void FSDEMatIsotropicSurfaceT::TakeParameterList(const ParameterListT& list)
  {
	FSSolidMatT::TakeParameterList(list);

	/* FSDEMatQ1P0SurfaceT stuff */
	fMu = list.GetParameter("mu");
	fElectricPermittivity = list.GetParameter("epsilon");
 	fNrig = list.GetParameter("Nrig");
 	fLambda = list.GetParameter("lambda");
 	
 	/* Isotropic surface stuff */
	fNu = list.GetParameter("Poisson");
	fE = list.GetParameter("Young_Modulus");
	
	/* dimension work space */
	fModulusKStV.Dimension(kStressDim);
	fIsotropicStress.Dimension(kNumDOF);
	fStress1.Dimension(kNumDOF);
	fTM.Dimension(kStressDim);

	/* Calculate (constant) Isotropic modulus */
	SetModulus();
  }
Esempio n. 2
0
PAlgebraModDerived<type>::PAlgebraModDerived(const PAlgebra& _zMStar, long _r) 
  : zMStar(_zMStar), r(_r)

{
  long p = zMStar.getP();
  long m = zMStar.getM();

  // For dry-run, use a tiny m value for the PAlgebra tables
  if (isDryRun()) m = (p==3)? 4 : 3;

  assert(r > 0);

  ZZ BigPPowR = power_ZZ(p, r);
  assert(BigPPowR.SinglePrecision());
  pPowR = to_long(BigPPowR);

  long nSlots = zMStar.getNSlots();

  RBak bak; bak.save();
  SetModulus(p);

  // Compute the factors Ft of Phi_m(X) mod p, for all t \in T

  RX phimxmod;

  conv(phimxmod, zMStar.getPhimX()); // Phi_m(X) mod p

  vec_RX localFactors;

  EDF(localFactors, phimxmod, zMStar.getOrdP()); // equal-degree factorization

  

  RX* first = &localFactors[0];
  RX* last = first + localFactors.length();
  RX* smallest = min_element(first, last);
  swap(*first, *smallest);

  // We make the lexicographically smallest factor have index 0.
  // The remaining factors are ordered according to their representives.

  RXModulus F1(localFactors[0]); 
  for (long i=1; i<nSlots; i++) {
    unsigned long t =zMStar.ith_rep(i); // Ft is minimal polynomial of x^{1/t} mod F1
    unsigned long tInv = InvMod(t, m);  // tInv = t^{-1} mod m
    RX X2tInv = PowerXMod(tInv,F1);     // X2tInv = X^{1/t} mod F1
    IrredPolyMod(localFactors[i], X2tInv, F1);
  }
  /* Debugging sanity-check #1: we should have Ft= GCD(F1(X^t),Phi_m(X))
  for (i=1; i<nSlots; i++) {
    unsigned long t = T[i];
    RX X2t = PowerXMod(t,phimxmod);  // X2t = X^t mod Phi_m(X)
    RX Ft = GCD(CompMod(F1,X2t,phimxmod),phimxmod);
    if (Ft != localFactors[i]) {
      cout << "Ft != F1(X^t) mod Phi_m(X), t=" << t << endl;
      exit(0);
    }
  }*******************************************************************/

  if (r == 1) {
    build(PhimXMod, phimxmod);
    factors = localFactors;
    pPowRContext.save();

    // Compute the CRT coefficients for the Ft's
    crtCoeffs.SetLength(nSlots);
    for (long i=0; i<nSlots; i++) {
      RX te = phimxmod / factors[i]; // \prod_{j\ne i} Fj
      te %= factors[i];              // \prod_{j\ne i} Fj mod Fi
      InvMod(crtCoeffs[i], te, factors[i]); // \prod_{j\ne i} Fj^{-1} mod Fi
    }
  }
  else {
    PAlgebraLift(zMStar.getPhimX(), localFactors, factors, crtCoeffs, r);
    RX phimxmod1;
    conv(phimxmod1, zMStar.getPhimX());
    build(PhimXMod, phimxmod1);
    pPowRContext.save();
  }

  // set factorsOverZZ
  factorsOverZZ.resize(nSlots);
  for (long i = 0; i < nSlots; i++)
    conv(factorsOverZZ[i], factors[i]);

  genCrtTable();
  genMaskTable();
}