Esempio n. 1
0
void libblis_test_amaxv_check
(
    test_params_t* params,
    obj_t*         x,
    obj_t*         index,
    double*        resid
)
{
    obj_t index_test;
    obj_t chi_i;
    obj_t chi_i_test;
    dim_t i;
    dim_t i_test;

    double i_d, junk;
    double i_d_test;

    //
    // Pre-conditions:
    // - x is randomized.
    //
    // Under these conditions, we assume that the implementation for
    //
    //   index := amaxv( x )
    //
    // is functioning correctly if
    //
    //   x[ index ] = max( x )
    //
    // where max() is implemented via the bli_?amaxv_test() function.
    //

    // The following two calls have already been made by the caller. That
    // is, the index object has already been created and the library's
    // amaxv implementation has already been tested.
    //bli_obj_scalar_init_detached( BLIS_INT, &index );
    //bli_amaxv( x, &index );
    bli_getsc( index, &i_d, &junk );
    i = i_d;
    bli_acquire_vi( i, x, &chi_i );

    bli_obj_scalar_init_detached( BLIS_INT, &index_test );
    bli_amaxv_test( x, &index_test );
    bli_getsc( &index_test, &i_d_test, &junk );
    i_test = i_d_test;
    bli_acquire_vi( i_test, x, &chi_i_test );

    // Verify that the values referenced by index and index_test are equal.
    if ( bli_obj_equals( &chi_i, &chi_i_test ) ) *resid = 0.0;
    else                                         *resid = 1.0;
}
Esempio n. 2
0
void libblis_test_addv_check( obj_t*  alpha,
                              obj_t*  beta,
                              obj_t*  x,
                              obj_t*  y,
                              double* resid )
{
	num_t  dt      = bli_obj_datatype( *x );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *x );
	dim_t  m       = bli_obj_vector_dim( *x );

	conj_t conjx   = bli_obj_conj_status( *x );

	obj_t  aplusb;
	obj_t  alpha_conj;
	obj_t  norm_r, m_r, temp_r;

	double junk;

	//
	// Pre-conditions:
	// - x is set to alpha.
	// - y_orig is set to beta.
	// Note:
	// - alpha and beta should have non-zero imaginary components in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := y_orig + conjx(x)
	//
	// is functioning correctly if
	//
	//   fnormv(y) - sqrt( absqsc( beta + conjx(alpha) ) * m )
	//
	// is negligible.
	//

	bli_obj_scalar_init_detached( dt,      &aplusb );
	bli_obj_scalar_init_detached( dt_real, &temp_r );
	bli_obj_scalar_init_detached( dt_real, &norm_r );
	bli_obj_scalar_init_detached( dt_real, &m_r );

	bli_obj_scalar_init_detached_copy_of( dt, conjx, alpha, &alpha_conj );

	bli_fnormv( y, &norm_r );

	bli_copysc( beta, &aplusb );
	bli_addsc( &alpha_conj, &aplusb );

	bli_setsc( ( double )m, 0.0, &m_r );

	bli_absqsc( &aplusb, &temp_r );
	bli_mulsc( &m_r, &temp_r );
	bli_sqrtsc( &temp_r, &temp_r );
	bli_subsc( &temp_r, &norm_r );

	bli_getsc( &norm_r, resid, &junk );
}
Esempio n. 3
0
void libblis_test_hemv_check( obj_t*  alpha,
                              obj_t*  a,
                              obj_t*  x,
                              obj_t*  beta,
                              obj_t*  y,
                              obj_t*  y_orig,
                              double* resid )
{
    num_t  dt      = bli_obj_datatype( *y );
    num_t  dt_real = bli_obj_datatype_proj_to_real( *y );

    dim_t  m       = bli_obj_vector_dim( *y );

    obj_t  v;
    obj_t  norm;

    double junk;

    //
    // Pre-conditions:
    // - a is randomized and Hermitian.
    // - x is randomized.
    // - y_orig is randomized.
    // Note:
    // - alpha and beta should have non-zero imaginary components in the
    //   complex cases in order to more fully exercise the implementation.
    //
    // Under these conditions, we assume that the implementation for
    //
    //   y := beta * y_orig + alpha * conja(A) * conjx(x)
    //
    // is functioning correctly if
    //
    //   normf( y - v )
    //
    // is negligible, where
    //
    //   v = beta * y_orig + alpha * conja(A_dense) * x
    //

    bli_obj_scalar_init_detached( dt_real, &norm );

    bli_obj_create( dt, m, 1, 0, 0, &v );

    bli_copyv( y_orig, &v );

    bli_mkherm( a );
    bli_obj_set_struc( BLIS_GENERAL, *a );
    bli_obj_set_uplo( BLIS_DENSE, *a );

    bli_gemv( alpha, a, x, beta, &v );

    bli_subv( &v, y );
    bli_normfv( y, &norm );
    bli_getsc( &norm, resid, &junk );

    bli_obj_free( &v );
}
Esempio n. 4
0
void libblis_test_xpbym_check
     (
       test_params_t* params,
       obj_t*         x,
       obj_t*         beta,
       obj_t*         y,
       obj_t*         y_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( y );
	num_t  dt_real = bli_obj_dt_proj_to_real( y );

	dim_t  m       = bli_obj_length( y );
	dim_t  n       = bli_obj_width( y );

	obj_t  x_temp, y_temp;
	obj_t  norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - y_orig is randomized.
	// Note:
	// - alpha should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := beta * y_orig + conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - ( beta * y_orig + conjx(x) ) )
	//
	// is negligible.
	//

	bli_obj_scalar_init_detached( dt_real, &norm );

    bli_obj_create( dt, m, n, 0, 0, &x_temp );
    bli_obj_create( dt, m, n, 0, 0, &y_temp );

    bli_copym( x,      &x_temp );
    bli_copym( y_orig, &y_temp );

    bli_scalm( beta, &y_temp );
	bli_addm( &x_temp, &y_temp );

    bli_subm( &y_temp, y );
    bli_normfm( y, &norm );
    bli_getsc( &norm, resid, &junk );

    bli_obj_free( &x_temp );
    bli_obj_free( &y_temp );
}
Esempio n. 5
0
void libblis_test_scalv_check
     (
       test_params_t* params,
       obj_t*         beta,
       obj_t*         y,
       obj_t*         y_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( y );
	num_t  dt_real = bli_obj_dt_proj_to_real( y );

	dim_t  m       = bli_obj_vector_dim( y );

	obj_t  norm_y_r;
	obj_t  nbeta;

	obj_t  y2;

	double junk;

	//
	// Pre-conditions:
	// - y_orig is randomized.
	// Note:
	// - beta should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := conjbeta(beta) * y_orig
	//
	// is functioning correctly if
	//
	//   normf( y + -conjbeta(beta) * y_orig )
	//
	// is negligible.
	//

	bli_obj_create( dt, m, 1, 0, 0, &y2 );
    bli_copyv( y_orig, &y2 );

	bli_obj_scalar_init_detached( dt,      &nbeta );
	bli_obj_scalar_init_detached( dt_real, &norm_y_r );

	bli_copysc( beta, &nbeta );
	bli_mulsc( &BLIS_MINUS_ONE, &nbeta );

	bli_scalv( &nbeta, &y2 );
    bli_addv( &y2, y );

    bli_normfv( y, &norm_y_r );

    bli_getsc( &norm_y_r, resid, &junk );

    bli_obj_free( &y2 );
}
Esempio n. 6
0
void libblis_test_axpbyv_check( obj_t*  alpha,
                                obj_t*  x,
                                obj_t*  beta,
                                obj_t*  y,
                                obj_t*  y_orig,
                                double* resid )
{
	num_t  dt      = bli_obj_datatype( *y );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *y );

	dim_t  m       = bli_obj_vector_dim( *y );

	obj_t  x_temp, y_temp;
	obj_t  norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - y_orig is randomized.
	// Note:
	// - alpha should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := beta * y_orig + alpha * conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - ( beta * y_orig + alpha * conjx(x) ) )
	//
	// is negligible.
	//

	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m, 1, 0, 0, &x_temp );
	bli_obj_create( dt, m, 1, 0, 0, &y_temp );

	bli_copyv( x,      &x_temp );
	bli_copyv( y_orig, &y_temp );

	bli_scalv( alpha, &x_temp );
	bli_scalv(  beta, &y_temp );
	bli_addv( &x_temp, &y_temp );

	bli_subv( &y_temp, y );
	bli_normfv( y, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &x_temp );
	bli_obj_free( &y_temp );
}
Esempio n. 7
0
err_t bli_check_real_valued_object( obj_t* a )
{
	err_t  e_val = BLIS_SUCCESS;
	double a_real;
	double a_imag;

	bli_getsc( a, &a_real, &a_imag );

	if ( a_imag != 0.0 )
		e_val = BLIS_EXPECTED_REAL_VALUED_OBJECT;

	return e_val;
}
Esempio n. 8
0
void libblis_test_normfm_check
     (
       test_params_t* params,
       obj_t*         beta,
       obj_t*         x,
       obj_t*         norm,
       double*        resid
     )
{
	num_t  dt_real = bli_obj_datatype_proj_to_real( *x );
	dim_t  m       = bli_obj_length( *x );
	dim_t  n       = bli_obj_width( *x );

	obj_t  m_r, n_r, temp_r;

	double junk;

	//
	// Pre-conditions:
	// - x is set to beta.
	// Note:
	// - beta should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   norm := normf( x )
	//
	// is functioning correctly if
	//
	//   norm = sqrt( absqsc( beta ) * m * n )
	//
	// where m and n are the dimensions of x.
	//

	bli_obj_scalar_init_detached( dt_real, &temp_r );
	bli_obj_scalar_init_detached( dt_real, &m_r );
	bli_obj_scalar_init_detached( dt_real, &n_r );

	bli_setsc( ( double )m, 0.0, &m_r );
	bli_setsc( ( double )n, 0.0, &n_r );

	bli_absqsc( beta, &temp_r );
	bli_mulsc( &m_r, &temp_r );
	bli_mulsc( &n_r, &temp_r );
	bli_sqrtsc( &temp_r, &temp_r );
	bli_subsc( &temp_r, norm );

	bli_getsc( norm, resid, &junk );
}
Esempio n. 9
0
void libblis_test_fnormv_check( obj_t*  beta,
                                obj_t*  x,
                                obj_t*  norm,
                                double* resid )
{
	num_t  dt_real = bli_obj_datatype_proj_to_real( *x );
	dim_t  m       = bli_obj_vector_dim( *x );

	obj_t  m_r, temp_r;

	double junk;

	//
	// Pre-conditions:
	// - x is set to beta.
	// Note:
	// - beta should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   norm := fnorm( x )
	//
	// is functioning correctly if
	//
	//   norm = sqrt( absqsc( beta ) * m )
	//
	// where m is the length of x.
	//

	bli_obj_init_scalar( dt_real, &temp_r );
	bli_obj_init_scalar( dt_real, &m_r );

	bli_setsc( ( double )m, 0.0, &m_r );

	bli_absqsc( beta, &temp_r );
	bli_mulsc( &m_r, &temp_r );
	bli_sqrtsc( &temp_r, &temp_r );
	bli_subsc( &temp_r, norm );

	bli_getsc( norm, resid, &junk );
}
Esempio n. 10
0
void libblis_test_copym_check
     (
       test_params_t* params,
       obj_t*         x,
       obj_t*         y,
       double*        resid
     )
{
	num_t  dt_real = bli_obj_dt_proj_to_real( x );

	obj_t  norm_y_r;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := conjx(x)
	//
	// is functioning correctly if
	//
	//   normfm( y - conjx(x) )
	//
	// is negligible.
	//

	bli_obj_scalar_init_detached( dt_real, &norm_y_r );

	bli_subm( x, y );

	bli_normfm( y, &norm_y_r );

	bli_getsc( &norm_y_r, resid, &junk );
}
Esempio n. 11
0
void libblis_test_syr2_check( obj_t*  alpha,
                              obj_t*  x,
                              obj_t*  y,
                              obj_t*  a,
                              obj_t*  a_orig,
                              double* resid )
{
	num_t  dt      = bli_obj_datatype( *a );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *a );

	dim_t  m_a     = bli_obj_length( *a );

	obj_t  xt, yt;
	obj_t  t, v, w1, w2;
	obj_t  tau, rho, norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - y is randomized.
	// - a is randomized and symmetric.
	// Note:
	// - alpha should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   A := A_orig + alpha * conjx(x) * conjy(y)^T + alpha * conjy(y) * conjx(x)^T
	//
	// is functioning correctly if
	//
	//   normf( v - w )
	//
	// is negligible, where
	//
	//   v = A * t
	//   w = ( A_orig + alpha * conjx(x) * conjy(y)^T + alpha * conjy(y) * conjx(x)^T ) * t
	//     = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + alpha * conjy(y) * conjx(x)^T * t
	//     = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + alpha * conjy(y) * rho
	//     = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + w1
	//     = A_orig * t + alpha * conjx(x) * rho            + w1
	//     = A_orig * t + w2                                + w1
	//

	bli_mksymm( a );
	bli_mksymm( a_orig );
	bli_obj_set_struc( BLIS_GENERAL, *a );
	bli_obj_set_struc( BLIS_GENERAL, *a_orig );
	bli_obj_set_uplo( BLIS_DENSE, *a );
	bli_obj_set_uplo( BLIS_DENSE, *a_orig );

	bli_obj_scalar_init_detached( dt,      &tau );
	bli_obj_scalar_init_detached( dt,      &rho );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m_a, 1, 0, 0, &t );
	bli_obj_create( dt, m_a, 1, 0, 0, &v );
	bli_obj_create( dt, m_a, 1, 0, 0, &w1 );
	bli_obj_create( dt, m_a, 1, 0, 0, &w2 );

	bli_obj_alias_to( *x, xt );
	bli_obj_alias_to( *y, yt );

	bli_setsc( 1.0/( double )m_a, -1.0/( double )m_a, &tau );
	bli_setv( &tau, &t );

	bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v );

	bli_dotv( &xt, &t, &rho );
	bli_mulsc( alpha, &rho );
	bli_scal2v( &rho, y, &w1 );

	bli_dotv( &yt, &t, &rho );
	bli_mulsc( alpha, &rho );
	bli_scal2v( &rho, x, &w2 );

	bli_addv( &w2, &w1 );

	bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w1 );

	bli_subv( &w1, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w1 );
	bli_obj_free( &w2 );
}
Esempio n. 12
0
void libblis_test_gemmtrsm_ukr_check( side_t  side,
                                      obj_t*  alpha,
                                      obj_t*  a1x,
                                      obj_t*  a11,
                                      obj_t*  bx1,
                                      obj_t*  b11,
                                      obj_t*  c11,
                                      obj_t*  c11_orig,
                                      double* resid )
{
	num_t  dt      = bli_obj_datatype( *b11 );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *b11 );

	dim_t  m       = bli_obj_length( *b11 );
	dim_t  n       = bli_obj_width( *b11 );
	dim_t  k       = bli_obj_width( *a1x );

	obj_t  kappa, norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a1x, a11, bx1, c11_orig are randomized; a11 is triangular.
	// - contents of b11 == contents of c11.
	// - side == BLIS_LEFT.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   B := inv(A11) * ( alpha * B11 - A1x * Bx1 )       (side = left)
	//
	// is functioning correctly if
	//
	//   fnorm( v - z )
	//
	// is negligible, where
	//
	//   v = B11 * t
	//
	//   z = ( inv(A11) * ( alpha * B11_orig - A1x * Bx1 ) ) * t
	//     = inv(A11) * ( alpha * B11_orig * t - A1x * Bx1 * t )
	//     = inv(A11) * ( alpha * B11_orig * t - A1x * w )
	//

	bli_obj_scalar_init_detached( dt,      &kappa );
	bli_obj_scalar_init_detached( dt_real, &norm );

	if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, k, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}
	else // else if ( bli_is_left( side ) )
	{
		// BLIS does not currently support right-side micro-kernels.
		bli_check_error_code( BLIS_NOT_YET_IMPLEMENTED );
	}

	bli_randv( &t );
	bli_setsc( 1.0/( double )n, 0.0, &kappa );
	bli_scalv( &kappa, &t );

	bli_gemv( &BLIS_ONE, b11, &t, &BLIS_ZERO, &v );

	// Restore the diagonal of a11 to its original, un-inverted state
	// (needed for trsv).
	bli_invertd( a11 );

	if ( bli_is_left( side ) )
	{
		bli_gemv( &BLIS_ONE, bx1, &t, &BLIS_ZERO, &w );
		bli_gemv( alpha, c11_orig, &t, &BLIS_ZERO, &z );
		bli_gemv( &BLIS_MINUS_ONE, a1x, &w, &BLIS_ONE, &z );
		bli_trsv( &BLIS_ONE, a11, &z );
	}
	else // else if ( bli_is_left( side ) )
	{
		// BLIS does not currently support right-side micro-kernels.
		bli_check_error_code( BLIS_NOT_YET_IMPLEMENTED );
	}

	bli_subv( &z, &v );
	bli_fnormv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}
Esempio n. 13
0
void libblis_test_dotaxpyv_check( obj_t*  alpha,
                                  obj_t*  xt,
                                  obj_t*  x,
                                  obj_t*  y,
                                  obj_t*  rho,
                                  obj_t*  z,
                                  obj_t*  z_orig,
                                  double* resid )
{
	num_t  dt      = bli_obj_datatype( *z );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *z );

	dim_t  m       = bli_obj_vector_dim( *z );

	obj_t  rho_temp;

	obj_t  z_temp;
	obj_t  norm_z;

	double resid1, resid2;
	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - y is randomized.
	// - z_orig is randomized.
	// - xt is an alias to x.
	// Note:
	// - alpha should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   rho := conjxt(x^T) conjy(y)
	//   z := z_orig + alpha * conjx(x)
	//
	// is functioning correctly if
	//
	//   ( rho - rho_temp )
	//
	// and
	//
	//   normf( z - z_temp )
	//
	// are negligible, where rho_temp and z_temp contain rho and z as
	// computed by dotv and axpyv, respectively.
	//

	bli_obj_scalar_init_detached( dt,      &rho_temp );
	bli_obj_scalar_init_detached( dt_real, &norm_z );

	bli_obj_create( dt, m, 1, 0, 0, &z_temp );
	bli_copyv( z_orig, &z_temp );


	bli_dotv( xt, y, &rho_temp );
	bli_axpyv( alpha, x, &z_temp );


	bli_subsc( rho, &rho_temp );
	bli_getsc( &rho_temp, &resid1, &junk );

	bli_subv( &z_temp, z );
	bli_normfv( z, &norm_z );
	bli_getsc( &norm_z, &resid2, &junk );

	*resid = bli_fmaxabs( resid1, resid2 );

	bli_obj_free( &z_temp );
}
Esempio n. 14
0
void libblis_test_herk_check( obj_t*  alpha,
                              obj_t*  a,
                              obj_t*  beta,
                              obj_t*  c,
                              obj_t*  c_orig,
                              double* resid )
{
	num_t  dt      = bli_obj_datatype( *c );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *c );

	dim_t  m       = bli_obj_length( *c );
	dim_t  k       = bli_obj_width_after_trans( *a );

	obj_t  ah;
	obj_t  kappa, norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - c_orig is randomized and Hermitian.
	// Note:
	// - alpha and beta must be real-valued.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   C := beta * C_orig + alpha * transa(A) * transa(A)^H
	//
	// is functioning correctly if
	//
	//   fnorm( v - z )
	//
	// is negligible, where
	//
	//   v = C * t
	//   z = ( beta * C_orig + alpha * transa(A) * transa(A)^H ) * t
	//     = beta * C_orig * t + alpha * transa(A) * transa(A)^H * t
	//     = beta * C_orig * t + alpha * transa(A) * w
	//     = beta * C_orig * t + z
	//

	bli_obj_alias_with_trans( BLIS_CONJ_TRANSPOSE, *a, ah );

	bli_obj_scalar_init_detached( dt,      &kappa );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m, 1, 0, 0, &t );
	bli_obj_create( dt, m, 1, 0, 0, &v );
	bli_obj_create( dt, k, 1, 0, 0, &w );
	bli_obj_create( dt, m, 1, 0, 0, &z );

	bli_randv( &t );
	bli_setsc( 1.0/( double )m, 0.0, &kappa );
	bli_scalv( &kappa, &t );

	bli_hemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v );

	bli_gemv( &BLIS_ONE, &ah, &t, &BLIS_ZERO, &w );
	bli_gemv( alpha, a, &w, &BLIS_ZERO, &z );
	bli_hemv( beta, c_orig, &t, &BLIS_ONE, &z );

	bli_subv( &z, &v );
	bli_fnormv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}
Esempio n. 15
0
void libblis_test_gemv_check( obj_t*  kappa,
                              obj_t*  alpha,
                              obj_t*  a,
                              obj_t*  x,
                              obj_t*  beta,
                              obj_t*  y,
                              obj_t*  y_orig,
                              double* resid )
{
	num_t  dt      = bli_obj_datatype( *y );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *y );

	conj_t conja   = bli_obj_conj_status( *a );

	dim_t  n_x     = bli_obj_vector_dim( *x );
	dim_t  m_y     = bli_obj_vector_dim( *y );

	dim_t  min_m_n = bli_min( m_y, n_x );

	obj_t  x_temp, y_temp;
	obj_t  kappac, norm;
	obj_t  xT_temp, yT_temp, yT;

	double junk;

	//
	// Pre-conditions:
	// - a is initialized to kappa along the diagonal.
	// - x is randomized.
	// - y_orig is randomized.
	// Note:
	// - alpha, beta, and kappa should have non-zero imaginary components in
	//   the complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := beta * y_orig + alpha * transa(A) * conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - z )
	//
	// is negligible, where
	//
	//   z = beta * y_orig + alpha * conja(kappa) * x
	//

	bli_obj_scalar_init_detached_copy_of( dt, conja, kappa, &kappac );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, n_x, 1, 0, 0, &x_temp );
	bli_obj_create( dt, m_y, 1, 0, 0, &y_temp );

	bli_copyv( x,      &x_temp );
	bli_copyv( y_orig, &y_temp );

	bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, 
	                       &x_temp, &xT_temp );
	bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, 
	                       &y_temp, &yT_temp );
	bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, 
	                       y, &yT );

	bli_scalv( &kappac, &xT_temp );
	bli_scalv( beta, &yT_temp );
	bli_axpyv( alpha, &xT_temp, &yT_temp );

	bli_subv( &yT_temp, &yT );
	bli_normfv( &yT, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &x_temp );
	bli_obj_free( &y_temp );
}
Esempio n. 16
0
void libblis_test_her2k_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         a,
       obj_t*         b,
       obj_t*         beta,
       obj_t*         c,
       obj_t*         c_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_datatype( *c );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *c );

	dim_t  m       = bli_obj_length( *c );
	dim_t  k       = bli_obj_width_after_trans( *a );

	obj_t  alphac, ah, bh;
	obj_t  norm;
	obj_t  t, v, w1, w2, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - b is randomized.
	// - c_orig is randomized and Hermitian.
	// Note:
	// - alpha should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	// - beta must be real-valued.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   C := beta * C_orig + alpha * transa(A) * transb(B)^H + conj(alpha) * transb(B) * transa(A)^H
	//
	// is functioning correctly if
	//
	//   normf( v - z )
	//
	// is negligible, where
	//
	//   v = C * t
	//   z = ( beta * C_orig + alpha * transa(A) * transb(B)^H + conj(alpha) * transb(B) * transa(A)^H ) * t
	//     = beta * C_orig * t + alpha * transa(A) * transb(B)^H * t + conj(alpha) * transb(B) * transa(A)^H * t
	//     = beta * C_orig * t + alpha * transa(A) * transb(B)^H * t + conj(alpha) * transb(B) * w2
	//     = beta * C_orig * t + alpha * transa(A) * w1              + conj(alpha) * transb(B) * w2
	//     = beta * C_orig * t + alpha * transa(A) * w1              + z
	//     = beta * C_orig * t + z
	//

	bli_obj_alias_with_trans( BLIS_CONJ_TRANSPOSE, *a, ah );
	bli_obj_alias_with_trans( BLIS_CONJ_TRANSPOSE, *b, bh );

	bli_obj_scalar_init_detached( dt_real, &norm );
	bli_obj_scalar_init_detached_copy_of( dt, BLIS_CONJUGATE, alpha, &alphac );

	bli_obj_create( dt, m, 1, 0, 0, &t );
	bli_obj_create( dt, m, 1, 0, 0, &v );
	bli_obj_create( dt, k, 1, 0, 0, &w1 );
	bli_obj_create( dt, k, 1, 0, 0, &w2 );
	bli_obj_create( dt, m, 1, 0, 0, &z );

	libblis_test_vobj_randomize( params, TRUE, &t );

	bli_hemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v );

	bli_gemv( &BLIS_ONE, &ah, &t, &BLIS_ZERO, &w2 );
	bli_gemv( &BLIS_ONE, &bh, &t, &BLIS_ZERO, &w1 );
	bli_gemv( alpha, a, &w1, &BLIS_ZERO, &z );
	bli_gemv( &alphac, b, &w2, &BLIS_ONE, &z );
	bli_hemv( beta, c_orig, &t, &BLIS_ONE, &z );

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w1 );
	bli_obj_free( &w2 );
	bli_obj_free( &z );
}
Esempio n. 17
0
void libblis_test_her_check( obj_t*  alpha,
                             obj_t*  x,
                             obj_t*  a,
                             obj_t*  a_orig,
                             double* resid )
{
	num_t  dt      = bli_obj_datatype( *a );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *a );

	dim_t  m_a     = bli_obj_length( *a );

	obj_t  xh, t, v, w;
	obj_t  tau, rho, norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - a is randomized and Hermitian.
	// Note:
	// - alpha must be real-valued.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   A := A_orig + alpha * conjx(x) * conjx(x)^H
	//
	// is functioning correctly if
	//
	//   normf( v - w )
	//
	// is negligible, where
	//
	//   v = A * t
	//   w = ( A_orig + alpha * conjx(x) * conjx(x)^H ) * t
	//     =   A_orig * t + alpha * conjx(x) * conjx(x)^H * t
	//     =   A_orig * t + alpha * conjx(x) * rho
	//     =   A_orig * t + w
	//

	bli_mkherm( a );
	bli_mkherm( a_orig );
	bli_obj_set_struc( BLIS_GENERAL, *a );
	bli_obj_set_struc( BLIS_GENERAL, *a_orig );
	bli_obj_set_uplo( BLIS_DENSE, *a );
	bli_obj_set_uplo( BLIS_DENSE, *a_orig );

	bli_obj_scalar_init_detached( dt,      &tau );
	bli_obj_scalar_init_detached( dt,      &rho );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m_a, 1, 0, 0, &t );
	bli_obj_create( dt, m_a, 1, 0, 0, &v );
	bli_obj_create( dt, m_a, 1, 0, 0, &w );

	bli_obj_alias_with_conj( BLIS_CONJUGATE, *x, xh );

	bli_setsc( 1.0/( double )m_a, -1.0/( double )m_a, &tau );
	bli_setv( &tau, &t );

	bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v );

	bli_dotv( &xh, &t, &rho );
	bli_mulsc( alpha, &rho );
	bli_scal2v( &rho, x, &w );
	bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w );

	bli_subv( &w, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
}
Esempio n. 18
0
void libblis_test_trsm_check
     (
       test_params_t* params,
       side_t         side,
       obj_t*         alpha,
       obj_t*         a,
       obj_t*         b,
       obj_t*         b_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_datatype( *b );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *b );

	dim_t  m       = bli_obj_length( *b );
	dim_t  n       = bli_obj_width( *b );

	obj_t  norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized and triangular.
	// - b_orig is randomized.
	// Note:
	// - alpha should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   B := alpha * inv(transa(A)) * B_orig    (side = left)
	//   B := alpha * B_orig * inv(transa(A))    (side = right)
	//
	// is functioning correctly if
	//
	//   normf( v - z )
	//
	// is negligible, where
	//
	//   v = B * t
	//
	//   z = ( alpha * inv(transa(A)) * B ) * t     (side = left)
	//     = alpha * inv(transa(A)) * B * t
	//     = alpha * inv(transa(A)) * w
	//
	//   z = ( alpha * B * inv(transa(A)) ) * t     (side = right)
	//     = alpha * B * tinv(ransa(A)) * t
	//     = alpha * B * w

	bli_obj_scalar_init_detached( dt_real, &norm );

	if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, m, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}
	else // else if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, n, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}

	libblis_test_vobj_randomize( params, TRUE, &t );

	bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &v );

	if ( bli_is_left( side ) )
	{
		bli_gemv( alpha, b_orig, &t, &BLIS_ZERO, &w );
		bli_trsv( &BLIS_ONE, a, &w );
		bli_copyv( &w, &z );
	}
	else
	{
		bli_copyv( &t, &w );
		bli_trsv( &BLIS_ONE, a, &w );
		bli_gemv( alpha, b_orig, &w, &BLIS_ZERO, &z );
	}

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}
Esempio n. 19
0
void libblis_test_gemm_md_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         a,
       obj_t*         b,
       obj_t*         beta,
       obj_t*         c,
       obj_t*         c_orig,
       double*        resid
     )
{
	num_t  dt_real = bli_obj_dt_proj_to_real( c );
	num_t  dt_comp = bli_obj_dt_proj_to_complex( c );
	num_t  dt;

	dim_t  m       = bli_obj_length( c );
	dim_t  n       = bli_obj_width( c );
	dim_t  k       = bli_obj_width_after_trans( a );

	obj_t  norm;
	obj_t  t, v, w, z;

	double junk;

	// Compute our reference checksum in the real domain if all operands
	// are real, and in the complex domain otherwise. Also implicit in this
	// is that we use the storage precision of C to determine the precision
	// in which we perform the reference checksum.
	if ( bli_obj_is_real( a ) &&
	     bli_obj_is_real( b ) &&
	     bli_obj_is_real( c ) ) dt = dt_real;
	else                        dt = dt_comp;

	// This function works in a manner similar to that of the function
	// libblis_test_gemm_check(), except that we project a, b, and c into
	// the complex domain (regardless of their storage datatype), and then
	// proceed with the checking accordingly.

	obj_t a2, b2, c2, c0;

	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, n, 1, 0, 0, &t );
	bli_obj_create( dt, m, 1, 0, 0, &v );
	bli_obj_create( dt, k, 1, 0, 0, &w );
	bli_obj_create( dt, m, 1, 0, 0, &z );

	libblis_test_vobj_randomize( params, TRUE, &t );

	// We need to zero out the imaginary part of t in order for our
	// checks to work in all cases. Otherwise, the imaginary parts
	// could affect intermediate products, depending on the order that
	// they are executed.
	bli_setiv( &BLIS_ZERO, &t );

	// Create complex equivalents of a, b, c_orig, and c.
	bli_obj_create( dt, m, k, 0, 0, &a2 );
	bli_obj_create( dt, k, n, 0, 0, &b2 );
	bli_obj_create( dt, m, n, 0, 0, &c2 );
	bli_obj_create( dt, m, n, 0, 0, &c0 );

	// Cast a, b, c_orig, and c into the datatype of our temporary objects.
	bli_castm( a,      &a2 );
	bli_castm( b,      &b2 );
	bli_castm( c_orig, &c2 );
	bli_castm( c,      &c0 );

	bli_gemv( &BLIS_ONE, &c0, &t, &BLIS_ZERO, &v );

#if 0
if ( bli_obj_is_scomplex( c ) &&
     bli_obj_is_float( a ) &&
     bli_obj_is_float( b ) )
{
bli_printm( "test_gemm.c: a", a, "%7.3f", "" );
bli_printm( "test_gemm.c: b", b, "%7.3f", "" );
bli_printm( "test_gemm.c: c orig", c_orig, "%7.3f", "" );
bli_printm( "test_gemm.c: c computed", c, "%7.3f", "" );
}
#endif

#if 0
	bli_gemm( alpha, &a2, &b2, beta, &c2 );
	bli_gemv( &BLIS_ONE, &c2, &t, &BLIS_ZERO, &z );
	if ( bli_obj_is_real( c ) ) bli_setiv( &BLIS_ZERO, &z );
#else
	bli_gemv( &BLIS_ONE, &b2, &t, &BLIS_ZERO, &w );
	bli_gemv( alpha, &a2, &w, &BLIS_ZERO, &z );
	bli_gemv( beta, &c2, &t, &BLIS_ONE, &z );
	if ( bli_obj_is_real( c ) ) bli_setiv( &BLIS_ZERO, &z );
#endif

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );

	bli_obj_free( &a2 );
	bli_obj_free( &b2 );
	bli_obj_free( &c2 );
	bli_obj_free( &c0 );
}
Esempio n. 20
0
void libblis_test_syr2k_check( obj_t*  alpha,
                               obj_t*  a,
                               obj_t*  b,
                               obj_t*  beta,
                               obj_t*  c,
                               obj_t*  c_orig,
                               double* resid )
{
	num_t  dt      = bli_obj_datatype( *c );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *c );

	dim_t  m       = bli_obj_length( *c );
	dim_t  k       = bli_obj_width_after_trans( *a );

	obj_t  at, bt;
	obj_t  kappa, norm;
	obj_t  t, v, w1, w2, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - b is randomized.
	// - c_orig is randomized and symmetric.
	// Note:
	// - alpha and beta should have non-zero imaginary components in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   C := beta * C_orig + alpha * transa(A) * transb(B)^T + alpha * transb(B) * transa(A)^T
	//
	// is functioning correctly if
	//
	//   normf( v - z )
	//
	// is negligible, where
	//
	//   v = C * t
	//   z = ( beta * C_orig + alpha * transa(A) * transb(B)^T + alpha * transb(B) * transa(A)^T ) * t
	//     = beta * C_orig * t + alpha * transa(A) * transb(B)^T * t + alpha * transb(B) * transa(A)^T * t
	//     = beta * C_orig * t + alpha * transa(A) * transb(B)^T * t + alpha * transb(B) * w2
	//     = beta * C_orig * t + alpha * transa(A) * w1              + alpha * transb(B) * w2
	//     = beta * C_orig * t + alpha * transa(A) * w1              + z
	//     = beta * C_orig * t + z
	//

	bli_obj_alias_with_trans( BLIS_TRANSPOSE, *a, at );
	bli_obj_alias_with_trans( BLIS_TRANSPOSE, *b, bt );

	bli_obj_scalar_init_detached( dt,      &kappa );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m, 1, 0, 0, &t );
	bli_obj_create( dt, m, 1, 0, 0, &v );
	bli_obj_create( dt, k, 1, 0, 0, &w1 );
	bli_obj_create( dt, k, 1, 0, 0, &w2 );
	bli_obj_create( dt, m, 1, 0, 0, &z );

	bli_randv( &t );
	bli_setsc( 1.0/( double )m, 0.0, &kappa );
	bli_scalv( &kappa, &t );

	bli_symv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v );

	bli_gemv( &BLIS_ONE, &at, &t, &BLIS_ZERO, &w2 );
	bli_gemv( &BLIS_ONE, &bt, &t, &BLIS_ZERO, &w1 );
	bli_gemv( alpha, a, &w1, &BLIS_ZERO, &z );
	bli_gemv( alpha, b, &w2, &BLIS_ONE, &z );
	bli_symv( beta, c_orig, &t, &BLIS_ONE, &z );

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w1 );
	bli_obj_free( &w2 );
	bli_obj_free( &z );
}
Esempio n. 21
0
void libblis_test_ger_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         x,
       obj_t*         y,
       obj_t*         a,
       obj_t*         a_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( a );
	num_t  dt_real = bli_obj_dt_proj_to_real( a );

	dim_t  m_a     = bli_obj_length( a );
	dim_t  n_a     = bli_obj_width( a );

	obj_t  t, v, w;
	obj_t  rho, norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - y is randomized.
	// - a is identity.
	// Note:
	// - alpha should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   A := A_orig + alpha * conjx(x) * conjy(y)
	//
	// is functioning correctly if
	//
	//   normf( v - w )
	//
	// is negligible, where
	//
	//   v = A * t
	//   w = ( A_orig + alpha * conjx(x) * conjy(y)^T ) * t
	//     =   A_orig * t + alpha * conjx(x) * conjy(y)^T * t
	//     =   A_orig * t + alpha * conjx(x) * rho
	//     =   A_orig * t + w
	//

	bli_obj_scalar_init_detached( dt,      &rho );
	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, n_a, 1, 0, 0, &t );
	bli_obj_create( dt, m_a, 1, 0, 0, &v );
	bli_obj_create( dt, m_a, 1, 0, 0, &w );

	libblis_test_vobj_randomize( params, TRUE, &t );

	bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v );

	bli_dotv( y, &t, &rho );
	bli_mulsc( alpha, &rho );
	bli_scal2v( &rho, x, &w );
	bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w );

	bli_subv( &w, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
}
Esempio n. 22
0
void libblis_test_dotxaxpyf_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         at,
       obj_t*         a,
       obj_t*         w,
       obj_t*         x,
       obj_t*         beta,
       obj_t*         y,
       obj_t*         z,
       obj_t*         y_orig,
       obj_t*         z_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_datatype( *y );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *y );

	dim_t  m       = bli_obj_vector_dim( *z );
	dim_t  b_n     = bli_obj_vector_dim( *y );

	dim_t  i;

	obj_t  a1, chi1, psi1, v, q;
	obj_t  alpha_chi1;
	obj_t  norm;

	double resid1, resid2;
	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - w is randomized.
	// - x is randomized.
	// - y is randomized.
	// - z is randomized.
	// - at is an alias to a.
	// Note:
	// - alpha and beta should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := beta * y_orig + alpha * conjat(A^T) * conjw(w)
	//   z :=        z_orig + alpha * conja(A)    * conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - v )
	//
	// and
	//
	//   normf( z - q )
	//
	// are negligible, where v and q contain y and z as computed by repeated
	// calls to dotxv and axpyv, respectively.
	//

	bli_obj_scalar_init_detached( dt_real, &norm );
	bli_obj_scalar_init_detached( dt,      &alpha_chi1 );

	bli_obj_create( dt, b_n, 1, 0, 0, &v );
	bli_obj_create( dt, m,   1, 0, 0, &q );

	bli_copyv( y_orig, &v );
	bli_copyv( z_orig, &q );

	// v := beta * v + alpha * conjat(at) * conjw(w)
	for ( i = 0; i < b_n; ++i )
	{
		bli_acquire_mpart_l2r( BLIS_SUBPART1, i, 1, at, &a1 );
		bli_acquire_vpart_f2b( BLIS_SUBPART1, i, 1, &v, &psi1 );

		bli_dotxv( alpha, &a1, w, beta, &psi1 );
	}

	// q := q + alpha * conja(a) * conjx(x)
	for ( i = 0; i < b_n; ++i )
	{
		bli_acquire_mpart_l2r( BLIS_SUBPART1, i, 1, a, &a1 );
		bli_acquire_vpart_f2b( BLIS_SUBPART1, i, 1, x, &chi1 );

		bli_copysc( &chi1, &alpha_chi1 );
		bli_mulsc( alpha, &alpha_chi1 );

		bli_axpyv( &alpha_chi1, &a1, &q );
	}


	bli_subv( y, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, &resid1, &junk );

	bli_subv( z, &q );
	bli_normfv( &q, &norm );
	bli_getsc( &norm, &resid2, &junk );


	*resid = bli_fmaxabs( resid1, resid2 );

	bli_obj_free( &v );
	bli_obj_free( &q );
}
Esempio n. 23
0
void libblis_test_axpyf_check( obj_t*  alpha,
                               obj_t*  a,
                               obj_t*  x,
                               obj_t*  y,
                               obj_t*  y_orig,
                               double* resid )
{
	num_t  dt      = bli_obj_datatype( *y );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *y );

	dim_t  m       = bli_obj_vector_dim( *y );
	dim_t  b_n     = bli_obj_width( *a );

	dim_t  i;

	obj_t  a1, chi1, v;
	obj_t  alpha_chi1;
	obj_t  norm;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - x is randomized.
	// - y is randomized.
	// Note:
	// - alpha should have a non-zero imaginary component in the complex
	//   cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   y := y_orig + alpha * conja(A) * conjx(x)
	//
	// is functioning correctly if
	//
	//   normf( y - v )
	//
	// is negligible, where v contains y as computed by repeated calls to
	// axpyv.
	//

	bli_obj_scalar_init_detached( dt_real, &norm );
	bli_obj_scalar_init_detached( dt,      &alpha_chi1 );

	bli_obj_create( dt, m,   1, 0, 0, &v );

	bli_copyv( y_orig, &v );

	for ( i = 0; i < b_n; ++i )
	{
		bli_acquire_mpart_l2r( BLIS_SUBPART1, i, 1, a, &a1 );
		bli_acquire_vpart_f2b( BLIS_SUBPART1, i, 1, x, &chi1 );

		bli_copysc( &chi1, &alpha_chi1 );
		bli_mulsc( alpha, &alpha_chi1 );

		bli_axpyv( &alpha_chi1, &a1, &v );
	}

	bli_subv( y, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &v );
}
Esempio n. 24
0
void libblis_test_gemm_check
     (
       test_params_t* params,
       obj_t*         alpha,
       obj_t*         a,
       obj_t*         b,
       obj_t*         beta,
       obj_t*         c,
       obj_t*         c_orig,
       double*        resid
     )
{
	num_t  dt      = bli_obj_dt( c );
	num_t  dt_real = bli_obj_dt_proj_to_real( c );

	dim_t  m       = bli_obj_length( c );
	dim_t  n       = bli_obj_width( c );
	dim_t  k       = bli_obj_width_after_trans( a );

	obj_t  norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized.
	// - b is randomized.
	// - c_orig is randomized.
	// Note:
	// - alpha and beta should have non-zero imaginary components in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   C := beta * C_orig + alpha * transa(A) * transb(B)
	//
	// is functioning correctly if
	//
	//   normf( v - z )
	//
	// is negligible, where
	//
	//   v = C * t
	//   z = ( beta * C_orig + alpha * transa(A) * transb(B) ) * t
	//     = beta * C_orig * t + alpha * transa(A) * transb(B) * t
	//     = beta * C_orig * t + alpha * transa(A) * w
	//     = beta * C_orig * t + z
	//

	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, n, 1, 0, 0, &t );
	bli_obj_create( dt, m, 1, 0, 0, &v );
	bli_obj_create( dt, k, 1, 0, 0, &w );
	bli_obj_create( dt, m, 1, 0, 0, &z );

	libblis_test_vobj_randomize( params, TRUE, &t );

	bli_gemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v );

	bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &w );
	bli_gemv( alpha, a, &w, &BLIS_ZERO, &z );
	bli_gemv( beta, c_orig, &t, &BLIS_ONE, &z );

	bli_subv( &z, &v );
	bli_normfv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}
Esempio n. 25
0
void libblis_test_axpy2v_check( obj_t*  alpha1,
                                obj_t*  alpha2,
                                obj_t*  x,
                                obj_t*  y,
                                obj_t*  z,
                                obj_t*  z_orig,
                                double* resid )
{
	num_t  dt      = bli_obj_datatype( *z );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *z );

	dim_t  m       = bli_obj_vector_dim( *z );

	obj_t  x_temp, y_temp, z_temp;
	obj_t  norm;

	double junk;

	//
	// Pre-conditions:
	// - x is randomized.
	// - y is randomized.
	// - z_orig is randomized.
	// Note:
	// - alpha1, alpha2 should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   z := z_orig + alpha1 * conjx(x) + alpha2 * conjy(y)
	//
	// is functioning correctly if
	//
	//   normf( z - v )
	//
	// is negligible, where v contains z as computed by two calls to axpyv.
	//

	bli_obj_scalar_init_detached( dt_real, &norm );

	bli_obj_create( dt, m, 1, 0, 0, &x_temp );
	bli_obj_create( dt, m, 1, 0, 0, &y_temp );
	bli_obj_create( dt, m, 1, 0, 0, &z_temp );

	bli_copyv( x,      &x_temp );
	bli_copyv( y,      &y_temp );
	bli_copyv( z_orig, &z_temp );

	bli_scalv( alpha1, &x_temp );
	bli_scalv( alpha2, &y_temp );
	bli_addv( &x_temp, &z_temp );
	bli_addv( &y_temp, &z_temp );

	bli_subv( &z_temp, z );
	bli_normfv( z, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &x_temp );
	bli_obj_free( &y_temp );
	bli_obj_free( &z_temp );
}
Esempio n. 26
0
void libblis_test_trmv_check( obj_t*  alpha,
                              obj_t*  a,
                              obj_t*  x,
                              obj_t*  x_orig,
                              double* resid )
{
	num_t   dt      = bli_obj_datatype( *x );
	num_t   dt_real = bli_obj_datatype_proj_to_real( *x );

	dim_t   m       = bli_obj_vector_dim( *x );

	uplo_t  uploa   = bli_obj_uplo( *a );
	trans_t transa  = bli_obj_conjtrans_status( *a );

	obj_t   a_local, y;
	obj_t   norm;

	double  junk;

	//
	// Pre-conditions:
	// - a is randomized and triangular.
	// - x is randomized.
	// Note:
	// - alpha should have a non-zero imaginary component in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   x := alpha * transa(A) * x_orig
	//
	// is functioning correctly if
	//
	//   fnorm( y - x )
	//
	// is negligible, where
	//
	//   y = alpha * conja(A_dense) * x_orig
	//

	bli_obj_init_scalar( dt_real, &norm );

	bli_obj_create( dt, m, 1, 0, 0, &y );
	bli_obj_create( dt, m, m, 0, 0, &a_local );

	bli_obj_set_struc( BLIS_TRIANGULAR, a_local );
	bli_obj_set_uplo( uploa, a_local );
	bli_obj_toggle_uplo_if_trans( transa, a_local );
	bli_copym( a, &a_local );
	bli_mktrim( &a_local );

	bli_obj_set_struc( BLIS_GENERAL, a_local );
	bli_obj_set_uplo( BLIS_DENSE, a_local );

	bli_gemv( alpha, &a_local, x_orig, &BLIS_ZERO, &y );

	bli_subv( x, &y );
	bli_fnormv( &y, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &y );
	bli_obj_free( &a_local );
}
Esempio n. 27
0
void libblis_test_trmm3_check( side_t  side,
                               obj_t*  alpha,
                               obj_t*  a,
                               obj_t*  b,
                               obj_t*  beta,
                               obj_t*  c,
                               obj_t*  c_orig,
                               double* resid )
{
	num_t  dt      = bli_obj_datatype( *c );
	num_t  dt_real = bli_obj_datatype_proj_to_real( *c );

	dim_t  m       = bli_obj_length( *c );
	dim_t  n       = bli_obj_width( *c );

	obj_t  kappa, norm;
	obj_t  t, v, w, z;

	double junk;

	//
	// Pre-conditions:
	// - a is randomized and triangular.
	// - b is randomized.
	// - c_orig is randomized.
	// Note:
	// - alpha and beta should have non-zero imaginary components in the
	//   complex cases in order to more fully exercise the implementation.
	//
	// Under these conditions, we assume that the implementation for
	//
	//   C := beta * C_orig + alpha * transa(A) * transb(B)    (side = left)
	//   C := beta * C_orig + alpha * transb(B) * transa(A)    (side = right)
	//
	// is functioning correctly if
	//
	//   fnorm( v - z )
	//
	// is negligible, where
	//
	//   v = C * t
	//
	//   z = ( beta * C_orig + alpha * transa(A) * transb(B) ) * t     (side = left)
	//     = beta * C_orig * t + alpha * transa(A) * transb(B) * t
	//     = beta * C_orig * t + alpha * transa(A) * w
	//     = beta * C_orig * t + z
	//
	//   z = ( beta * C_orig + alpha * transb(B) * transa(A) ) * t     (side = right)
	//     = beta * C_orig * t + alpha * transb(B) * transa(A) * t
	//     = beta * C_orig * t + alpha * transb(B) * w
	//     = beta * C_orig * t + z

	bli_obj_scalar_init_detached( dt,      &kappa );
	bli_obj_scalar_init_detached( dt_real, &norm );

	if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, m, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}
	else // else if ( bli_is_left( side ) )
	{
		bli_obj_create( dt, n, 1, 0, 0, &t );
		bli_obj_create( dt, m, 1, 0, 0, &v );
		bli_obj_create( dt, n, 1, 0, 0, &w );
		bli_obj_create( dt, m, 1, 0, 0, &z );
	}

	bli_randv( &t );
	bli_setsc( 1.0/( double )n, 0.0, &kappa );
	bli_scalv( &kappa, &t );

	bli_gemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v );

	if ( bli_is_left( side ) )
	{
		bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &w );
		bli_trmv( alpha, a, &w );
		bli_copyv( &w, &z );
	}
	else
	{
		bli_copyv( &t, &w );
		bli_trmv( &BLIS_ONE, a, &w );
		bli_gemv( alpha, b, &w, &BLIS_ZERO, &z );
	}

	bli_gemv( beta, c_orig, &t, &BLIS_ONE, &z );
	
	bli_subv( &z, &v );
	bli_fnormv( &v, &norm );
	bli_getsc( &norm, resid, &junk );

	bli_obj_free( &t );
	bli_obj_free( &v );
	bli_obj_free( &w );
	bli_obj_free( &z );
}