
                //
                if(g_ui32SysTickCount != ui32LastTickCount)
                {
                    uint8_t ui8ButtonState;
                    uint8_t ui8ButtonChanged;

                    ui32LastTickCount = g_ui32SysTickCount;

                    //
                    // Get the current debounced state of the buttons.
                    //
                    ui8ButtonState = ButtonsPoll(&ui8ButtonChanged, 0);

                    //
                    // If select button or right button is pressed, then we
                    // are trying to descend into another directory
                    //
                    if(BUTTON_PRESSED(SELECT_BUTTON,
                                      ui8ButtonState, ui8ButtonChanged) ||
                       BUTTON_PRESSED(RIGHT_BUTTON,
                                      ui8ButtonState, ui8ButtonChanged))
                    {
                        uint32_t ui32NewLevel;
                        uint32_t ui32ItemIdx;
                        char *pcItemName;

                        //
                        // Get a pointer to the current menu for this CWD.
                        //
                        tSlideMenu *psMenu = &g_psFileMenus[g_ui32Level];

                        //
                        // Get the highlighted index in the current file list.
                        // This is the currently highlighted file or dir
                        // on the display.  Then get the name of the file at
                        // this index.
                        //
                        ui32ItemIdx = SlideMenuFocusItemGet(psMenu);
                        pcItemName = psMenu->psSlideMenuItems[ui32ItemIdx].pcText;

                        //
                        // Make sure we are not yet past the maximum tree
                        // depth.
                        //
                        if(g_ui32Level < MAX_SUBDIR_DEPTH)
                        {
                            //
                            // Potential new level is one greater than the
                            // current level.
                            //
                            ui32NewLevel = g_ui32Level + 1;

                            //
                            // Process the directory change to the new
                            // directory.  This function will populate a menu
                            // structure with the files and subdirs in the new
                            // directory.
                            //
                            if(ProcessDirChange(pcItemName, ui32NewLevel))
                            {
                                //
                                // If the change was successful, then update
                                // the level.
                                //
                                g_ui32Level = ui32NewLevel;

                                //
                                // Now that all the prep is done, send the
                                // KEY_RIGHT message to the widget and it will
                                // "slide" from the previous file list to the
                                // new file list of the CWD.
                                //
                                SendWidgetKeyMessage(WIDGET_MSG_KEY_RIGHT);

                            }
                        }
                    }

                    //
                    // If the UP button is pressed, just pass it to the widget
                    // which will handle scrolling the list of files.
                    //
                    if(BUTTON_PRESSED(UP_BUTTON, ui8ButtonState, ui8ButtonChanged))
                    {
                        SendWidgetKeyMessage(WIDGET_MSG_KEY_UP);
                    }

                    //
                    // If the DOWN button is pressed, just pass it to the widget
                    // which will handle scrolling the list of files.
                    //
                    if(BUTTON_PRESSED(DOWN_BUTTON, ui8ButtonState, ui8ButtonChanged))
                    {
                        SendWidgetKeyMessage(WIDGET_MSG_KEY_DOWN);
                    }

                    //
                    // If the LEFT button is pressed, then we are attempting
                    // to go up a level in the file system.
                    //
                    if(BUTTON_PRESSED(LEFT_BUTTON, ui8ButtonState, ui8ButtonChanged))
                    {
                        uint32_t ui32NewLevel;

                        //
                        // Make sure we are not already at the top of the
                        // directory tree (at root).
                        //
                        if(g_ui32Level)
                        {
                            //
                            // Potential new level is one less than the
                            // current level.
                            //
                            ui32NewLevel = g_ui32Level - 1;

                            //
                            // Process the directory change to the new
                            // directory.  This function will populate a menu
                            // structure with the files and subdirs in the new
                            // directory.
                            //
                            if(ProcessDirChange("..", ui32NewLevel))
                            {
                                //
                                // If the change was successful, then update
                                // the level.
                                //
                                g_ui32Level = ui32NewLevel;

                                //
                                // Now that all the prep is done, send the
                                // KEY_LEFT message to the widget and it will
                                // "slide" from the previous file list to the
                                // new file list of the CWD.
                                //
                                SendWidgetKeyMessage(WIDGET_MSG_KEY_LEFT);
                            }
                        }
                    }
                }
                break;
            }
            //
            // Something has caused a power fault.
            //
            case STATE_POWER_FAULT:
            {
                //
                // Clear the screen and show a power fault indication.
                //
                g_pcStatusLines[0] = "Power";
                g_pcStatusLines[1] = "fault";
                ShowStatusScreen(g_pcStatusLines, 2);
                break;
            }

            default:
            {
                break;
            }
        }
    }
}
Esempio n. 18
0
//*****************************************************************************
//
// This is the main application entry function.
//
//*****************************************************************************
int
main(void)
{

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the clocking to run from the PLL at 50MHz
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Enable the GPIO port that is used for the on-board LED.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

    //
    // Enable the GPIO pins for the LED (PF2 & PF3).
    //
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_3 | GPIO_PIN_2 | GPIO_PIN_1);

    //
    // Open UART0 and show the application name on the UART.
    //
    ConfigureUART();

    UARTprintf("\033[2JTiva C Series USB bulk device example\n");
    UARTprintf("---------------------------------\n\n");

    //
    // Not configured initially.
    //
    g_bUSBConfigured = false;

    //
    // Enable the GPIO peripheral used for USB, and configure the USB
    // pins.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTD_BASE, GPIO_PIN_4 | GPIO_PIN_5);

    //
    // Enable the system tick.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Tell the user what we are up to.
    //
    UARTprintf("Configuring USB\n");

    //
    // Initialize the transmit and receive buffers.
    //
    USBBufferInit(&g_sTxBuffer);
    USBBufferInit(&g_sRxBuffer);

    //
    // Set the USB stack mode to Device mode with VBUS monitoring.
    //
    USBStackModeSet(0, eUSBModeForceDevice, 0);

    //
    // Pass our device information to the USB library and place the device
    // on the bus.
    //
    myBulk=USBDBulkInit(0, &g_sBulkDevice);

    //
    // Wait for initial configuration to complete.
    //
    UARTprintf("Waiting for host...\n");

    //
    // Clear our local byte counters.
    //
	while(!isUSB_ready);
	adc_cofig();
    //
    // Main application loop.
    //
    while(1)
    {	
		int readVal;
		if(txReady){
			adc_capture();
			((int*)myOutBuffer)[0]=adc_getData();
			readVal=((int*)myOutBuffer)[0];
			UARTprintf("adc = %d\n",readVal);
			txReady=0;
			USBDBulkPacketWrite(myBulk,myOutBuffer,4,true);
		}
    }
}
Esempio n. 19
0
//*****************************************************************************
//
// This is the main example program.  It checks to see that the interrupts are
// processed in the correct order when they have identical priorities,
// increasing priorities, and decreasing priorities.  This exercises interrupt
// preemption and tail chaining.
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;
    uint_fast8_t ui8Error;

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the clocking to run directly from the crystal.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Enable the peripherals used by this example.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

    //
    // Initialize the display driver.
    //
    CFAL96x64x16Init();

    //
    // Initialize the graphics context and find the middle X coordinate.
    //
    GrContextInit(&g_sContext, &g_sCFAL96x64x16);

    //
    // Fill the top part of the screen with blue to create the banner.
    //
    sRect.i16XMin = 0;
    sRect.i16YMin = 0;
    sRect.i16XMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.i16YMax = 9;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Change foreground for white text.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_psFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "interrupts", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 4, 0);
    GrContextFontSet(&g_sContext, g_psFontFixed6x8);

    //
    // Put the status header text on the display.
    //
    GrStringDraw(&g_sContext, "Active:", -1, 6, 32, 0);
    GrStringDraw(&g_sContext, "Pending:", -1, 0, 44, 0);

    //
    // Configure the PB0-PB2 to be outputs to indicate entry/exit of one
    // of the interrupt handlers.
    //
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTD_BASE, GPIO_PIN_0 | GPIO_PIN_1 |
                                               GPIO_PIN_3);
    ROM_GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2, 0);

    //
    // Set up and enable the SysTick timer.  It will be used as a reference
    // for delay loops in the interrupt handlers.  The SysTick timer period
    // will be set up for one second.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet());
    ROM_SysTickEnable();

    //
    // Reset the error indicator.
    //
    ui8Error = 0;

    //
    // Enable interrupts to the processor.
    //
    ROM_IntMasterEnable();

    //
    // Enable the interrupts.
    //
    ROM_IntEnable(INT_GPIOA);
    ROM_IntEnable(INT_GPIOB);
    ROM_IntEnable(INT_GPIOC);

    //
    // Indicate that the equal interrupt priority test is beginning.
    //
    GrStringDrawCentered(&g_sContext, "Equal Pri", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 20, 1);

    //
    // Set the interrupt priorities so they are all equal.
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x00);
    ROM_IntPrioritySet(INT_GPIOB, 0x00);
    ROM_IntPrioritySet(INT_GPIOC, 0x00);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the LCD.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 3) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 1))
    {
        ui8Error |= 1;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Indicate that the decreasing interrupt priority test is beginning.
    //
    GrStringDrawCentered(&g_sContext, " Decreasing Pri ", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 20, 1);

    //
    // Set the interrupt priorities so that they are decreasing (i.e. C > B >
    // A).
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x80);
    ROM_IntPrioritySet(INT_GPIOB, 0x40);
    ROM_IntPrioritySet(INT_GPIOC, 0x00);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the CSTN.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 3) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 1))
    {
        ui8Error |= 2;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Indicate that the increasing interrupt priority test is beginning.
    //
    GrStringDrawCentered(&g_sContext, " Increasing Pri ", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 20, 1);

    //
    // Set the interrupt priorities so that they are increasing (i.e. C < B <
    // A).
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x00);
    ROM_IntPrioritySet(INT_GPIOB, 0x40);
    ROM_IntPrioritySet(INT_GPIOC, 0x80);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the CSTN.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 1) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 3))
    {
        ui8Error |= 4;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Disable the interrupts.
    //
    ROM_IntDisable(INT_GPIOA);
    ROM_IntDisable(INT_GPIOB);
    ROM_IntDisable(INT_GPIOC);

    //
    // Disable interrupts to the processor.
    //
    ROM_IntMasterDisable();

    //
    // Print out results if error occurred.
    //
    if(ui8Error)
    {
        GrStringDraw(&g_sContext, "Equal: P        ", -1, 0, 32, 1);
        GrStringDraw(&g_sContext, "  Inc: P        ", -1, 0, 44, 1);
        GrStringDraw(&g_sContext, "  Dec: P        ", -1, 0, 56, 1);
        if(ui8Error & 1)
        {
            GrStringDraw(&g_sContext, "F ", -1, 42, 32, 1);
        }
        if(ui8Error & 2)
        {
            GrStringDraw(&g_sContext, "F ", -1, 42, 44, 1);
        }
        if(ui8Error & 4)
        {
            GrStringDraw(&g_sContext, "F ", -1, 42, 56, 1);
        }
    }
    else
    {
        GrStringDrawCentered(&g_sContext, "    Success!    ", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 20, 1);
    }

    //
    // Flush the display.
    //
    GrFlush(&g_sContext);

    //
    // Loop forever.
    //
    while(1)
    {
    }
}
//*****************************************************************************
//
// Main application entry function.
//
//*****************************************************************************
int
main(void)
{
    tBoolean bSuccess, bRetcode;
    unsigned char pucMsg[2];
    unsigned char ucTid;
    unsigned char ucDelay;
    unsigned long ulLastRxCount, ulLastTxCount;
    smplStatus_t eRetcode;

    //
    // Set the system clock to run at 50MHz from the PLL
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // NB: We don't call PinoutSet() in this testcase since the EM header
    // expansion board doesn't currently have an I2C ID EEPROM.  If we did
    // call PinoutSet() this would configure all the EPI pins for SDRAM and
    // we don't want to do this.
    //
    g_eDaughterType = DAUGHTER_NONE;

    //
    // Enable peripherals required to drive the LCD.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOH);

    //
    // Configure SysTick for a 10Hz interrupt.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / TICKS_PER_SECOND);
    ROM_SysTickEnable();
    ROM_SysTickIntEnable();

    //
    // Initialize the display driver.
    //
    Kitronix320x240x16_SSD2119Init();

    //
    // Initialize the touch screen driver.
    //
    TouchScreenInit();

    //
    // Set the touch screen event handler.
    //
    TouchScreenCallbackSet(WidgetPointerMessage);

    //
    // Add the compile-time defined widgets to the widget tree.
    //
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sHeading);

    //
    // Initialize the status string.
    //
    UpdateStatus(true, "Please choose the operating mode.");

    //
    // Paint the widget tree to make sure they all appear on the display.
    //
    WidgetPaint(WIDGET_ROOT);

    //
    // Initialize the SimpliciTI BSP.
    //
    BSP_Init();

    //
    // Set the SimpliciTI device address using the current Ethernet MAC address
    // to ensure something like uniqueness.
    //
    bRetcode = SetSimpliciTIAddress();
    if(!bRetcode)
    {
        //
        // The board does not have a MAC address configured so we can't set
        // the SimpliciTI device address (which we derive from the MAC address).
        //
        while(1);
    }

    //
    // Initialize the SimpliciTI stack and supply our receive callback
    // function pointer.
    //
    SMPL_Init(RxCallback);

    //
    // Initialize our message ID, initial inter-message delay and packet
    // counters.
    //
    ucTid = 0;
    ucDelay = 0;
    ulLastRxCount = 0;
    ulLastTxCount = 0;

    //
    // Fall into the command line processing loop.
    //
    while (1)
    {
        //
        // Process any messages from or for the widgets.
        //
        WidgetMessageQueueProcess();

        //
        // Check to see if we've been told to do anything.
        //
        if(g_ulCommandFlags)
        {
            //
            // Has the mode been set?  If so, set up the display to show the
            // "LEDs" and then start communication.
            //
            if(HWREGBITW(&g_ulCommandFlags, COMMAND_MODE_SET))
            {
                //
                // Clear the bit now that we have seen it.
                //
                HWREGBITW(&g_ulCommandFlags, COMMAND_MODE_SET) = 0;

                //
                // Remove the buttons and replace them with the LEDs then
                // repaint the display.
                //
                WidgetRemove((tWidget *)&g_sBtnContainer);
                WidgetAdd((tWidget *)&g_sBackground,
                          (tWidget *)&g_sLEDContainer);
                WidgetPaint((tWidget *)&g_sBackground);

                //
                // Now call the function that initiates communication in
                // the desired mode.  Note that these functions will not return
                // until communication is established or an error occurs.
                //
                if(g_ulMode == MODE_TALKER)
                {
                    bSuccess = LinkTo();
                }
                else
                {
                    bSuccess = LinkFrom();
                }

                //
                // If we were unsuccessfull, go back to the mode selection
                // display.
                //
                if(!bSuccess)
                {
                    //
                    // Remove the LEDs and show the buttons again.
                    //
                    WidgetRemove((tWidget *)&g_sLEDContainer);
                    WidgetAdd((tWidget *)&g_sBackground,
                              (tWidget *)&g_sBtnContainer);
                    WidgetPaint((tWidget *)&g_sBackground);

                    //
                    // Tell the user what happened.
                    //
                    UpdateStatus(false, "Error establishing communication!");
                    UpdateStatus(true, "Please choose the operating mode.");

                    //
                    // Remember that we don't have an operating mode chosen.
                    //
                    g_ulMode = MODE_UNDEFINED;
                }
            }

            //
            // Have we been asked to toggle the first "LED"?
            //
            if(HWREGBITW(&g_ulCommandFlags, COMMAND_LED1_TOGGLE))
            {
                //
                // Clear the bit now that we have seen it.
                //
                HWREGBITW(&g_ulCommandFlags, COMMAND_LED1_TOGGLE) = 0;

                //
                // Toggle the LED.
                //
                ToggleLED(1);
            }

            //
            // Have we been asked to toggle the second "LED"?
            //
            if(HWREGBITW(&g_ulCommandFlags, COMMAND_LED2_TOGGLE))
            {
                //
                // Clear the bit now that we have seen it.
                //
                HWREGBITW(&g_ulCommandFlags, COMMAND_LED2_TOGGLE) = 0;

                //
                // Toggle the LED.
                //
                ToggleLED(2);
            }

            //
            // Have we been asked to send a packet back to our peer?  This
            // command is only ever sent to the main loop when we are running
            // in listener mode (LinkListen).
            //
            if(HWREGBITW(&g_ulCommandFlags, COMMAND_SEND_REPLY))
            {
                //
                // Clear the bit now that we have seen it.
                //
                HWREGBITW(&g_ulCommandFlags, COMMAND_SEND_REPLY) = 0;

                //
                // Create the message.  The first byte tells the receiver to
                // toggle LED1 and the second is a sequence counter.
                //
                pucMsg[0] = 1;
                pucMsg[1] = ++ucTid;
                eRetcode = SMPL_Send(sLinkID, pucMsg, 2);

                //
                // Update our transmit counter if we transmitted the packet
                // successfully.
                //
                if(eRetcode == SMPL_SUCCESS)
                {
                    g_ulTxCount++;
                }
                else
                {
                    UpdateStatus(false, "TX error %s (%d)", MapSMPLStatus(eRetcode),
                                 eRetcode);
                }
            }
        }

        //
        // If we are the talker (LinkTo mode), check to see if it's time to
        // send another packet to our peer.
        //
        if((g_ulMode == MODE_TALKER) &&
           (g_ulSysTickCount >= g_ulNextPacketTick))
        {
            //
            // Create the message.  The first byte tells the receiver to
            // toggle LED1 and the second is a sequence counter.
            //
            pucMsg[0] = 1;
            pucMsg[1] = ++ucTid;
            eRetcode = SMPL_Send(sLinkID, pucMsg, 2);

            //
            // Update our transmit counter if we transmitted the packet
            // correctly.
            //
            if(eRetcode == SMPL_SUCCESS)
            {
                g_ulTxCount++;
            }
            else
            {
                UpdateStatus(false, "TX error %s (%d)", MapSMPLStatus(eRetcode),
                             eRetcode);
            }

            //
            // Set the delay before the next message.
            //
#ifndef USE_2_SECOND_DELAY
            //
            // Set the delay before the next message.  We increase this from 1
            // second to 4 seconds then cycle back to 1.
            //
            ucDelay = (ucDelay == 4) ? 1 : (ucDelay + 1);
#else
            //
            // Wait 2 seconds before sending the next message.
            //
            ucDelay = 2;
#endif

            //
            // Calculate the system tick count when our delay has completed.
            // This algorithm will generate a spurious packet every 13.7 years
            // since I don't handle the rollover case in the comparison above
            // but I'm pretty sure you will forgive me for this oversight.
            //
            g_ulNextPacketTick = g_ulSysTickCount +
                                 (TICKS_PER_SECOND * ucDelay);
        }

        //
        // If either the transmit or receive packet count changed, update
        // the status on the display.
        //
        if((g_ulRxCount != ulLastRxCount) || (g_ulTxCount != ulLastTxCount))
        {
            ulLastTxCount = g_ulTxCount;
            ulLastRxCount = g_ulRxCount;
            UpdateStatus(false, "Received %d pkts, sent %d (%d)",
                         ulLastRxCount, ulLastTxCount);
        }
    }
}
//*****************************************************************************
//
// This is the main application entry function.
//
//*****************************************************************************
int
main(void)
{
    unsigned long ulTxCount;
    unsigned long ulRxCount;
    tRectangle sRect;
    char pcBuffer[16];

    //
    // Set the clocking to run from the PLL at 50MHz
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_8MHZ);

#ifdef DEBUG
    //
    // Configure the relevant pins such that UART0 owns them.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Open UART0 for debug output.
    //
    UARTStdioInit(0);
#endif

    //
    // Not configured initially.
    //
    g_bUSBConfigured = false;

    //
    // Initialize the display driver.
    //
    Formike128x128x16Init();

    //
    // Turn on the backlight.
    //
    Formike128x128x16BacklightOn();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sFormike128x128x16);

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = 14;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_pFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "usb_dev_bulk", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 7, 0);

    //
    // Show the various static text elements on the color STN display.
    //
    GrContextFontSet(&g_sContext, TEXT_FONT);
    GrStringDraw(&g_sContext, "Tx bytes:", -1, 8, 70, false);
    GrStringDraw(&g_sContext, "Rx bytes:", -1, 8, 90, false);

    //
    // Configure the USB mux on the board to put us in device mode.  We pull
    // the relevant pin high to do this.
    //
    ROM_SysCtlPeripheralEnable(USB_MUX_GPIO_PERIPH);
    ROM_GPIOPinTypeGPIOOutput(USB_MUX_GPIO_BASE, USB_MUX_GPIO_PIN);
    ROM_GPIOPinWrite(USB_MUX_GPIO_BASE, USB_MUX_GPIO_PIN, USB_MUX_SEL_DEVICE);

    //
    // Enable the system tick.
    //
    ROM_SysTickPeriodSet(SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Show the application name on the display and UART output.
    //
    DEBUG_PRINT("\nStellaris USB bulk device example\n");
    DEBUG_PRINT("---------------------------------\n\n");

    //
    // Tell the user what we are up to.
    //
    DisplayStatus(&g_sContext, "Configuring USB...");

    //
    // Initialize the transmit and receive buffers.
    //
    USBBufferInit((tUSBBuffer *)&g_sTxBuffer);
    USBBufferInit((tUSBBuffer *)&g_sRxBuffer);

    //
    // Pass our device information to the USB library and place the device
    // on the bus.
    //
    USBDBulkInit(0, (tUSBDBulkDevice *)&g_sBulkDevice);

    //
    // Wait for initial configuration to complete.
    //
    DisplayStatus(&g_sContext, "Waiting for host...");

    //
    // Clear our local byte counters.
    //
    ulRxCount = 0;
    ulTxCount = 0;

    //
    // Main application loop.
    //
    while(1)
    {

        //
        // Have we been asked to update the status display?
        //
        if(g_ulFlags & COMMAND_STATUS_UPDATE)
        {
            //
            // Clear the command flag
            //
            g_ulFlags &= ~COMMAND_STATUS_UPDATE;
            DisplayStatus(&g_sContext, g_pcStatus);
        }

        //
        // Has there been any transmit traffic since we last checked?
        //
        if(ulTxCount != g_ulTxCount)
        {
            //
            // Take a snapshot of the latest transmit count.
            //
            ulTxCount = g_ulTxCount;

            //
            // Update the display of bytes transmitted by the UART.
            //
            usnprintf(pcBuffer, 16, "%d", ulTxCount);
            GrStringDraw(&g_sContext, pcBuffer, -1, 70, 70, true);
        }

        //
        // Has there been any receive traffic since we last checked?
        //
        if(ulRxCount != g_ulRxCount)
        {
            //
            // Take a snapshot of the latest receive count.
            //
            ulRxCount = g_ulRxCount;

            //
            // Update the display of bytes received by the UART.
            //
            usnprintf(pcBuffer, 16, "%d", ulRxCount);
            GrStringDraw(&g_sContext, pcBuffer, -1, 70, 90, true);
        }
    }
}
Esempio n. 22
0
//*****************************************************************************
//
// This example demonstrates how to use the uDMA controller to transfer data
// between memory buffers and to and from a peripheral, in this case a UART.
// The uDMA controller is configured to repeatedly transfer a block of data
// from one memory buffer to another.  It is also set up to repeatedly copy a
// block of data from a buffer to the UART output.  The UART data is looped
// back so the same data is received, and the uDMA controlled is configured to
// continuously receive the UART data using ping-pong buffers.
//
// The processor is put to sleep when it is not doing anything, and this allows
// collection of CPU usage data to see how much CPU is being used while the
// data transfers are ongoing.
//
//*****************************************************************************
int
main(void)
{
    static unsigned long ulPrevSeconds;
    static unsigned long ulPrevXferCount;
    static unsigned long ulPrevUARTCount = 0;
    static char cStrBuf[40];
    tRectangle sRect;
    unsigned long ulCenterX;
    unsigned long ulXfersCompleted;
    unsigned long ulBytesTransferred;

    //
    // Set the clocking to run from the PLL at 50 MHz.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Set the device pinout appropriately for this board.
    //
    PinoutSet();

    //
    // Enable peripherals to operate when CPU is in sleep.
    //
    ROM_SysCtlPeripheralClockGating(true);

    //
    // Initialize the display driver.
    //
    Kitronix320x240x16_SSD2119Init();

    //
    // Initialize the graphics context and find the middle X coordinate.
    //
    GrContextInit(&g_sContext, &g_sKitronix320x240x16_SSD2119);

    //
    // Get the center X coordinate of the screen, since it is used a lot.
    //
    ulCenterX = GrContextDpyWidthGet(&g_sContext) / 2;

    //
    // Fill the top 15 rows of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = 23;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_pFontCm20);
    GrStringDrawCentered(&g_sContext, "udma-demo", -1, ulCenterX, 11, 0);

    //
    // Show the clock frequency on the display.
    //
    GrContextFontSet(&g_sContext, g_pFontCmss18b);
    usnprintf(cStrBuf, sizeof(cStrBuf), "Stellaris @ %u MHz",
              SysCtlClockGet() / 1000000);
    GrStringDrawCentered(&g_sContext, cStrBuf, -1, ulCenterX, 40, 0);

    //
    // Show static text and field labels on the display.
    //
    GrStringDrawCentered(&g_sContext, "uDMA Mem Transfers", -1,
                         ulCenterX, 62, 0);
    GrStringDrawCentered(&g_sContext, "uDMA UART Transfers", -1,
                         ulCenterX, 84, 0);

    //
    // Configure SysTick to occur 100 times per second, to use as a time
    // reference.  Enable SysTick to generate interrupts.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Initialize the CPU usage measurement routine.
    //
    CPUUsageInit(SysCtlClockGet(), SYSTICKS_PER_SECOND, 2);

    //
    // Enable the uDMA controller at the system level.  Enable it to continue
    // to run while the processor is in sleep.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);

    //
    // Enable the uDMA controller error interrupt.  This interrupt will occur
    // if there is a bus error during a transfer.
    //
    ROM_IntEnable(INT_UDMAERR);

    //
    // Enable the uDMA controller.
    //
    ROM_uDMAEnable();

    //
    // Point at the control table to use for channel control structures.
    //
    ROM_uDMAControlBaseSet(ucControlTable);

    //
    // Initialize the uDMA memory to memory transfers.
    //
    InitSWTransfer();

    //
    // Initialize the uDMA UART transfers.
    //
    InitUART0Transfer();

    //
    // Remember the current SysTick seconds count.
    //
    ulPrevSeconds = g_ulSeconds;

    //
    // Remember the current count of memory buffer transfers.
    //
    ulPrevXferCount = g_ulMemXferCount;

    //
    // Loop until the button is pressed.  The processor is put to sleep
    // in this loop so that CPU utilization can be measured.
    //
    while(1)
    {
        //
        // Check to see if one second has elapsed.  If so, the make some
        // updates.
        //
        if(g_ulSeconds != ulPrevSeconds)
        {
            //
            // Print a message to the display showing the CPU usage percent.
            // The fractional part of the percent value is ignored.
            //
            usnprintf(cStrBuf, sizeof(cStrBuf), "CPU utilization %2u%%",
                      g_ulCPUUsage >> 16);
            GrStringDrawCentered(&g_sContext, cStrBuf, -1, ulCenterX, 160, 1);

            //
            // Tell the user how many seconds we have to go before ending.
            //
            usnprintf(cStrBuf, sizeof(cStrBuf), " Test ends in %d seconds ",
                      10 - g_ulSeconds);
            GrStringDrawCentered(&g_sContext, cStrBuf, -1, ulCenterX, 120, 1);

            //
            // Remember the new seconds count.
            //
            ulPrevSeconds = g_ulSeconds;

            //
            // Calculate how many memory transfers have occurred since the last
            // second.
            //
            ulXfersCompleted = g_ulMemXferCount - ulPrevXferCount;

            //
            // Remember the new transfer count.
            //
            ulPrevXferCount = g_ulMemXferCount;

            //
            // Compute how many bytes were transferred in the memory transfer
            // since the last second.
            //
            ulBytesTransferred = ulXfersCompleted * MEM_BUFFER_SIZE * 4;

            //
            // Print a message to the display showing the memory transfer rate.
            //
            usnprintf(cStrBuf, sizeof(cStrBuf), " %8u Bytes/Sec ",
                      ulBytesTransferred);
            GrStringDrawCentered(&g_sContext, cStrBuf, -1, ulCenterX, 182, 1);

            //
            // Calculate how many UART transfers have occurred since the last
            // second.
            //
            ulXfersCompleted = (g_ulRxBufACount + g_ulRxBufBCount -
                                ulPrevUARTCount);

            //
            // Remember the new UART transfer count.
            //
            ulPrevUARTCount = g_ulRxBufACount + g_ulRxBufBCount;

            //
            // Compute how many bytes were transferred by the UART.  The number
            // of bytes received is multiplied by 2 so that the TX bytes
            // transferred are also accounted for.
            //
            ulBytesTransferred = ulXfersCompleted * UART_RXBUF_SIZE * 2;

            //
            // Print a message to the display showing the UART transfer rate.
            //
            usnprintf(cStrBuf, sizeof(cStrBuf), " %8u Bytes/Sec ",
                      ulBytesTransferred);
            GrStringDrawCentered(&g_sContext, cStrBuf, -1, ulCenterX, 204, 1);
        }

        //
        // Put the processor to sleep if there is nothing to do.  This allows
        // the CPU usage routine to measure the number of free CPU cycles.
        // If the processor is sleeping a lot, it can be hard to connect to
        // the target with the debugger.
        //
        SysCtlSleep();

        //
        // See if we have run long enough and exit the loop if so.
        //
        if(g_ulSeconds >= 10)
        {
            break;
        }
    }
Esempio n. 23
0
//*****************************************************************************
//
// Main 'C' Language entry point.
//
//*****************************************************************************
int
main(void)
{
    float fTemperature, fPressure, fAltitude;
    int32_t i32IntegerPart;
    int32_t i32FractionPart;

    //
    // Setup the system clock to run at 40 MHz from PLL with crystal reference
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
                       SYSCTL_OSC_MAIN);

    //
    // Initialize the UART.
    //
    ConfigureUART();

    //
    // Print the welcome message to the terminal.
    //
    UARTprintf("\033[2JBMP180 Example\n");

    //
    // Set the color to a white approximation.
    //
    g_pui32Colors[RED] = 0x8000;
    g_pui32Colors[BLUE] = 0x8000;
    g_pui32Colors[GREEN] = 0x8000;

    //
    // Initialize RGB driver. Use a default intensity and blink rate.
    //
    RGBInit(0);
    RGBColorSet(g_pui32Colors);
    RGBIntensitySet(0.5f);
    RGBEnable();

    //
    // The I2C3 peripheral must be enabled before use.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

    //
    // Configure the pin muxing for I2C3 functions on port D0 and D1.
    // This step is not necessary if your part does not support pin muxing.
    //
    ROM_GPIOPinConfigure(GPIO_PD0_I2C3SCL);
    ROM_GPIOPinConfigure(GPIO_PD1_I2C3SDA);

    //
    // Select the I2C function for these pins.  This function will also
    // configure the GPIO pins pins for I2C operation, setting them to
    // open-drain operation with weak pull-ups.  Consult the data sheet
    // to see which functions are allocated per pin.
    //
    GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
    ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);

    //
    // Initialize the GPIO for the LED.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1);
    ROM_GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0x00);

    //
    // Enable interrupts to the processor.
    //
    ROM_IntMasterEnable();

    //
    // Initialize the I2C3 peripheral.
    //
    I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
             ROM_SysCtlClockGet());

    //
    // Initialize the BMP180.
    //
    BMP180Init(&g_sBMP180Inst, &g_sI2CInst, BMP180_I2C_ADDRESS,
               BMP180AppCallback, &g_sBMP180Inst);

    //
    // Wait for initialization callback to indicate reset request is complete.
    //
    while(g_vui8DataFlag == 0)
    {
        //
        // Wait for I2C Transactions to complete.
        //
    }

    //
    // Reset the data ready flag
    //
    g_vui8DataFlag = 0;

    //
    // Enable the system ticks at 10 Hz.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / (10 * 3));
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // After all the init and config we start blink the LED
    //
    RGBBlinkRateSet(1.0f);

    //
    // Begin the data collection and printing.  Loop Forever.
    //
    while(1)
    {
        //
        // Read the data from the BMP180 over I2C.  This command starts a
        // temperature measurement.  Then polls until temperature is ready.
        // Then automatically starts a pressure measurement and polls for that
        // to complete. When both measurement are complete and in the local
        // buffer then the application callback is called from the I2C
        // interrupt context.  Polling is done on I2C interrupts allowing
        // processor to continue doing other tasks as needed.
        //
        BMP180DataRead(&g_sBMP180Inst, BMP180AppCallback, &g_sBMP180Inst);
        while(g_vui8DataFlag == 0)
        {
            //
            // Wait for the new data set to be available.
            //
        }

        //
        // Reset the data ready flag.
        //
        g_vui8DataFlag = 0;

        //
        // Get a local copy of the latest temperature data in float format.
        //
        BMP180DataTemperatureGetFloat(&g_sBMP180Inst, &fTemperature);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fTemperature;
        i32FractionPart =(int32_t) (fTemperature * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print temperature with three digits of decimal precision.
        //
        UARTprintf("Temperature %3d.%03d\t\t", i32IntegerPart, i32FractionPart);

        //
        // Get a local copy of the latest air pressure data in float format.
        //
        BMP180DataPressureGetFloat(&g_sBMP180Inst, &fPressure);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fPressure;
        i32FractionPart =(int32_t) (fPressure * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print Pressure with three digits of decimal precision.
        //
        UARTprintf("Pressure %3d.%03d\t\t", i32IntegerPart, i32FractionPart);

        //
        // Calculate the altitude.
        //
        fAltitude = 44330.0f * (1.0f - powf(fPressure / 101325.0f,
                                            1.0f / 5.255f));

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fAltitude;
        i32FractionPart =(int32_t) (fAltitude * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print altitude with three digits of decimal precision.
        //
        UARTprintf("Altitude %3d.%03d", i32IntegerPart, i32FractionPart);

        //
        // Print new line.
        //
        UARTprintf("\n");

        //
        // Delay to keep printing speed reasonable. About 100 milliseconds.
        //
        ROM_SysCtlDelay(ROM_SysCtlClockGet() / (10 * 3));

    }//while end
}
Esempio n. 24
0
//*****************************************************************************
//
// Compute and display a sine wave.
//
//*****************************************************************************
int
main(void)
{
    uint_fast16_t ui16ItemCount = 0;
    uint32_t ui32LastTickCount = 0;

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the clocking to run directly at 50 MHz.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
                       SYSCTL_OSC_MAIN);

    //
    // Configure SysTick to generate a periodic time tick interrupt.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / TICKS_PER_SECOND);
    ROM_SysTickEnable();
    ROM_SysTickIntEnable();

    //
    // Initialize the display driver.
    //
    CFAL96x64x16Init();

    //
    // Initialize an offscreen display and assign the palette.  This offscreen
    // buffer is needed by the strip chart widget.
    //
    GrOffScreen4BPPInit(&g_sOffscreenDisplay, g_pui8OffscreenBuf, 96, 64);
    GrOffScreen4BPPPaletteSet(&g_sOffscreenDisplay, g_pui32Palette, 0,
                              NUM_PALETTE_ENTRIES);

    //
    // Set the data series buffer pointer to point at the storage where the
    // series data points will be stored.
    //
    g_sSeries.pvData = g_i8SeriesData;

    //
    // Add the series to the strip chart
    //
    StripChartSeriesAdd(&g_sStripChart, &g_sSeries);

    //
    // Add the strip chart to the widget tree.
    //
    WidgetAdd(WIDGET_ROOT, &g_sStripChart.sBase);

    //
    // Enter a loop to continuously calculate a sine wave.
    //
    while(1)
    {
        float fElapsedTime;
        float fRadians;
        float fSine;

        //
        // Wait for the next timer tick.
        //
        while(ui32LastTickCount == g_ui32TickCount)
        {
        }
        ui32LastTickCount = g_ui32TickCount;

        //
        // Preparing to add a new data point to the strip chart ...
        // If the number count of items in the strip chart has reached the
        // maximum value, then the data points need to "slide down" in the
        // buffer so new data can be added at the end.
        //
        if(ui16ItemCount == SERIES_LENGTH)
        {
            memmove(&g_i8SeriesData[0], &g_i8SeriesData[1], SERIES_LENGTH - 1);
        }

        //
        // Otherwise, the series data buffer is less than full so just
        // increment the count of data points.
        //
        else
        {
            //
            // Increment the number of items that have been added to the strip
            // chart series data buffer.
            //
            ui16ItemCount++;

            //
            // Since the count of data items has changed, it must be updated in
            // the data series.
            //
            g_sSeries.ui16NumItems = ui16ItemCount;
        }

        //
        // Compute the elapsed time in decimal seconds, in floating point
        // format.
        //
        fElapsedTime = (float)g_ui32TickCount * FSECONDS_PER_TICK;

        //
        // Convert the time to radians.
        //
        fRadians = fElapsedTime * 2.0 * M_PI;

        //
        // Adjust the period of the wave.  This will give us a wave period
        // of 4 seconds, or 0.25 Hz.  This number was chosen arbitrarily to
        // provide a nice looking wave on the display.
        //
        fRadians /= 4.0;

        //
        // Compute the sine.  Multiply by 0.5 to reduce the amplitude.
        //
        fSine = sinf(fRadians) * 0.5;

        //
        // Finally, save the sine value into the last location in the series
        // data point buffer.  Convert the sine amplitude to display pixels.
        // (Amplitude 1 = 32 pixels)
        //
        g_i8SeriesData[ui16ItemCount - 1] = (int8_t)(fSine * 32.0);

        //
        // Now that a new data point has been added to the series, advance
        // the strip chart.
        //
        StripChartAdvance(&g_sStripChart, 1);

        //
        // Request a repaint and run the widget processing queue.
        //
        WidgetPaint(WIDGET_ROOT);
        WidgetMessageQueueProcess();
    }
}
//*****************************************************************************
//
// This is the main example program.  It checks to see that the interrupts are
// processed in the correct order when they have identical priorities,
// increasing priorities, and decreasing priorities.  This exercises interrupt
// preemption and tail chaining.
//
//*****************************************************************************
int
main(void)
{
    uint_fast8_t ui8Error;
    uint32_t ui32SysClock;

    //
    // Run from the PLL at 120 MHz.
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 120000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&g_sContext, "interrupts");

    //
    // Put the status header text on the display.
    //
    GrContextFontSet(&g_sContext, g_psFontCm20);
    GrStringDrawCentered(&g_sContext, "Active:      Pending:     ", -1,
                 GrContextDpyWidthGet(&g_sContext) / 2, 150, 0);

    //
    // Configure the B3, L1 and L0 to be outputs to indicate entry/exit of one
    // of the interrupt handlers.
    //
    GPIOPinTypeGPIOOutput(GPIO_A_BASE, GPIO_A_PIN);
    GPIOPinTypeGPIOOutput(GPIO_B_BASE, GPIO_B_PIN);
    GPIOPinTypeGPIOOutput(GPIO_C_BASE, GPIO_C_PIN);
    GPIOPinWrite(GPIO_A_BASE, GPIO_A_PIN, 0);
    GPIOPinWrite(GPIO_B_BASE, GPIO_B_PIN, 0);
    GPIOPinWrite(GPIO_C_BASE, GPIO_C_PIN, 0);

    //
    // Set up and enable the SysTick timer.  It will be used as a reference
    // for delay loops in the interrupt handlers.  The SysTick timer period
    // will be set up for 100 times per second.
    //
    ROM_SysTickPeriodSet(ui32SysClock / 100);
    ROM_SysTickEnable();

    //
    // Reset the error indicator.
    //
    ui8Error = 0;

    //
    // Enable interrupts to the processor.
    //
    ROM_IntMasterEnable();

    //
    // Enable the interrupts.
    //
    ROM_IntEnable(INT_GPIOA);
    ROM_IntEnable(INT_GPIOB);
    ROM_IntEnable(INT_GPIOC);

    //
    // Indicate that the equal interrupt priority test is beginning.
    //
    GrStringDrawCentered(&g_sContext, "Equal Priority", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 60, 1);

    //
    // Set the interrupt priorities so they are all equal.
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x00);
    ROM_IntPrioritySet(INT_GPIOB, 0x00);
    ROM_IntPrioritySet(INT_GPIOC, 0x00);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the LCD.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 3) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 1))
    {
        ui8Error |= 1;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Indicate that the decreasing interrupt priority test is beginning.
    //
    GrStringDrawCentered(&g_sContext, " Decreasing Priority ", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 60, 1);

    //
    // Set the interrupt priorities so that they are decreasing (i.e. C > B >
    // A).
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x80);
    ROM_IntPrioritySet(INT_GPIOB, 0x40);
    ROM_IntPrioritySet(INT_GPIOC, 0x00);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the display.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 3) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 1))
    {
        ui8Error |= 2;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Indicate that the increasing interrupt priority test is beginning.
    //
    GrStringDrawCentered(&g_sContext, " Increasing Priority ", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 60, 1);

    //
    // Set the interrupt priorities so that they are increasing (i.e. C < B <
    // A).
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x00);
    ROM_IntPrioritySet(INT_GPIOB, 0x40);
    ROM_IntPrioritySet(INT_GPIOC, 0x80);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the display.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 1) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 3))
    {
        ui8Error |= 4;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Disable the interrupts.
    //
    ROM_IntDisable(INT_GPIOA);
    ROM_IntDisable(INT_GPIOB);
    ROM_IntDisable(INT_GPIOC);

    //
    // Disable interrupts to the processor.
    //
    ROM_IntMasterDisable();

    //
    // Print out the test results.
    //
    GrStringDrawCentered(&g_sContext, " Interrupt Priority ", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 60, 1);
    if(ui8Error)
    {
        GrStringDrawCentered(&g_sContext, "     Equal: P  Inc: P  Dec: P     ",
                             -1, GrContextDpyWidthGet(&g_sContext) / 2, 150, 1);
        if(ui8Error & 1)
        {
            GrStringDrawCentered(&g_sContext, " F ", -1, 113, 150, 1);
        }
        if(ui8Error & 2)
        {
            GrStringDrawCentered(&g_sContext, " F ", -1, 187, 150, 1);
        }
        if(ui8Error & 4)
        {
            GrStringDrawCentered(&g_sContext, " F ", -1, 272, 150, 1);
        }
    }
    else
    {
        GrStringDrawCentered(&g_sContext, "           Success!           ", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 150, 1);
    }

    //
    // Flush the display.
    //
    GrFlush(&g_sContext);

    //
    // Loop forever.
    //
    while(1)
    {
    }
}
Esempio n. 26
0
//*****************************************************************************
//
// This is the main example program.  It checks to see that the interrupts are
// processed in the correct order when they have identical priorities,
// increasing priorities, and decreasing priorities.  This exercises interrupt
// preemption and tail chaining.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32Error;

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the clocking to run directly from the crystal.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Enable the peripherals used by this example.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);

    //
    // Initialize the UART.
    //
    ConfigureUART();

    UARTprintf("\033[2JInterrupts\n");

    //
    // Configure the PB0-PB2 to be outputs to indicate entry/exit of one
    // of the interrupt handlers.
    //
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTE_BASE, GPIO_PIN_1 | GPIO_PIN_2 |
                                               GPIO_PIN_3);
    ROM_GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3, 0);

    //
    // Set up and enable the SysTick timer.  It will be used as a reference
    // for delay loops in the interrupt handlers.  The SysTick timer period
    // will be set up for one second.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet());
    ROM_SysTickEnable();

    //
    // Reset the error indicator.
    //
    ui32Error = 0;

    //
    // Enable interrupts to the processor.
    //
    ROM_IntMasterEnable();

    //
    // Enable the interrupts.
    //
    ROM_IntEnable(INT_GPIOA);
    ROM_IntEnable(INT_GPIOB);
    ROM_IntEnable(INT_GPIOC);

    //
    // Indicate that the equal interrupt priority test is beginning.
    //
    UARTprintf("\nEqual Priority\n");

    //
    // Set the interrupt priorities so they are all equal.
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x00);
    ROM_IntPrioritySet(INT_GPIOB, 0x00);
    ROM_IntPrioritySet(INT_GPIOC, 0x00);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the LCD.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 3) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 1))
    {
        ui32Error |= 1;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Indicate that the decreasing interrupt priority test is beginning.
    //
    UARTprintf("\nDecreasing Priority\n");

    //
    // Set the interrupt priorities so that they are decreasing (i.e. C > B >
    // A).
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x80);
    ROM_IntPrioritySet(INT_GPIOB, 0x40);
    ROM_IntPrioritySet(INT_GPIOC, 0x00);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the UART.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 3) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 1))
    {
        ui32Error |= 2;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Indicate that the increasing interrupt priority test is beginning.
    //
    UARTprintf("\nIncreasing Priority\n");

    //
    // Set the interrupt priorities so that they are increasing (i.e. C < B <
    // A).
    //
    ROM_IntPrioritySet(INT_GPIOA, 0x00);
    ROM_IntPrioritySet(INT_GPIOB, 0x40);
    ROM_IntPrioritySet(INT_GPIOC, 0x80);

    //
    // Reset the interrupt flags.
    //
    g_ui32GPIOa = 0;
    g_ui32GPIOb = 0;
    g_ui32GPIOc = 0;
    g_ui32Index = 1;

    //
    // Trigger the interrupt for GPIO C.
    //
    HWREG(NVIC_SW_TRIG) = INT_GPIOC - 16;

    //
    // Put the current interrupt state on the UART.
    //
    DisplayIntStatus();

    //
    // Verify that the interrupts were processed in the correct order.
    //
    if((g_ui32GPIOa != 1) || (g_ui32GPIOb != 2) || (g_ui32GPIOc != 3))
    {
        ui32Error |= 4;
    }

    //
    // Wait two seconds.
    //
    Delay(2);

    //
    // Disable the interrupts.
    //
    ROM_IntDisable(INT_GPIOA);
    ROM_IntDisable(INT_GPIOB);
    ROM_IntDisable(INT_GPIOC);

    //
    // Disable interrupts to the processor.
    //
    ROM_IntMasterDisable();

    //
    // Print out the test results.
    //
    UARTprintf("\nInterrupt Priority =: %s  >: %s  <: %s\n",
               (ui32Error & 1) ? "Fail" : "Pass",
               (ui32Error & 2) ? "Fail" : "Pass",
               (ui32Error & 4) ? "Fail" : "Pass");

    //
    // Loop forever.
    //
    while(1)
    {
    }
}
//*****************************************************************************
//
// This is the main loop that runs the application.
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;
    tUSBMode eLastMode;
    char *pcString;

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the system clock to run at 50MHz from the PLL.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Initially wait for device connection.
    //
    g_eUSBState = STATE_NO_DEVICE;
    eLastMode = USB_MODE_OTG;
    g_eCurrentUSBMode = USB_MODE_OTG;

    //
    // Enable Clocking to the USB controller.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_USB0);
    
    //
    // Configure the required pins for USB operation.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);
    ROM_GPIOPinConfigure(GPIO_PG4_USB0EPEN);
    ROM_GPIOPinTypeUSBDigital(GPIO_PORTG_BASE, GPIO_PIN_4);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTL_BASE, GPIO_PIN_6 | GPIO_PIN_7);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Configure SysTick for a 100Hz interrupt.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / TICKS_PER_SECOND);
    ROM_SysTickEnable();
    ROM_SysTickIntEnable();

    //
    // Enable Interrupts
    //
    ROM_IntMasterEnable();

    //
    // Enable clocking to the UART and associated GPIO
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Configure the relevant pins such that UART0 owns them.
    //
    ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Open UART0 for debug output.
    //
    UARTStdioInit(0);

    //
    // Initialize the USB stack mode and pass in a mode callback.
    //
    USBStackModeSet(0, USB_MODE_OTG, ModeCallback);

    //
    // Register the host class drivers.
    //
    USBHCDRegisterDrivers(0, g_ppHostClassDrivers, g_ulNumHostClassDrivers);

    //
    // Open an instance of the keyboard driver.  The keyboard does not need
    // to be present at this time, this just save a place for it and allows
    // the applications to be notified when a keyboard is present.
    //
    g_ulKeyboardInstance = USBHKeyboardOpen(KeyboardCallback, g_pucBuffer,
                                            KEYBOARD_MEMORY_SIZE);

    //
    // Initialize the power configuration. This sets the power enable signal
    // to be active high and does not enable the power fault.
    //
    USBHCDPowerConfigInit(0, USBHCD_VBUS_AUTO_HIGH | USBHCD_VBUS_FILTER);

    //
    // Initialize the USB controller for OTG operation with a 2ms polling
    // rate.
    //
    USBOTGModeInit(0, 2000, g_pHCDPool, HCD_MEMORY_SIZE);

    //
    // Initialize the display driver.
    //
    CFAL96x64x16Init();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sCFAL96x64x16);

    //
    // Fill the top part of the screen with blue to create the banner.
    //
    sRect.sXMin = 0;
    sRect.sYMin = 0;
    sRect.sXMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.sYMax = (2 * DISPLAY_BANNER_HEIGHT) - 1;
    GrContextForegroundSet(&g_sContext, DISPLAY_BANNER_BG);
    GrRectFill(&g_sContext, &sRect);

    //
    // Change foreground for white text.
    //
    GrContextForegroundSet(&g_sContext, DISPLAY_TEXT_FG);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_pFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "usb-host-", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 4, 0);
    GrStringDrawCentered(&g_sContext, "keyboard", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 14, 0);


    //
    // Calculate the number of characters that will fit on a line.
    // Make sure to leave a small border for the text box.
    //
    g_ulCharsPerLine = (GrContextDpyWidthGet(&g_sContext) - 4) /
                        GrFontMaxWidthGet(g_pFontFixed6x8);

    //
    // Calculate the number of lines per usable text screen.  This requires
    // taking off space for the top and bottom banners and adding a small bit
    // for a border.
    //
    g_ulLinesPerScreen = (GrContextDpyHeightGet(&g_sContext) -
                          (3*(DISPLAY_BANNER_HEIGHT + 1)))/
                          GrFontHeightGet(g_pFontFixed6x8);

    //
    // Open and instance of the keyboard class driver.
    //
    UARTprintf("Host Keyboard Application\n");

    //
    // Initial update of the screen.
    //
    UpdateStatus();

    //
    // The main loop for the application.
    //
    while(1)
    {
        //
        // Tell the OTG library code how much time has passed in
        // milliseconds since the last call.
        //
        USBOTGMain(GetTickms());

        //
        // Has the USB mode changed since last time we checked?
        //
        if(g_eCurrentUSBMode != eLastMode)
        {
            //
            // Remember the new mode.
            //
            eLastMode = g_eCurrentUSBMode;

            switch(eLastMode)
            {
                case USB_MODE_HOST:
                    pcString = "HOST";
                    break;

                case USB_MODE_DEVICE:
                    pcString = "DEVICE";
                    break;

                case USB_MODE_NONE:
                    pcString = "NONE";
                    break;

                default:
                    pcString = "UNKNOWN";
                    break;
            }

            UARTprintf("USB mode changed to %s\n", pcString);
        }

        switch(g_eUSBState)
        {
            //
            // This state is entered when they keyboard is first detected.
            //
            case STATE_KEYBOARD_INIT:
            {
                //
                // Initialized the newly connected keyboard.
                //
                USBHKeyboardInit(g_ulKeyboardInstance);

                //
                // Proceed to the keyboard connected state.
                //
                g_eUSBState = STATE_KEYBOARD_CONNECTED;

                //
                // Update the screen now that the keyboard has been
                // initialized.
                //
                UpdateStatus();

                USBHKeyboardModifierSet(g_ulKeyboardInstance, g_ulModifiers);

                break;
            }
            case STATE_KEYBOARD_UPDATE:
            {
                //
                // If the application detected a change that required an
                // update to be sent to the keyboard to change the modifier
                // state then call it and return to the connected state.
                //
                g_eUSBState = STATE_KEYBOARD_CONNECTED;

                USBHKeyboardModifierSet(g_ulKeyboardInstance, g_ulModifiers);

                break;
            }
            case STATE_KEYBOARD_CONNECTED:
            {
                //
                // Nothing is currently done in the main loop when the keyboard
                // is connected.
                //
                break;
            }

            case STATE_UNKNOWN_DEVICE:
            {
                //
                // Nothing to do as the device is unknown.
                //
                break;
            }

            case STATE_NO_DEVICE:
            {
                //
                // Nothing is currently done in the main loop when the keyboard
                // is not connected.
                //
                break;
            }
            default:
            {
                break;
            }
        }
    }
}
//*****************************************************************************
//
// Main application entry function.
//
//*****************************************************************************
int
main(void)
{
    tBoolean bRetcode;
    bspIState_t intState;
    uint8_t ucLastChannel;

    //
    // Set the system clock to run at 50MHz from the PLL
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // NB: We don't call PinoutSet() in this testcase since the EM header
    // expansion board doesn't currently have an I2C ID EEPROM.  If we did
    // call PinoutSet() this would configure all the EPI pins for SDRAM and
    // we don't want to do this.
    //
    g_eDaughterType = DAUGHTER_NONE;

    //
    // Enable peripherals required to drive the LCD.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOH);

    //
    // Configure SysTick for a 10Hz interrupt.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / TICKS_PER_SECOND);
    ROM_SysTickEnable();
    ROM_SysTickIntEnable();

    //
    // Initialize the display driver.
    //
    Kitronix320x240x16_SSD2119Init();

    //
    // Initialize the touch screen driver.
    //
    TouchScreenInit();

    //
    // Set the touch screen event handler.
    //
    TouchScreenCallbackSet(WidgetPointerMessage);

    //
    // Add the compile-time defined widgets to the widget tree.
    //
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sHeading);

    //
    // Initialize the status string.
    //
    UpdateStatus(true, "Initializing...");

    //
    // Paint the widget tree to make sure they all appear on the display.
    //
    WidgetPaint(WIDGET_ROOT);

    //
    // Initialize the SimpliciTI BSP.
    //
    BSP_Init();

    //
    // Set the SimpliciTI device address using the current Ethernet MAC address
    // to ensure something like uniqueness.
    //
    bRetcode = SetSimpliciTIAddress();

    //
    // Did we have a problem with the address?
    //
    if(!bRetcode)
    {
        //
        // Yes - make sure the display is updated then hang the app.
        //
        WidgetMessageQueueProcess();
        while(1)
        {
            //
            // MAC address is not set so hang the app.
            //
        }
    }

    //
    // Turn on both our LEDs
    //
    SetLED(1, true);
    SetLED(2, true);

    UpdateStatus(true, "Waiting for a device...");

    //
    // Initialize the SimpliciTI stack and register our receive callback.
    //
    SMPL_Init(ReceiveCallback);

    //
    // Tell the user what's up.
    //
    UpdateStatus(true, "Access point active.");

    //
    // Do nothing after this - the SimpliciTI stack code handles all the
    // access point function required.
    //
    while(1)
    {
        //
        // Wait for the Join semaphore to be set by the receipt of a Join
        // frame from a device that supports an end device.
        //
        // An external method could be used as well. A button press could be
        // connected to an ISR and the ISR could set a semaphore that is
        // checked by a function call here, or a command shell running in
        // support of a serial connection could set a semaphore that is
        // checked by a function call.
        //
        if (g_ucJoinSem && (g_ucNumCurrentPeers < NUM_CONNECTIONS))
        {
            //
            // Listen for a new incoming connection.
            //
            while (1)
            {
                if (SMPL_SUCCESS == SMPL_LinkListen(&g_sLID[g_ucNumCurrentPeers]))
                {
                    //
                    // The connection attempt succeeded so break out of the
                    // loop.
                    //
                    break;
                }

                //
                // Process our widget message queue.
                //
                WidgetMessageQueueProcess();

                //
                // A "real" application would implement its fail-to-link
                // policy here.  We go back and listen again.
                //
            }

            //
            // Increment our peer counter.
            //
            g_ucNumCurrentPeers++;

            //
            // Decrement the join semaphore.
            //
            BSP_ENTER_CRITICAL_SECTION(intState);
            g_ucJoinSem--;
            BSP_EXIT_CRITICAL_SECTION(intState);

            //
            // Tell the user how many devices we are now connected to.
            //
            UpdateStatus(false, "%d devices connected.", g_ucNumCurrentPeers);
        }

        //
        // Have we received a frame on one of the ED connections? We don't use
        // a critical section here since it doesn't really matter much if we
        // miss a poll.
        //
        if (g_ucPeerFrameSem)
        {
            uint8_t     pucMsg[MAX_APP_PAYLOAD], ucLen, ucLoop;

            /* process all frames waiting */
            for (ucLoop = 0; ucLoop < g_ucNumCurrentPeers; ucLoop++)
            {
                //
                // Receive the message.
                //
                if (SMPL_SUCCESS == SMPL_Receive(g_sLID[ucLoop], pucMsg,
                                                 &ucLen))
                {
                    //
                    // ...and pass it to the function that processes it.
                    //
                    ProcessMessage(g_sLID[ucLoop], pucMsg, ucLen);

                    //
                    // Decrement our frame semaphore.
                    //
                    BSP_ENTER_CRITICAL_SECTION(intState);
                    g_ucPeerFrameSem--;
                    BSP_EXIT_CRITICAL_SECTION(intState);
                }
            }
        }

        //
        // Have we been asked to change channel?
        //
        ucLastChannel = g_ucChannel;
        if (g_bChangeChannel)
        {
            //
            // Yes - go ahead and change to the next radio channel.
            //
            g_bChangeChannel = false;
            ChangeChannel();
        }
        else
        {
            //
            // No - check to see if we need to automatically change channel
            // due to interference on the current one.
            //
            CheckChangeChannel();
        }

        //
        // If the channel changed, update the display.
        //
        if(g_ucChannel != ucLastChannel)
        {
            UpdateStatus(false, "Changed to channel %d.", g_ucChannel);
        }

        //
        // If required, blink the "LEDs" to indicate we are waiting for a
        // message following a channel change.
        //
        BSP_ENTER_CRITICAL_SECTION(intState);
        if (g_ulBlinky)
        {
            if (++g_ulBlinky >= 0xF)
            {
                g_ulBlinky = 1;
                ToggleLED(1);
                ToggleLED(2);
            }
        }
        BSP_EXIT_CRITICAL_SECTION(intState);

        //
        // Process our widget message queue.
        //
        WidgetMessageQueueProcess();
    }
}
Esempio n. 29
0
//*****************************************************************************
//
// This is the main application entry function.
//
//*****************************************************************************
int
main(void)
{
    uint_fast32_t ui32TxCount;
    uint_fast32_t ui32RxCount;
    tRectangle sRect;
    char pcBuffer[16];

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the clocking to run from the PLL at 50MHz
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

#ifdef DEBUG
    //
    // Configure the UART for debug output.
    //
    ConfigureUART();
#endif

    //
    // Not configured initially.
    //
    g_bUSBConfigured = false;

    //
    // Initialize the display driver.
    //
    CFAL96x64x16Init();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sCFAL96x64x16);

    //
    // Fill the top part of the screen with blue to create the banner.
    //
    sRect.i16XMin = 0;
    sRect.i16YMin = 0;
    sRect.i16XMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.i16YMax = 9;
    GrContextForegroundSet(&g_sContext, ClrDarkBlue);
    GrRectFill(&g_sContext, &sRect);

    //
    // Change foreground for white text.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_psFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "usb-dev-bulk", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 4, 0);

    //
    // Show the various static text elements on the color STN display.
    //
    GrStringDraw(&g_sContext, "Tx bytes:", -1, 0, 32, false);
    GrStringDraw(&g_sContext, "Rx bytes:", -1, 0, 42, false);

    //
    // Enable the GPIO peripheral used for USB, and configure the USB
    // pins.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTL_BASE, GPIO_PIN_6 | GPIO_PIN_7);

    //
    // Enable the system tick.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Show the application name on the display and UART output.
    //
    DEBUG_PRINT("\nTiva C Series USB bulk device example\n");
    DEBUG_PRINT("---------------------------------\n\n");

    //
    // Tell the user what we are up to.
    //
    DisplayStatus(&g_sContext, "Configuring USB");

    //
    // Initialize the transmit and receive buffers.
    //
    USBBufferInit(&g_sTxBuffer);
    USBBufferInit(&g_sRxBuffer);

    //
    // Pass our device information to the USB library and place the device
    // on the bus.
    //
    USBDBulkInit(0, &g_sBulkDevice);

    //
    // Wait for initial configuration to complete.
    //
    DisplayStatus(&g_sContext, "Waiting for host");

    //
    // Clear our local byte counters.
    //
    ui32RxCount = 0;
    ui32TxCount = 0;

    //
    // Main application loop.
    //
    while(1)
    {

        //
        // Have we been asked to update the status display?
        //
        if(g_ui32Flags & COMMAND_STATUS_UPDATE)
        {
            //
            // Clear the command flag
            //
            g_ui32Flags &= ~COMMAND_STATUS_UPDATE;
            DisplayStatus(&g_sContext, g_pcStatus);
        }

        //
        // Has there been any transmit traffic since we last checked?
        //
        if(ui32TxCount != g_ui32TxCount)
        {
            //
            // Take a snapshot of the latest transmit count.
            //
            ui32TxCount = g_ui32TxCount;

            //
            // Update the display of bytes transmitted by the UART.
            //
            usnprintf(pcBuffer, 16, " %d ", ui32TxCount);
            GrStringDraw(&g_sContext, pcBuffer, -1, 48, 32, true);
        }

        //
        // Has there been any receive traffic since we last checked?
        //
        if(ui32RxCount != g_ui32RxCount)
        {
            //
            // Take a snapshot of the latest receive count.
            //
            ui32RxCount = g_ui32RxCount;

            //
            // Update the display of bytes received by the UART.
            //
            usnprintf(pcBuffer, 16, " %d ", ui32RxCount);
            GrStringDraw(&g_sContext, pcBuffer, -1, 48, 42, true);
        }
    }
}
//*****************************************************************************
//
// This is the main loop that runs the application.
//
//*****************************************************************************
int
main(void)
{
    tRectangle sRect;

    //
    // Set the clocking to run from the PLL at 50MHz.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Initialize the display driver.
    //
    CFAL96x64x16Init();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&g_sContext, &g_sCFAL96x64x16);

    //
    // Fill the top part of the screen with blue to create the banner.
    //
    sRect.i16XMin = 0;
    sRect.i16YMin = 0;
    sRect.i16XMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.i16YMax = (DISPLAY_BANNER_HEIGHT) - 1;
    GrContextForegroundSet(&g_sContext, DISPLAY_BANNER_BG);
    GrRectFill(&g_sContext, &sRect);

    //
    // Change foreground for white text.
    //
    GrContextForegroundSet(&g_sContext, DISPLAY_TEXT_FG);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&g_sContext, g_psFontFixed6x8);
    GrStringDrawCentered(&g_sContext, "usb-host-mouse", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2, 4, 0);

    //
    // Display default information about the mouse
    //
    GrStringDrawCentered(&g_sContext, "Position:", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 16, 0);
    GrStringDrawCentered(&g_sContext, "-,-", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 26, 1);
    GrStringDrawCentered(&g_sContext, "Buttons:", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 36, 0);
    GrStringDrawCentered(&g_sContext, "---", -1,
                             GrContextDpyWidthGet(&g_sContext) / 2, 46, 1);

    //
    // Fill the bottom rows of the screen with blue to create the status area.
    //
    sRect.i16XMin = 0;
    sRect.i16YMin = GrContextDpyHeightGet(&g_sContext) -
                  DISPLAY_BANNER_HEIGHT - 1;
    sRect.i16XMax = GrContextDpyWidthGet(&g_sContext) - 1;
    sRect.i16YMax = sRect.i16YMin + DISPLAY_BANNER_HEIGHT;

    GrContextForegroundSet(&g_sContext, DISPLAY_BANNER_BG);
    GrRectFill(&g_sContext, &sRect);

    //
    // Put a white box around the banner.
    //
    GrContextForegroundSet(&g_sContext, ClrWhite);
    GrRectDraw(&g_sContext, &sRect);

    //
    // Print a no device message a placeholder for the message printed
    // during an event.
    //
    GrStringDrawCentered(&g_sContext, "No Device", -1,
                         GrContextDpyWidthGet(&g_sContext) / 2,
                         sRect.i16YMin + 5, 0);

    //
    // Configure SysTick for a 100Hz interrupt.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / TICKS_PER_SECOND);
    ROM_SysTickEnable();
    ROM_SysTickIntEnable();

    //
    // Enable Clocking to the USB controller.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_USB0);

    //
    // Configure the required pins for USB operation.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);
    ROM_GPIOPinConfigure(GPIO_PG4_USB0EPEN);
    ROM_GPIOPinTypeUSBDigital(GPIO_PORTG_BASE, GPIO_PIN_4);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTL_BASE, GPIO_PIN_6 | GPIO_PIN_7);
    ROM_GPIOPinTypeUSBAnalog(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Initially wait for device connection.
    //
    g_eUSBState = STATE_NO_DEVICE;

    //
    // Initialize the USB stack mode and pass in a mode callback.
    //
    USBStackModeSet(0, eUSBModeOTG, ModeCallback);

    //
    // Register the host class drivers.
    //
    USBHCDRegisterDrivers(0, g_ppHostClassDrivers, g_ui32NumHostClassDrivers);

    //
    // Initialized the cursor.
    //
    g_ui32Buttons = 0;
    g_i32CursorX = 0;
    g_i32CursorY = 0;

    //
    // Open an instance of the mouse driver.  The mouse does not need
    // to be present at this time, this just saves a place for it and allows
    // the applications to be notified when a mouse is present.
    //
    g_psMouseInstance =
        USBHMouseOpen(MouseCallback, g_pui8Buffer, MOUSE_MEMORY_SIZE);

    //
    // Initialize the power configuration. This sets the power enable signal
    // to be active high and does not enable the power fault.
    //
    USBHCDPowerConfigInit(0, USBHCD_VBUS_AUTO_HIGH | USBHCD_VBUS_FILTER);

    //
    // Initialize the USB controller for OTG operation with a 2ms polling
    // rate.
    //
    USBOTGModeInit(0, 2000, g_pui8HCDPool, HCD_MEMORY_SIZE);

    //
    // The main loop for the application.
    //
    while(1)
    {
        //
        // Tell the OTG state machine how much time has passed in
        // milliseconds since the last call.
        //
        USBOTGMain(GetTickms());

        switch(g_eUSBState)
        {
            //
            // This state is entered when the mouse is first detected.
            //
            case STATE_MOUSE_INIT:
            {
                //
                // Initialize the newly connected mouse.
                //
                USBHMouseInit(g_psMouseInstance);

                //
                // Proceed to the mouse connected state.
                //
                g_eUSBState = STATE_MOUSE_CONNECTED;

                break;
            }

            case STATE_MOUSE_CONNECTED:
            {
                //
                // Nothing is currently done in the main loop when the mouse
                // is connected.
                //
                break;
            }

            case STATE_NO_DEVICE:
            {
                //
                // The mouse is not connected so nothing needs to be done here.
                //
                break;
            }

            default:
            {
                break;
            }
        }
    }
}