Esempio n. 1
0
/** System Clock Configuration
 */
void SystemClock_Config(void)
{
    RCC_OscInitTypeDef RCC_OscInitStruct;
    RCC_ClkInitTypeDef RCC_ClkInitStruct;
    __PWR_CLK_ENABLE();
    __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
    RCC_OscInitStruct.HSEState = RCC_HSE_ON;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
    RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
    RCC_OscInitStruct.PLL.PLLM = 8;
    RCC_OscInitStruct.PLL.PLLN = 384;
    RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
    RCC_OscInitStruct.PLL.PLLQ = 8;
    HAL_RCC_OscConfig(&RCC_OscInitStruct);
    RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1;
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
    RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; // 24Mhz.  Was RCC_HCLK_DIV2 (48Mhz);
    RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
    HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3 );
}
Esempio n. 2
0
/** System Clock Configuration
*/
void SystemClock_Config(void)
{

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;

  __PWR_CLK_ENABLE();

  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = 16;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 16;
  RCC_OscInitStruct.PLL.PLLN = 360;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; /* FIXME: change the freq */
  RCC_OscInitStruct.PLL.PLLQ = 4;
  RCC_OscInitStruct.PLL.PLLR = 2;
  HAL_RCC_OscConfig(&RCC_OscInitStruct);

  HAL_PWREx_ActivateOverDrive();

  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1
      | RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV4;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_8);

  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);

  /* SysTick_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
Esempio n. 3
0
/** System Clock Configuration
*/
void SystemClock_Config(void)
{

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_PeriphCLKInitTypeDef PeriphClkInit;

  __PWR_CLK_ENABLE();

  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSE;
  RCC_OscInitStruct.LSEState = RCC_LSE_ON;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = 16;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
  RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
  HAL_RCC_OscConfig(&RCC_OscInitStruct);

  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1);

  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_LCD;
  PeriphClkInit.LCDClockSelection = RCC_RTCCLKSOURCE_LSE;
  HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);

  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

  /* SysTick_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
static void clock_init()
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;

  //HAL_InitTick(0);

  __PWR_CLK_ENABLE();

  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  HAL_RCC_OscConfig(&RCC_OscInitStruct);

  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
                              |RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);

  /* configure I2S clock for 48kHz audio frequency */
  RCC_PeriphCLKInitTypeDef rccclkinit;
  HAL_RCCEx_GetPeriphCLKConfig(&rccclkinit);
  rccclkinit.PeriphClockSelection = RCC_PERIPHCLK_I2S;
  rccclkinit.PLLI2S.PLLI2SN = 192;
  rccclkinit.PLLI2S.PLLI2SR = 4;
  HAL_RCCEx_PeriphCLKConfig(&rccclkinit);

  HAL_InitTick(0);
}
Esempio n. 5
0
File: main.c Progetto: shjere/common
/**
  * @brief  Configures system clock after wake-up from STOP: enable HSI, PLL
  *         and select PLL as system clock source.
  * @param  None
  * @retval None
  */
static void SystemClockConfig_STOP(void)
{
    RCC_ClkInitTypeDef RCC_ClkInitStruct;
    RCC_OscInitTypeDef RCC_OscInitStruct;

    /* Enable Power Control clock */
    __PWR_CLK_ENABLE();

    /* The voltage scaling allows optimizing the power consumption when the device is
       clocked below the maximum system frequency, to update the voltage scaling value
       regarding system frequency refer to product datasheet.  */
    __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

    /* Get the Oscillators configuration according to the internal RCC registers */
    HAL_RCC_GetOscConfig(&RCC_OscInitStruct);

    /* After wake-up from STOP reconfigure the system clock: Enable HSI and PLL */
    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
    RCC_OscInitStruct.HSEState = RCC_HSE_OFF;
    RCC_OscInitStruct.HSIState = RCC_HSI_ON;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
    RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
    RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_4;
    RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_2;
    RCC_OscInitStruct.HSICalibrationValue = 0x10;
    if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
    {
        Error_Handler();
    }

    /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
       clocks dividers */
    RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
    {
        Error_Handler();
    }
}
Esempio n. 6
0
/**
  * @brief  System Clock Configuration
  *         The system Clock is configured as follow :
  *            System Clock source            = PLL (HSE)
  *            SYSCLK(Hz)                     = 168000000
  *            HCLK(Hz)                       = 168000000
  *            AHB Prescaler                  = 1
  *            APB1 Prescaler                 = 4
  *            APB2 Prescaler                 = 2
  *            HSE Frequency(Hz)              = 8000000
  *            PLL_M                          = 8
  *            PLL_N                          = 336
  *            PLL_P                          = 2
  *            PLL_Q                          = 7
  *            VDD(V)                         = 3.3
  *            Main regulator output voltage  = Scale1 mode
  *            Flash Latency(WS)              = 5
  * @param  None
  * @retval None
  */
static void SystemClock_Config(void)
{
    RCC_ClkInitTypeDef RCC_ClkInitStruct;
    RCC_OscInitTypeDef RCC_OscInitStruct;

    /* Enable Power Control clock */
    __PWR_CLK_ENABLE();

    /* The voltage scaling allows optimizing the power consumption when the device is
       clocked below the maximum system frequency, to update the voltage scaling value
       regarding system frequency refer to product datasheet.  */
    __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

    /* Enable HSE Oscillator and activate PLL with HSE as source */
    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
    RCC_OscInitStruct.HSEState = RCC_HSE_ON;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
    RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
    RCC_OscInitStruct.PLL.PLLM = 8;
    RCC_OscInitStruct.PLL.PLLN = 336;
    RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
    RCC_OscInitStruct.PLL.PLLQ = 7;
    if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
    {
        Error_Handler();
    }

    /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
       clocks dividers */
    RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
    RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
    RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
    if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
    {
        Error_Handler();
    }
}
/**
 * @brief  System Clock Configuration
 *         The system Clock is configured as follow :
 *            System Clock source            = PLL (HSE)
 *            SYSCLK(Hz)                     = 168000000
 *            HCLK(Hz)                       = 168000000
 *            AHB Prescaler                  = 1
 *            APB1 Prescaler                 = 4
 *            APB2 Prescaler                 = 2
 *            HSE Frequency(Hz)              = HSE_VALUE
 *            PLL_M                          = (HSE_VALUE/1000000u)
 *            PLL_N                          = 336
 *            PLL_P                          = 4
 *            PLL_Q                          = 7
 *            VDD(V)                         = 3.3
 *            Main regulator output voltage  = Scale1 mode
 *            Flash Latency(WS)              = 5
 * @param  None
 * @retval None
 */
void
configure_system_clock(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;

  // Enable Power Control clock
  __PWR_CLK_ENABLE();

  // The voltage scaling allows optimizing the power consumption when the
  // device is clocked below the maximum system frequency, to update the
  // voltage scaling value regarding system frequency refer to product
  // datasheet.
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  // Enable HSE Oscillator and activate PLL with HSE as source
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;

  // This assumes the HSE_VALUE is a multiple of 1MHz. If this is not
  // your case, you have to recompute these PLL constants.
  RCC_OscInitStruct.PLL.PLLM = (HSE_VALUE/1000000u);
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  HAL_RCC_OscConfig(&RCC_OscInitStruct);

  // Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
  // clocks dividers
  RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK
      | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
}
Esempio n. 8
0
File: main.c Progetto: shjere/common
/**
  * @brief  System Clock Configuration
  *         The system Clock is configured as follow : 
  *            System Clock source            = MSI
  *            SYSCLK(Hz)                     = 2000000
  *            HCLK(Hz)                       = 2000000
  *            AHB Prescaler                  = 1
  *            APB1 Prescaler                 = 1
  *            APB2 Prescaler                 = 1
  *            Flash Latency(WS)              = 0
  *            Main regulator output voltage  = Scale3 mode
  * @param  None
  * @retval None
  */
static void SystemClock_Config(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;
  
  /* Enable Power Control clock */
  __PWR_CLK_ENABLE();
  
  /* The voltage scaling allows optimizing the power consumption when the device is 
     clocked below the maximum system frequency, to update the voltage scaling value 
     regarding system frequency refer to product datasheet.  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3);
  
  /* Enable MSI Oscillator */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
  RCC_OscInitStruct.MSIState = RCC_MSI_ON;
  RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_5;
  RCC_OscInitStruct.MSICalibrationValue=0x00;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }


  /* Select MSI as system clock source and configure the HCLK, PCLK1 and PCLK2 
     clocks dividers */
  RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;  
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;  
  if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
}
Esempio n. 9
0
void SystemClock_Config(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};

  /* Enable HSE Oscillator and Activate PLL with HSE as source */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSEState = RCC_HSE_OFF;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
  RCC_OscInitStruct.PLL.PLLDIV = RCC_PLL_DIV3;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

    
  /* Set Voltage scale1 as MCU will run at 32MHz */
  __PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /* Poll VOSF bit of in PWR_CSR. Wait until it is reset to 0 */
  while (__HAL_PWR_GET_FLAG(PWR_FLAG_VOS) != RESET) {};

  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
  clocks dividers */
  RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
  {
    Error_Handler();
  }
}
Esempio n. 10
0
void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
{
  RCC_OscInitTypeDef        RCC_OscInitStruct;
  RCC_PeriphCLKInitTypeDef  PeriphClkInitStruct;
  (void ) hrtc;
  /*##-1- Enables the PWR Clock and Enables access to the backup domain ###################################*/
  /* To change the source clock of the RTC feature (LSE, LSI), You have to:
     - Enable the power clock using __PWR_CLK_ENABLE()
     - Enable write access using HAL_PWR_EnableBkUpAccess() function before to
       configure the RTC clock source (to be done once after reset).
     - Reset the Back up Domain using __HAL_RCC_BACKUPRESET_FORCE() and
       __HAL_RCC_BACKUPRESET_RELEASE().
     - Configure the needed RTc clock source */
  __PWR_CLK_ENABLE();
  HAL_PWR_EnableBkUpAccess();

  /*##-2- Configue LSE as RTC clock soucre ###################################*/
  RCC_OscInitStruct.OscillatorType =  RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.LSEState = RCC_LSE_ON;
  RCC_OscInitStruct.LSIState = RCC_LSI_OFF;
  if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
  PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
  if(HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /*##-3- Enable RTC peripheral Clocks #######################################*/
  /* Enable RTC Clock */
  __HAL_RCC_RTC_ENABLE();
}
Esempio n. 11
0
/** System Clock Configuration
*/
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;

  __PWR_CLK_ENABLE();

  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
//  RCC_OscInitStruct.OscillatorType |= RCC_OSCILLATORTYPE_LSI;  // uncomment when LSI clock is used for RTC
//  RCC_OscInitStruct.LSIState = RCC_LSI_ON;        // uncomment when LSI Clock is used for RTC
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  HAL_RCC_OscConfig(&RCC_OscInitStruct);

  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
                              |RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);

#ifdef USE_STM32F4_RTC
  RCC_PeriphCLKInitTypeDef PeriphClkInitStruct;
  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
  PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_HSE_DIV8;  // Comment this line if you want to use LSI clock
//  PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;     // Remove comment if you want to use LSI clock
  HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct);
#endif /* USE_STM32F4_RTC */
}
Esempio n. 12
0
/** System Clock Configuration
*/
void SystemClock_Config(void)
{

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;

  __PWR_CLK_ENABLE();

  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = 16;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 180;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 2;
  RCC_OscInitStruct.PLL.PLLR = 2;
  HAL_RCC_OscConfig(&RCC_OscInitStruct);

  HAL_PWREx_ActivateOverDrive();

  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
                              |RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);

  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

}
Esempio n. 13
0
/** System Clock Configuration
*/
void SystemClock_Config(void)
{

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;

  __PWR_CLK_ENABLE();

  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  HAL_RCC_OscConfig(&RCC_OscInitStruct);

  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1
                              |RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);

  HAL_RCC_EnableCSS();

  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

  /* SysTick_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
Esempio n. 14
0
/** System Clock Configuration*/
void SystemClock_Config(void){

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;

  __PWR_CLK_ENABLE();

  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  RCC_OscInitStruct.OscillatorType 	= RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState 			 	= RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState 		= RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource 	= RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM 				= 8;
  RCC_OscInitStruct.PLL.PLLN 				= 336;
  RCC_OscInitStruct.PLL.PLLP 				= RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ 				= 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler(RCC_CONFIG_FAIL);};

  RCC_ClkInitStruct.ClockType 			= RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource 		= RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider 	= RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider 	= RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider 	= RCC_HCLK_DIV2;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5)!= HAL_OK){Error_Handler(RCC_CONFIG_FAIL);};
	
	/*Configures SysTick to provide 1ms interval interrupts. SysTick is already 
	  configured inside HAL_Init, I don't kow why the CubeMX generates this call again*/
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

	/* This function sets the source clock for the internal SysTick Timer to be the maximum,
	   in our case, HCLK is now 168MHz*/
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

  /* SysTick_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
/**
 * @brief  Deactivates the Over-Drive mode.
 * @note   These macros can be used only for STM32F42xx/STM32F43xx devices.
 *         This mode allows the CPU and the core logic to operate at a higher frequency
 *         than the normal mode for a given voltage scaling (scale 1, scale 2 or scale 3).    
 * @note   It is recommended to enter or exit Over-drive mode when the application is not running 
 *         critical tasks and when the system clock source is either HSI or HSE. 
 *         During the Over-drive switch activation, no peripheral clocks should be enabled.   
 *         The peripheral clocks must be enabled once the Over-drive mode is activated.
 * @param  None
 * @retval HAL status
 */
HAL_StatusTypeDef HAL_PWREx_DeactivateOverDrive(void)
{
	uint32_t timeout = 0;

	__PWR_CLK_ENABLE();

	/* Disable the Over-drive switch */
	__HAL_PWR_OVERDRIVESWITCHING_DISABLE();

	/* Get timeout */
	timeout = HAL_GetTick() + PWR_OVERDRIVE_TIMEOUT_VALUE;

	while(__HAL_PWR_GET_FLAG(PWR_FLAG_ODSWRDY))
	{
		if(HAL_GetTick() >= timeout)
		{
			return HAL_TIMEOUT;
		}
	}

	/* Disable the Over-drive */
	__HAL_PWR_OVERDRIVE_DISABLE();

	/* Get timeout */
	timeout = HAL_GetTick() + PWR_OVERDRIVE_TIMEOUT_VALUE;

	while(__HAL_PWR_GET_FLAG(PWR_FLAG_ODRDY))
	{
		if(HAL_GetTick() >= timeout)
		{
			return HAL_TIMEOUT;
		}
	}

	return HAL_OK;
}
Esempio n. 16
0
void rtc_free(void) {
    // Enable Power clock
    __PWR_CLK_ENABLE();

    // Enable access to Backup domain
    HAL_PWR_EnableBkUpAccess();

    // Reset Backup domain
    __HAL_RCC_BACKUPRESET_FORCE();
    __HAL_RCC_BACKUPRESET_RELEASE();

    // Disable access to Backup domain
    HAL_PWR_DisableBkUpAccess();

    // Disable LSI and LSE clocks
    RCC_OscInitTypeDef RCC_OscInitStruct;
    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE;
    RCC_OscInitStruct.PLL.PLLState   = RCC_PLL_NONE;
    RCC_OscInitStruct.LSIState       = RCC_LSI_OFF;
    RCC_OscInitStruct.LSEState       = RCC_LSE_OFF;
    HAL_RCC_OscConfig(&RCC_OscInitStruct);

    rtc_inited = 0;
}
Esempio n. 17
0
/** System Clock Configuration
*/
void SystemClock_Config(void)
{

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_PeriphCLKInitTypeDef PeriphClkInit;

  __PWR_CLK_ENABLE();

  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
  RCC_OscInitStruct.MSIState = RCC_MSI_ON;
  RCC_OscInitStruct.MSICalibrationValue = 0;
  RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_5;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  HAL_RCC_OscConfig(&RCC_OscInitStruct);

  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0);

  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2;
  PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;
  HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);

  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

  /* SysTick_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
Esempio n. 18
0
void checkForBootLoaderRequest(void)
{
    uint32_t bt;
    __PWR_CLK_ENABLE();
    __BKPSRAM_CLK_ENABLE();
    HAL_PWR_EnableBkUpAccess();

    bt = (*(__IO uint32_t *) (BKPSRAM_BASE + 4)) ;
    if ( bt == 0xDEADBEEF ) {
        (*(__IO uint32_t *) (BKPSRAM_BASE + 4)) =  0xCAFEFEED; // Reset our trigger
        // Backup SRAM is write-back by default, ensure value actually reaches memory
        // Another solution would be marking BKPSRAM as write-through in Memory Protection Unit settings
        SCB_CleanDCache_by_Addr((uint32_t *) (BKPSRAM_BASE + 4), sizeof(uint32_t));

        void (*SysMemBootJump)(void);
        __SYSCFG_CLK_ENABLE();
        SYSCFG->MEMRMP |= SYSCFG_MEM_BOOT_ADD0 ;
        uint32_t p =  (*((uint32_t *) 0x1ff00000));
        __set_MSP(p); //Set the main stack pointer to its defualt values
        SysMemBootJump = (void (*)(void)) (*((uint32_t *) 0x1ff00004)); // Point the PC to the System Memory reset vector (+4)
        SysMemBootJump();
        while (1);
    }
}
/**
  * @brief  This function configures the system to enter Standby mode for
  *         current consumption measurement purpose.
  *         STANDBY Mode
  *         ============
  *           - Backup SRAM and RTC OFF
  *           - IWDG and LSI OFF
  *           - Wakeup using WakeUp Pin (PA.00)
  * @param  None
  * @retval None
  */
void StandbyMode_Measure(void)
{
  /* Enable Power Clock*/
  __PWR_CLK_ENABLE();
  
  /* Allow access to Backup */
  HAL_PWR_EnableBkUpAccess();

  /* Reset RTC Domain */
  __HAL_RCC_BACKUPRESET_FORCE();
  __HAL_RCC_BACKUPRESET_RELEASE();
  
  /* Disable all used wakeup sources: Pin1(PA.0) */
  HAL_PWR_DisableWakeUpPin(PWR_WAKEUP_PIN1);
  
  /* Clear all related wakeup flags */
  __HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU);
  
  /* Re-enable all used wakeup sources: Pin1(PA.0) */
  HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PIN1);

  /* Request to enter STANDBY mode  */
  HAL_PWR_EnterSTANDBYMode();
}
Esempio n. 20
0
void rtc_init(void)
{
    RCC_OscInitTypeDef RCC_OscInitStruct;
    uint32_t rtc_freq = 0;

#if DEVICE_RTC_LSI
    if (rtc_inited) return;
    rtc_inited = 1;
#endif

    RtcHandle.Instance = RTC;

#if !DEVICE_RTC_LSI
    // Enable LSE Oscillator
    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE;
    RCC_OscInitStruct.PLL.PLLState   = RCC_PLL_NONE; // Mandatory, otherwise the PLL is reconfigured!
    RCC_OscInitStruct.LSEState       = RCC_LSE_ON; // External 32.768 kHz clock on OSC_IN/OSC_OUT
    RCC_OscInitStruct.LSIState       = RCC_LSI_OFF;
    if (HAL_RCC_OscConfig(&RCC_OscInitStruct) == HAL_OK) { // Check if LSE has started correctly
        // Connect LSE to RTC
        __HAL_RCC_RTC_CLKPRESCALER(RCC_RTCCLKSOURCE_LSE);
        __HAL_RCC_RTC_CONFIG(RCC_RTCCLKSOURCE_LSE);
        rtc_freq = LSE_VALUE;
    } else {
	    error("Cannot initialize RTC with LSE\n");
    }
#else	
    // Enable Power clock
    __PWR_CLK_ENABLE();

    // Enable access to Backup domain
    HAL_PWR_EnableBkUpAccess();

    // Reset Backup domain
    __HAL_RCC_BACKUPRESET_FORCE();
    __HAL_RCC_BACKUPRESET_RELEASE();

	// Enable LSI clock
	RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE;
	RCC_OscInitStruct.PLL.PLLState   = RCC_PLL_NONE; // Mandatory, otherwise the PLL is reconfigured!
	RCC_OscInitStruct.LSEState       = RCC_LSE_OFF;
	RCC_OscInitStruct.LSIState       = RCC_LSI_ON;
	if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
		error("Cannot initialize RTC with LSI\n");
	}
	// Connect LSI to RTC
    __HAL_RCC_RTC_CLKPRESCALER(RCC_RTCCLKSOURCE_LSI);
    __HAL_RCC_RTC_CONFIG(RCC_RTCCLKSOURCE_LSI);
	// This value is LSI typical value. To be measured precisely using a timer input capture for example.
	rtc_freq = 40000;
#endif

    // Enable RTC
    __HAL_RCC_RTC_ENABLE();

    RtcHandle.Init.HourFormat     = RTC_HOURFORMAT_24;
#ifdef TARGET_MOTE_L152RC
    /* SubSecond resolution of 16384Hz */
    RtcHandle.Init.AsynchPrediv   = 1;
    RtcHandle.Init.SynchPrediv    = (rtc_freq / 2) - 1;
#else
    RtcHandle.Init.AsynchPrediv   = 127;
    RtcHandle.Init.SynchPrediv    = (rtc_freq / 128) - 1;
#endif
    RtcHandle.Init.OutPut         = RTC_OUTPUT_DISABLE;
    RtcHandle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
    RtcHandle.Init.OutPutType     = RTC_OUTPUT_TYPE_OPENDRAIN;

    if (HAL_RTC_Init(&RtcHandle) != HAL_OK) {
        error("RTC error: RTC initialization failed.");
    }
}
Esempio n. 21
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* STM32F0xx HAL library initialization:
       - Configure the Flash prefetch
       - Configure the Systick to generate an interrupt each 1 msec
       - Low Level Initialization
     */
  HAL_Init();

  /* Configure LED */
  BSP_LED_Init(LED2); 

  /* Configure the system clock to 48 MHz */
  SystemClock_Config();

  /* Enable Power Clock */
  __PWR_CLK_ENABLE();

  /* Check and handle if the system was resumed from StandBy mode */
  if (__HAL_PWR_GET_FLAG(PWR_FLAG_SB) != RESET)
  {
    __HAL_PWR_CLEAR_FLAG(PWR_FLAG_SB);

    /* Turn on the LED2 and keep 
       it on for 2 sec. to indicate
       exit from stand-by mode */
    BSP_LED_On(LED2);
    HAL_Delay(2000);

  }

  /* Infinite loop */
  while(1)
  {
  
    /* Configure User push-button */
    BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI);
    UserButtonStatus = 0;
    
    /* Wait until User push-button is pressed to enter the Low Power mode.
       In the meantime, LED2 is blinking */
    while (UserButtonStatus == 0)
    {
      /* Toggle LED2 */
      BSP_LED_Toggle(LED2); 
      HAL_Delay(100);
    }

    /* Loop while User push-button is maintained pressed */
    while(BSP_PB_GetState(BUTTON_USER) != SET){}

    /* Make sure LED2 is turned off to 
       reduce low power mode consumption */
    BSP_LED_Off(LED2);

#if defined (SLEEP_MODE)
    /* Sleep Mode Entry
        - System Running at PLL (48 MHz)
        - Flash 1 wait state
        - Instruction and Data caches ON
        - Prefetch ON
        - Code running from Internal FLASH
        - All peripherals disabled.
        - Wakeup using EXTI Line (User push-button PC.13)
    */
    SleepMode_Measure();
#elif defined (STOP_MODE)
    /* STOP Mode Entry 
      - RTC Clocked by LSI
      - Regulator in LP mode
      - HSI, HSE OFF and LSI OFF if not used as RTC Clock source
      - No IWDG
      - Wakeup using EXTI Line (User push-button PC.13)
    */
    StopMode_Measure();
#elif defined (STOP_RTC_MODE)
    /* STOP Mode Entry 
    - RTC Clocked by LSI
    - Regulator in LP mode
    - HSI, HSE OFF and LSI OFF if not used as RTC Clock source  
    - No IWDG
    - Automatic Wakeup using RTC clocked by LSI (after ~20s)
    */
    StopRTCMode_Measure();
#elif defined (STANDBY_MODE)
    /* STANDBY Mode Entry
        - RTC OFF
        - IWDG and LSI OFF
        - Wakeup using WakeUp Pin (wire Vdd to PA.00)
    */
    StandbyMode_Measure();
#elif defined (STANDBY_RTC_MODE)
    /* STANDBY Mode with RTC on LSI Entry
        - RTC Clocked by LSI
        - IWDG OFF and LSI OFF if not used as RTC Clock source
        - Automatic Wakeup using RTC clocked by LSI (after ~20s)
    */
    StandbyRTCMode_Measure();
#endif /* SLEEP_MODE */ 
  }
}
Esempio n. 22
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* STM32F0xx HAL library initialization:
       - Configure the Flash prefetch
       - Systick timer is configured by default as source of time base, but user 
         can eventually implement his proper time base source (a general purpose 
         timer for example or other time source), keeping in mind that Time base 
         duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and 
         handled in milliseconds basis.
       - Low Level Initialization
     */
  HAL_Init();

  /* Configure LEDs */
  BSP_LED_Init(LED3); 
  BSP_LED_Init(LED4);
  BSP_LED_Init(LED5);

  /* Configure the system clock to 48 MHz */
  SystemClock_Config();

  /* Enable Power Clock */
  __PWR_CLK_ENABLE();

  /* Check and handle if the system was resumed from StandBy mode */
  if (__HAL_PWR_GET_FLAG(PWR_FLAG_SB) != RESET)
  {
    __HAL_PWR_CLEAR_FLAG(PWR_FLAG_SB);

    /* Configure User push-button */
    BSP_PB_Init(BUTTON_USER, BUTTON_MODE_GPIO);

    /* Turn on the GREEN LED */
    BSP_LED_On(LED5);

    uwStandByOutFlag = 1;

    /* Wait that user release the User push-button */
    while(BSP_PB_GetState(BUTTON_USER) == GPIO_PIN_RESET){}
  }

  /* Infinite loop */
  while(1)
  {
    /* Configure User push-button as external interrupt generator */
    BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI);
    UserButtonStatus = 0;
    
    /* Wait until User push-button is pressed to enter the Low Power mode.
       In the meantime, LED3 is blinks */
    while (UserButtonStatus == 0)
    {
      /* Toggle LED3 */
      BSP_LED_Toggle(LED3); 
      HAL_Delay(100);

      /* If exiting from stand-by mode, */
      /*   keep LED5 ON for about 5 sec. */
      if (uwStandByOutFlag > 0)
      {
        uwStandByOutFlag++;
        if (uwStandByOutFlag == 50)
        {
          BSP_LED_Off(LED5);
          uwStandByOutFlag = 0; 
        }
      }
      
      /* If exiting from stop mode thru RTC alarm
        interrupt, keep LED6 ON for about 5 sec. */      
      if (uwWakeUpIntFlag > 0)
      {
        uwWakeUpIntFlag++;
        if (uwWakeUpIntFlag == 50)
        {
          BSP_LED_Off(LED6);
          uwWakeUpIntFlag = 0; 
        }
      }
    }

    /* Make sure LED3 is turned off to 
       reduce low power mode consumption */
    BSP_LED_Off(LED3);

#if defined (SLEEP_MODE)
    /* Sleep Mode Entry
        - System Running at PLL (48 MHz)
        - Flash 2 wait state
        - Instruction and Data caches ON
        - Prefetch ON
        - Code running from Internal FLASH
        - All peripherals disabled.
        - Wakeup using EXTI Line (User push-button PA.00)
    */
    SleepMode_Measure();
#elif defined (STOP_RTC_MODE)
    /* STOP Mode Entry 
    - RTC Clocked by LSI or LSE
    - Regulator in LP mode
    - HSI, HSE OFF and LSI OFF if not used as RTC Clock source  
    - No IWDG
    - Automatic Wakeup using RTC clocked by LSI (after ~20s)
    - Wakeup using EXTI Line (User push-button PA.00)
    */
    StopRTCMode_Measure();
#elif defined (STANDBY_MODE)
    /* STANDBY Mode Entry
        - RTC OFF
        - IWDG and LSI OFF
        - Wakeup using WakeUp Pin PWR_WAKEUP_PIN1 connected to PA.00
    */
    StandbyMode_Measure();
#elif defined (STANDBY_RTC_MODE)
    /* STANDBY Mode with RTC on LSE/LSI Entry
        - RTC Clocked by LSE or LSI
        - IWDG OFF and LSI OFF if not used as RTC Clock source
        - Automatic Wakeup using RTC clocked by LSE/LSI (after ~20s)
    */
    StandbyRTCMode_Measure();
#endif
  }
}
Esempio n. 23
0
/**
  * @brief  Initializes the RCC Oscillators according to the specified parameters in the
  *         RCC_OscInitTypeDef.
  * @param  RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
  *         contains the configuration information for the RCC Oscillators.
  * @note   The PLL is not disabled when used as system clock.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
{

   uint32_t tickstart = 0;   
 
  /* Check the parameters */
  assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
  /*------------------------------- HSE Configuration ------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
    /* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->CFGR & RCC_CFGR_PLLSRC) == RCC_CFGR_PLLSRC_HSE)))
    {
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState != RCC_HSE_ON))
      {
        return HAL_ERROR;
      }
    }
    else
    {
      /* Reset HSEON and HSEBYP bits before configuring the HSE --------------*/
      __HAL_RCC_HSE_CONFIG(RCC_HSE_OFF);
      
      /* Get timeout */
      tickstart = HAL_GetTick();
    
      /* Wait till HSE is disabled */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      }
      
      /* Set the new HSE configuration ---------------------------------------*/
      __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
      
      /* Check the HSE State */
      if((RCC_OscInitStruct->HSEState) == RCC_HSE_ON)
      {
        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till HSE is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        }      
      }
      else
      {
        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till HSE is  bypassed or disabled */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
        {
           if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        }
      }
    }
  }
  /*----------------------------- HSI Configuration --------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
    assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
    
    /* When the HSI is used as system clock it will not disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->CFGR & RCC_CFGR_PLLSRC) == RCC_CFGR_PLLSRC_HSI)))
    {
      /* When HSI is used as system clock it will not disabled */
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
      {
        return HAL_ERROR;
      }
      /* Otherwise, just the calibration is allowed */
      else
      {
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
    }
    else
    {
      /* Check the HSI State */
      if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF)
      {
        /* Enable the Internal High Speed oscillator (HSI or HSIdiv4 */
        __HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIState);
        
        /* Get Start Tick*/
        tickstart = HAL_GetTick();
      
        /* Wait till HSI is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        } 
                
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
      else
      {
        /* Disable the Internal High Speed oscillator (HSI). */
        __HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIState);
       
        /* Get Start Tick*/
        tickstart = HAL_GetTick();
      
        /* Wait till HSI is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        } 
      }
    }
  }
   /*----------------------------- MSI Configuration --------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState));
    assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue));
    
        
    /* When the MSI is used as system clock it will not disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI) )
    {
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) != RESET) && (RCC_OscInitStruct->MSIState != RCC_MSI_ON))
      {
        return HAL_ERROR;
      }
      
       /* Otherwise, just the calibration and MSI range change are allowed */
      else
      {
       /* Selects the Multiple Speed oscillator (MSI) clock range .*/
        __HAL_RCC_MSI_RANGE_CONFIG (RCC_OscInitStruct->MSIClockRange);   
        /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
        __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
      }
    }
    else
    {
      /* Check the MSI State */
      if((RCC_OscInitStruct->MSIState)!= RCC_MSI_OFF)
      {
        /* Enable the Internal High Speed oscillator (MSI). */
        __HAL_RCC_MSI_ENABLE();
        
        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till MSI is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > MSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        } 
         /* Selects the Multiple Speed oscillator (MSI) clock range .*/
        __HAL_RCC_MSI_RANGE_CONFIG (RCC_OscInitStruct->MSIClockRange);   
         /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
        __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
        
      }
      else
      {
        /* Disable the Internal High Speed oscillator (MSI). */
        __HAL_RCC_MSI_DISABLE();
        
        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till MSI is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart ) > MSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        } 
      }
    }
  }
  /*------------------------------ LSI Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
    
    /* Check the LSI State */
    if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF)
    {
      /* Enable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_ENABLE();
      
      /* Get timeout */
      tickstart = HAL_GetTick();
      
      /* Wait till LSI is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      } 
    }
    else
    {
      /* Disable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_DISABLE();
      
      /* Get timeout */
      tickstart = HAL_GetTick();
      
      /* Wait till LSI is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      } 
    }
  }
  
  
   /*------------------------------ HSI48 Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
    
    /* Check the HSI48 State */
    if((RCC_OscInitStruct->HSI48State)!= RCC_HSI48_OFF)
    {
      /* Enable the Internal Low Speed oscillator (HSI48). */
      __HAL_RCC_HSI48_ENABLE();
      
      /* Get timeout */
      tickstart = HAL_GetTick();
      
      /* Wait till HSI48 is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > HSI48_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      } 
    }
    else
    {
      /* Disable the Internal Low Speed oscillator (HSI48). */
      __HAL_RCC_HSI48_DISABLE();
      
      /* Get timeout */
      tickstart = HAL_GetTick();
      
      /* Wait till HSI48 is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > HSI48_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      } 
    }
  }
  /*------------------------------ LSE Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));

    /* Enable Power Clock*/
    __PWR_CLK_ENABLE();

    /* Enable write access to Backup domain */
    PWR->CR |= PWR_CR_DBP;

    /* Wait for Backup domain Write protection disable */
    tickstart = HAL_GetTick();
 
    while((PWR->CR & PWR_CR_DBP) == RESET)
    {
      if((HAL_GetTick() - tickstart ) > DBP_TIMEOUT_VALUE)
      {
        return HAL_TIMEOUT;
      }
    }

    /* Reset LSEON and LSEBYP bits before configuring the LSE ----------------*/
    __HAL_RCC_LSE_CONFIG(RCC_LSE_OFF);
    
    /* Get timeout */
    tickstart = HAL_GetTick();
      
    /* Wait till LSE is ready */  
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
    {
      if((HAL_GetTick() - tickstart ) > LSE_TIMEOUT_VALUE)
      {
        return HAL_TIMEOUT;
      }      
    } 
    
    /* Set the new LSE configuration -----------------------------------------*/
    __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
    /* Check the LSE State */
    if((RCC_OscInitStruct->LSEState) == RCC_LSE_ON)
    {     
      /* Get timeout */
      tickstart = HAL_GetTick();
      
      /* Wait till LSE is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      }
    }
    else
    {
      /* Get timeout */
      tickstart = HAL_GetTick();
      
      /* Wait till LSE is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      }
    }
  }
  /*-------------------------------- PLL Configuration -----------------------*/
  /* Check the parameters */
  assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
  if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
  {
    /* Check if the PLL is used as system clock or not */
    if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
    { 
      if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
      {
        /* Check the parameters */
        assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
        assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
        assert_param(IS_RCC_PLL_DIV(RCC_OscInitStruct->PLL.PLLDIV));
        
        
        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();
        
        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till PLL is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        }        

        /* Configure the main PLL clock source, multiplication and division factors. */
        __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
                             RCC_OscInitStruct->PLL.PLLMUL,
                             RCC_OscInitStruct->PLL.PLLDIV);
        /* Enable the main PLL. */
        __HAL_RCC_PLL_ENABLE();

        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till PLL is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        }
      }
      else
      {
        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();       
        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till PLL is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        }
      }
    }
    else
    {
      return HAL_ERROR;
    }
  }
  return HAL_OK;
}
Esempio n. 24
0
void __attribute__((weak)) SystemClock_Config(void) //TODO: rewrite in order to sysinit.c
{
  __PWR_CLK_ENABLE();

  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  RCC_OscInitTypeDef RCC_OscInitStruct;

#if defined(HSE_VALUE) && (HSE_VALUE != 0)
  // Enable HSE Oscillator and activate PLL with HSE as source.
  // This is tuned for STM32F4-DISCOVERY; update it for your board.
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  // This assumes the HSE_VALUE is a multiple of 1 MHz. If this is not
  // your case, you have to recompute these PLL constants.
  RCC_OscInitStruct.PLL.PLLM = (HSE_VALUE/1000000u);
#else
  // Use HSI and activate PLL with HSI as source.
  // This is tuned for NUCLEO-F411; update it for your board.
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  // 16 is the average calibration value, adjust for your own board.
  RCC_OscInitStruct.HSICalibrationValue = 16;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  // This assumes the HSI_VALUE is a multiple of 1 MHz. If this is not
  // your case, you have to recompute these PLL constants.
  RCC_OscInitStruct.PLL.PLLM = (HSI_VALUE/1000000u);
#endif

  RCC_OscInitStruct.PLL.PLLN = 336;
#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE)
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; /* 84 MHz */
#elif defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; /* 168 MHz */
#elif defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx)
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; /* 168 MHz */
#elif defined(STM32F446xx)
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; /* 168 MHz */
#else
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; /* 84 MHz, conservative */
#endif
  RCC_OscInitStruct.PLL.PLLQ = 7; /* To make USB work. */
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  HAL_RCC_OscConfig(&RCC_OscInitStruct);

  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  // Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
  // clocks dividers
  RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK
      | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE)
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
#else
  // This is expected to work for most large cores.
  // Check and update it for your own configuration.
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
#endif

  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
}
Esempio n. 25
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* STM32F3xx HAL library initialization:
       - Configure the Flash prefetch
       - Systick timer is configured by default as source of time base, but user 
         can eventually implement his proper time base source (a general purpose 
         timer for example or other time source), keeping in mind that Time base 
         duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and 
         handled in milliseconds basis.
       - Set NVIC Group Priority to 4
       - Low Level Initialization
     */
  HAL_Init();
  
  /* Configure Green, Red and Orange LEDs */
  BSP_LED_Init(LED_GREEN);
  BSP_LED_Init(LED_RED);
  BSP_LED_Init(LED_ORANGE);    
  
  /* Configure the system clock to 72 Mhz */
  SystemClock_Config();
 
  /* Enable Power Clock */
  __PWR_CLK_ENABLE();
  
  /* Check and handle if the system was resumed from StandBy mode */ 
  if(__HAL_PWR_GET_FLAG(PWR_FLAG_SB) != RESET)
  {
    __HAL_PWR_CLEAR_FLAG(PWR_FLAG_SB);

    /* Turn on the Orange LED */
    BSP_LED_On(LED_ORANGE);
    uwStandByOutFlag = 1;
  }
 
 /* infinite loop */
  while(1)
  {

    /* Configure User Button */
    BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI);
    UserButtonStatus = 0;
    
    /* Wait until User button is pressed to enter the Low Power mode.
       In the meantime, LED_GREEN is blinking */
    while(UserButtonStatus == 0)
    {
      BSP_LED_Toggle(LED_GREEN); 
      HAL_Delay(100);
      
      /* if exiting from stand-by mode, 
         keep LED_ORANGE ON for about 3 sec. */
      if (uwStandByOutFlag > 0)
      {
        uwStandByOutFlag++;
        if (uwStandByOutFlag == 30)
        {
          BSP_LED_Off(LED_ORANGE);
          uwStandByOutFlag = 0; 
        }
      }
      /* if exiting from stop mode thru RTC alarm
        interrupt, keep LED_ORANGE ON for about 3 sec. */      
      if (uwWakeUpIntFlag > 0)
      {
        uwWakeUpIntFlag++;
        if (uwWakeUpIntFlag == 30)
        {
          BSP_LED_Off(LED_BLUE);
          uwWakeUpIntFlag = 0; 
        }
      }
    }
    
    /* Loop while Key button is maintained pressed */
    while(BSP_PB_GetState(BUTTON_USER) != SET) {} 
    
    
    /* Make sure LED_GREEN is turned off to 
      reduce low power mode consumption */
    BSP_LED_Off(LED_GREEN);
    
#if defined (SLEEP_MODE)
    /* Sleep Mode Entry 
    - System Running at PLL (72 MHz)
    - Flash 2 wait state
    - Instruction and Data caches ON
    - Prefetch ON
    - Code running from Internal FLASH
    - All peripherals disabled.
    - Wakeup using EXTI Line (User Button PA.00)
    */
    SleepMode_Measure();
#elif defined (STOP_MODE)
    /* STOP Mode Entry 
    - RTC Clocked by LSI
    - Regulator in LP mode
    - HSI, HSE OFF and LSI OFF if not used as RTC Clock source  
    - No IWDG
    - Wakeup using EXTI Line (User Button PA.00)
    */
    StopMode_Measure();      
#elif defined (STOP_RTC_MODE)
    /* STOP Mode Entry 
    - RTC Clocked by LSI
    - Regulator in LP mode
    - HSI, HSE OFF and LSI OFF if not used as RTC Clock source  
    - No IWDG
    - Automatic Wakeup using RTC clocked by LSI (after ~20s)
    */
    StopRTCMode_Measure();  
#elif defined (STANDBY_MODE)
    /* STANDBY Mode Entry 
    - Backup SRAM and RTC OFF
    - IWDG and LSI OFF
    - Wakeup using WakeUp Pin (User Button PA.00)
    */
    StandbyMode_Measure();
#elif defined (STANDBY_RTC_MODE)
    /* STANDBY Mode with RTC on LSI Entry 
    - RTC Clocked by LSI
    - IWDG OFF and LSI OFF if not used as RTC Clock source
    - Automatic Wakeup using RTC clocked by LSI (after ~20s)
    */
    StandbyRTCMode_Measure();
#endif    
  }
}
Esempio n. 26
0
SystemClock_Config(void)
{
  // Enable Power Control clock
  __PWR_CLK_ENABLE();

  // The voltage scaling allows optimizing the power consumption when the
  // device is clocked below the maximum system frequency, to update the
  // voltage scaling value regarding system frequency refer to product
  // datasheet.
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

#warning "Please check if the SystemClock_Config() settings match your board!"
  // Comment out the warning after checking and updating.

  RCC_OscInitTypeDef RCC_OscInitStruct;

#if defined(HSE_VALUE) && (HSE_VALUE != 0)
  // Enable HSE Oscillator and activate PLL with HSE as source.
  // This is tuned for STM32F4-DISCOVERY; update it for your board.
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  // This assumes the HSE_VALUE is a multiple of 1 MHz. If this is not
  // your case, you have to recompute these PLL constants.
  RCC_OscInitStruct.PLL.PLLM = (HSE_VALUE/1000000u);
#else
  // Use HSI and activate PLL with HSI as source.
  // This is tuned for NUCLEO-F411; update it for your board.
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  // 16 is the average calibration value, adjust for your own board.
  RCC_OscInitStruct.HSICalibrationValue = 16;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  // This assumes the HSI_VALUE is a multiple of 1 MHz. If this is not
  // your case, you have to recompute these PLL constants.
  RCC_OscInitStruct.PLL.PLLM = (HSI_VALUE/1000000u);
#endif

  RCC_OscInitStruct.PLL.PLLN = 336;
#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE)
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; /* 84 MHz */
#elif defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; /* 168 MHz */
#elif defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx)
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; /* 168 MHz */
#elif defined(STM32F446xx)
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; /* 168 MHz */
#else
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; /* 84 MHz, conservative */
#endif
  RCC_OscInitStruct.PLL.PLLQ = 7; /* To make USB work. */
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  HAL_RCC_OscConfig(&RCC_OscInitStruct);

  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  // Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
  // clocks dividers
  RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK
      | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE)
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);
#else
  // This is expected to work for most large cores.
  // Check and update it for your own configuration.
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
#endif

  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
}
Esempio n. 27
0
void Hardware_Init() 
{
    HAL_Init();

    SystemClock_Config();

    __GPIOA_CLK_ENABLE();
    __GPIOB_CLK_ENABLE();
    __GPIOC_CLK_ENABLE();
    __GPIOD_CLK_ENABLE();
    __GPIOE_CLK_ENABLE();
    __GPIOF_CLK_ENABLE();
    __GPIOG_CLK_ENABLE();
    __DMA1_CLK_ENABLE();        // Для DAC1 (бикалка)
    
    __TIM6_CLK_ENABLE();        // Для отсчёта миллисекунд
    __TIM2_CLK_ENABLE();        // Для тиков
    __TIM7_CLK_ENABLE();        // Для DAC1 (бикалка)
    __DAC_CLK_ENABLE();         // Для бикалки
    __PWR_CLK_ENABLE();

    __SYSCFG_CLK_ENABLE();

    HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);

    // Timer  /////////////////////////////////////////////////////////////////
    //RCC_PCLK1Config(RCC_HCLK_Div1);

    // Таймер для мс
    HAL_NVIC_SetPriority(TIM6_DAC_IRQn, 2, 0);
    HAL_NVIC_EnableIRQ(TIM6_DAC_IRQn);

    if (HAL_TIM_Base_Init(&handleTIM6forTimer) != HAL_OK)
    {
        HARDWARE_ERROR
    }

    if (HAL_TIM_Base_Start_IT(&handleTIM6forTimer) != HAL_OK)
    {
        HARDWARE_ERROR
    }

    // Таймер для тиков
    TIM_HandleTypeDef tim2handle =
    {
        TIM2,
        {
            0,
            TIM_COUNTERMODE_UP,
            0xffffffff,
            TIM_CLOCKDIVISION_DIV1
        }
    };

    if (HAL_TIM_Base_Init(&tim2handle) != HAL_OK)
    {
        HARDWARE_ERROR
    }

    if (HAL_TIM_Base_Start(&tim2handle) != HAL_OK)
    {
        HARDWARE_ERROR
    }

    Sound_Init();
    
#ifdef SPI_ENABLE
    Panel_Init();
#endif

    FSMC_Init();

    ADC_Init();

    FDrive_Init();
    
// Analog and DAC programmable SPI ////////////////////////////////////////

    GPIO_InitTypeDef isGPIOG =
    {
        GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_5 | GPIO_PIN_7,     // GPIO_PIN_1 - для работы с дисплеем
        GPIO_MODE_OUTPUT_PP,
        GPIO_NOPULL,
        GPIO_SPEED_HIGH,
        GPIO_AF0_MCO
    };
    HAL_GPIO_Init(GPIOG, &isGPIOG);

    isGPIOG.Pin = GPIO_PIN_1;
    isGPIOG.Mode = GPIO_MODE_OUTPUT_PP;
    isGPIOG.Pull = GPIO_NOPULL;

    HAL_GPIO_Init(GPIOG, &isGPIOG);
    
    HAL_GPIO_WritePin(GPIOG, GPIO_PIN_1, GPIO_PIN_RESET);                   // PG1 - когда равен 1, чтение дисплея, в остальных случаях 0

    RTC_Init();
}
Esempio n. 28
0
/**
  * @brief  Initializes the RCC extended peripherals clocks according to the specified parameters in the
  *         RCC_PeriphCLKInitTypeDef.
  * @param  PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that
  *         contains the configuration information for the Extended Peripherals clocks(USART1,USART2, LPUART1, 
  *         I2C1, RTC, USB/RNG  and LPTIM1 clocks).
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit)
{
  uint32_t tickstart = 0;   
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RCC_PERIPHCLK(PeriphClkInit->PeriphClockSelection));

  /*------------------------------- USART1 Configuration ------------------------*/ 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1)
  {
    /* Check the parameters */
    assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection));
    
    /* Configure the USART1 clock source */
    __HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection);
  }
  
  /*----------------------------- USART2 Configuration --------------------------*/ 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2)
  {
    /* Check the parameters */
    assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection));
    
    /* Configure the USART2 clock source */
    __HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection);
  }
  
  /*------------------------------ LPUART1 Configuration ------------------------*/ 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPUART1) == RCC_PERIPHCLK_LPUART1)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LPUART1CLKSOURCE(PeriphClkInit->Lpuart1ClockSelection));
    
    /* Configure the LPUAR1 clock source */
    __HAL_RCC_LPUART1_CONFIG(PeriphClkInit->Lpuart1ClockSelection);
  }

  /*------------------------------ I2C1 Configuration ------------------------*/ 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1)
  {
    /* Check the parameters */
    assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection));
    
    /* Configure the I2C1 clock source */
    __HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection);
  }
    
  
  /*---------------------------- RTC configuration -------------------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC))
  {
        /* Enable Power Clock*/
    __PWR_CLK_ENABLE();
    
    /* Enable write access to Backup domain */
    PWR->CR |= PWR_CR_DBP;
    
    /* Wait for Backup domain Write protection disable */
    tickstart = HAL_GetTick();
    
    while((PWR->CR & PWR_CR_DBP) == RESET)
    {
      if((HAL_GetTick() - tickstart ) > DBP_TIMEOUT_VALUE)
      {
        return HAL_TIMEOUT;
      }      
    }
    
    /* Reset the Backup domain only if the RTC Clock source selection is modified */ 
    if((RCC->CSR & RCC_CSR_RTCSEL) != (PeriphClkInit->RTCClockSelection & RCC_CSR_RTCSEL))
    {
      /* Store the content of CSR register before the reset of Backup Domain */
      tmpreg = (RCC->CSR & ~(RCC_CSR_RTCSEL));
      /* RTC Clock selection can be changed only if the Backup Domain is reset */
      __HAL_RCC_BACKUPRESET_FORCE();
      __HAL_RCC_BACKUPRESET_RELEASE();
      /* Restore the Content of CSR register */
      RCC->CSR = tmpreg;
    }
    
    /* If LSE is selected as RTC clock source, wait for LSE reactivation */
    if(PeriphClkInit->RTCClockSelection == RCC_RTCCLKSOURCE_LSE)
    {
      /* Get timeout */   
      tickstart = HAL_GetTick();
      
      /* Wait till LSE is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      }  
    }
    __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
  }
#if !defined(STM32L051xx) && !defined(STM32L061xx)  
 /*---------------------------- USB and RNG configuration --------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == (RCC_PERIPHCLK_USB))
  {
    assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection));
    __HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);
  }
#endif /* !(STM32L051xx) && !(STM32L061xx) */
  
  /*---------------------------- LPTIM1 configuration ------------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM1) == (RCC_PERIPHCLK_LPTIM1))
  {
    assert_param(IS_RCC_LPTIMCLK(PeriphClkInit->LptimClockSelection));
    __HAL_RCC_LPTIM1_CONFIG(PeriphClkInit->LptimClockSelection);
  }
  return HAL_OK;
}
Esempio n. 29
0
void rtc_init_finalise() {
    if (!rtc_need_init_finalise) {
        return;
    }

    rtc_info = 0x20000000 | (rtc_use_lse << 28);
    if (PYB_RTC_Init(&RTCHandle) != HAL_OK) {
        if (rtc_use_lse) {
            // fall back to LSI...
            rtc_use_lse = false;
            rtc_startup_tick = HAL_GetTick();
            PYB_RTC_MspInit_Kick(&RTCHandle, rtc_use_lse);
            HAL_PWR_EnableBkUpAccess();
            RTCHandle.State = HAL_RTC_STATE_RESET;
            if (PYB_RTC_Init(&RTCHandle) != HAL_OK) {
                rtc_info = 0x0100ffff; // indicate error
                return;
            }
        } else {
            // init error
            rtc_info = 0xffff; // indicate error
            return;
        }
    }

    // record how long it took for the RTC to start up
    rtc_info |= (HAL_GetTick() - rtc_startup_tick) & 0xffff;

    // fresh reset; configure RTC Calendar
    RTC_CalendarConfig();
    #if defined(MCU_SERIES_L4)
    if(__HAL_RCC_GET_FLAG(RCC_FLAG_BORRST) != RESET) {
    #else
    if(__HAL_RCC_GET_FLAG(RCC_FLAG_PORRST) != RESET) {
    #endif
        // power on reset occurred
        rtc_info |= 0x10000;
    }
    if(__HAL_RCC_GET_FLAG(RCC_FLAG_PINRST) != RESET) {
        // external reset occurred
        rtc_info |= 0x20000;
    }
    // Clear source Reset Flag
    __HAL_RCC_CLEAR_RESET_FLAGS();
    rtc_need_init_finalise = false;
}

STATIC HAL_StatusTypeDef PYB_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct) {
    /*------------------------------ LSI Configuration -------------------------*/
    if ((RCC_OscInitStruct->OscillatorType & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) {
        // Check the LSI State
        if (RCC_OscInitStruct->LSIState != RCC_LSI_OFF) {
            // Enable the Internal Low Speed oscillator (LSI).
            __HAL_RCC_LSI_ENABLE();
        } else {
            // Disable the Internal Low Speed oscillator (LSI).
            __HAL_RCC_LSI_DISABLE();
        }
    }

    /*------------------------------ LSE Configuration -------------------------*/
    if ((RCC_OscInitStruct->OscillatorType & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) {
        // Enable Power Clock
        __PWR_CLK_ENABLE();
        HAL_PWR_EnableBkUpAccess();
        uint32_t tickstart = HAL_GetTick();

        #if defined(MCU_SERIES_F7) || defined(MCU_SERIES_L4)
        //__HAL_RCC_PWR_CLK_ENABLE();
        // Enable write access to Backup domain
        //PWR->CR1 |= PWR_CR1_DBP;
        // Wait for Backup domain Write protection disable
        while ((PWR->CR1 & PWR_CR1_DBP) == RESET) {
            if (HAL_GetTick() - tickstart > RCC_DBP_TIMEOUT_VALUE) {
                return HAL_TIMEOUT;
            }
        }
        #else
        // Enable write access to Backup domain
        //PWR->CR |= PWR_CR_DBP;
        // Wait for Backup domain Write protection disable
        while ((PWR->CR & PWR_CR_DBP) == RESET) {
            if (HAL_GetTick() - tickstart > DBP_TIMEOUT_VALUE) {
                return HAL_TIMEOUT;
            }
        }
        #endif

        // Set the new LSE configuration
        __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
    }

    return HAL_OK;
}

STATIC HAL_StatusTypeDef PYB_RTC_Init(RTC_HandleTypeDef *hrtc) {
    // Check the RTC peripheral state
    if (hrtc == NULL) {
        return HAL_ERROR;
    }
    if (hrtc->State == HAL_RTC_STATE_RESET) {
        // Allocate lock resource and initialize it
        hrtc->Lock = HAL_UNLOCKED;
        // Initialize RTC MSP
        if (PYB_RTC_MspInit_Finalise(hrtc) != HAL_OK) {
            return HAL_ERROR;
        }
    }

    // Set RTC state
    hrtc->State = HAL_RTC_STATE_BUSY;

    // Disable the write protection for RTC registers
    __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

    // Set Initialization mode
    if (RTC_EnterInitMode(hrtc) != HAL_OK) {
        // Enable the write protection for RTC registers
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        // Set RTC state
        hrtc->State = HAL_RTC_STATE_ERROR;

        return HAL_ERROR;
    } else {
        // Clear RTC_CR FMT, OSEL and POL Bits
        hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL));
        // Set RTC_CR register
        hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);

        // Configure the RTC PRER
        hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv);
        hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << 16);

        // Exit Initialization mode
        hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;

        #if defined(MCU_SERIES_L4)
        hrtc->Instance->OR &= (uint32_t)~RTC_OR_ALARMOUTTYPE;
        hrtc->Instance->OR |= (uint32_t)(hrtc->Init.OutPutType);
        #elif defined(MCU_SERIES_F7)
        hrtc->Instance->OR &= (uint32_t)~RTC_OR_ALARMTYPE;
        hrtc->Instance->OR |= (uint32_t)(hrtc->Init.OutPutType);
        #else
        hrtc->Instance->TAFCR &= (uint32_t)~RTC_TAFCR_ALARMOUTTYPE;
        hrtc->Instance->TAFCR |= (uint32_t)(hrtc->Init.OutPutType);
        #endif

        // Enable the write protection for RTC registers
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        // Set RTC state
        hrtc->State = HAL_RTC_STATE_READY;

        return HAL_OK;
    }
}

STATIC void PYB_RTC_MspInit_Kick(RTC_HandleTypeDef *hrtc, bool rtc_use_lse) {
    /* To change the source clock of the RTC feature (LSE, LSI), You have to:
       - Enable the power clock using __PWR_CLK_ENABLE()
       - Enable write access using HAL_PWR_EnableBkUpAccess() function before to
         configure the RTC clock source (to be done once after reset).
       - Reset the Back up Domain using __HAL_RCC_BACKUPRESET_FORCE() and
         __HAL_RCC_BACKUPRESET_RELEASE().
       - Configure the needed RTc clock source */

    // RTC clock source uses LSE (external crystal) only if relevant
    // configuration variable is set.  Otherwise it uses LSI (internal osc).

    RCC_OscInitTypeDef RCC_OscInitStruct;
    RCC_OscInitStruct.OscillatorType =  RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
    if (rtc_use_lse) {
        RCC_OscInitStruct.LSEState = RCC_LSE_ON;
        RCC_OscInitStruct.LSIState = RCC_LSI_OFF;
    } else {
        RCC_OscInitStruct.LSEState = RCC_LSE_OFF;
        RCC_OscInitStruct.LSIState = RCC_LSI_ON;
    }
    PYB_RCC_OscConfig(&RCC_OscInitStruct);

    // now ramp up osc. in background and flag calendear init needed
    rtc_need_init_finalise = true;
}
Esempio n. 30
-1
/**
  * @brief  This function configures the system to enter Standby mode for
  *         current consumption measurement purpose.
  *         STANDBY Mode
  *         ============
  *           - RTC OFF
  *           - IWDG and LSI OFF
  *           - Wakeup using WakeUp Pin (PA.00)
  * @param  None
  * @retval None
  */
void StandbyMode_Measure(void)
{
  /* Enable Power Clock*/
  __PWR_CLK_ENABLE();

  /* Allow access to Backup */
  HAL_PWR_EnableBkUpAccess();

  /* Reset RTC Domain */
  __HAL_RCC_BACKUPRESET_FORCE();
  __HAL_RCC_BACKUPRESET_RELEASE();
  
  /* The Following Wakeup sequence is highly recommended prior to each Standby mode entry
     mainly  when using more than one wakeup source this is to not miss any wakeup event.
       - Disable all used wakeup sources,
       - Clear all related wakeup flags, 
       - Re-enable all used wakeup sources,
       - Enter the Standby mode.
  */
  
  /*#### Disable all used wakeup sources: WKUP pin ###########################*/
  HAL_PWR_DisableWakeUpPin(PWR_WAKEUP_PIN1);
  
  /*#### Clear all related wakeup flags ######################################*/
  /* Clear PWR wake up Flag */
  __HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU);
  
  /* Enable WKUP pin */
  HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PIN1);
  
  /* a 200 ms-delay is needed between enabling WKUP pin and
     actually entering standby mode.
  */
  HAL_Delay(200);

  /* Request to enter STANDBY mode */
  HAL_PWR_EnterSTANDBYMode();
}