Esempio n. 1
0
/**
 * Read float[4] constant(s) from VS constant buffer.
 * For relative addressing, two float[4] constants will be read into 'dest'.
 * Otherwise, one float[4] constant will be read into the lower half of 'dest'.
 */
void brw_dp_READ_4_vs(struct brw_compile *p,
                      struct brw_reg dest,
                      GLuint oword,
                      GLboolean relAddr,
                      struct brw_reg addrReg,
                      GLuint location,
                      GLuint bind_table_index)
{
   GLuint msg_reg_nr = 1;

   assert(oword < 2);
   /*
   printf("vs const read msg, location %u, msg_reg_nr %d\n",
          location, msg_reg_nr);
   */

   /* Setup MRF[1] with location/offset into const buffer */
   {
      struct brw_reg b;

      brw_push_insn_state(p);
      brw_set_compression_control(p, BRW_COMPRESSION_NONE);
      brw_set_mask_control(p, BRW_MASK_DISABLE);
      brw_set_predicate_control(p, BRW_PREDICATE_NONE);
      /*brw_set_access_mode(p, BRW_ALIGN_16);*/

      /* XXX I think we're setting all the dwords of MRF[1] to 'location'.
       * when the docs say only dword[2] should be set.  Hmmm.  But it works.
       */
      b = brw_message_reg(msg_reg_nr);
      b = retype(b, BRW_REGISTER_TYPE_UD);
      /*b = get_element_ud(b, 2);*/
      if (relAddr) {
         brw_ADD(p, b, addrReg, brw_imm_ud(location));
      }
      else {
         brw_MOV(p, b, brw_imm_ud(location));
      }

      brw_pop_insn_state(p);
   }

   {
      struct brw_instruction *insn = next_insn(p, BRW_OPCODE_SEND);
   
      insn->header.predicate_control = BRW_PREDICATE_NONE;
      insn->header.compression_control = BRW_COMPRESSION_NONE; 
      insn->header.destreg__conditionalmod = msg_reg_nr;
      insn->header.mask_control = BRW_MASK_DISABLE;
      /*insn->header.access_mode = BRW_ALIGN_16;*/
  
      brw_set_dest(insn, dest);
      brw_set_src0(insn, brw_null_reg());

      brw_set_dp_read_message(p->brw,
			      insn,
			      bind_table_index,
			      oword,  /* 0 = lower Oword, 1 = upper Oword */
			      BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ, /* msg_type */
			      0, /* source cache = data cache */
			      1, /* msg_length */
			      1, /* response_length (1 Oword) */
			      0); /* eot */
   }
}
Esempio n. 2
0
/**
 * Texture sample instruction.
 * Note: the msg_type plus msg_length values determine exactly what kind
 * of sampling operation is performed.  See volume 4, page 161 of docs.
 */
void brw_SAMPLE(struct brw_compile *p,
		struct brw_reg dest,
		GLuint msg_reg_nr,
		struct brw_reg src0,
		GLuint binding_table_index,
		GLuint sampler,
		GLuint writemask,
		GLuint msg_type,
		GLuint response_length,
		GLuint msg_length,
		GLboolean eot,
		GLuint header_present,
		GLuint simd_mode)
{
   GLboolean need_stall = 0;
   
   if (writemask == 0) {
      /*_mesa_printf("%s: zero writemask??\n", __FUNCTION__); */
      return;
   }
   
   /* Hardware doesn't do destination dependency checking on send
    * instructions properly.  Add a workaround which generates the
    * dependency by other means.  In practice it seems like this bug
    * only crops up for texture samples, and only where registers are
    * written by the send and then written again later without being
    * read in between.  Luckily for us, we already track that
    * information and use it to modify the writemask for the
    * instruction, so that is a guide for whether a workaround is
    * needed.
    */
   if (writemask != WRITEMASK_XYZW) {
      GLuint dst_offset = 0;
      GLuint i, newmask = 0, len = 0;

      for (i = 0; i < 4; i++) {
	 if (writemask & (1<<i))
	    break;
	 dst_offset += 2;
      }
      for (; i < 4; i++) {
	 if (!(writemask & (1<<i)))
	    break;
	 newmask |= 1<<i;
	 len++;
      }

      if (newmask != writemask) {
	 need_stall = 1;
         /* _mesa_printf("need stall %x %x\n", newmask , writemask); */
      }
      else {
	 struct brw_reg m1 = brw_message_reg(msg_reg_nr);
	 
	 newmask = ~newmask & WRITEMASK_XYZW;

	 brw_push_insn_state(p);

	 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
	 brw_set_mask_control(p, BRW_MASK_DISABLE);

	 brw_MOV(p, m1, brw_vec8_grf(0,0));	 
  	 brw_MOV(p, get_element_ud(m1, 2), brw_imm_ud(newmask << 12)); 

	 brw_pop_insn_state(p);

  	 src0 = retype(brw_null_reg(), BRW_REGISTER_TYPE_UW); 
	 dest = offset(dest, dst_offset);
	 response_length = len * 2;
      }
   }

   {
      struct brw_instruction *insn = next_insn(p, BRW_OPCODE_SEND);
   
      insn->header.predicate_control = 0; /* XXX */
      insn->header.compression_control = BRW_COMPRESSION_NONE;
      insn->header.destreg__conditionalmod = msg_reg_nr;

      brw_set_dest(insn, dest);
      brw_set_src0(insn, src0);
      brw_set_sampler_message(p->brw, insn,
			      binding_table_index,
			      sampler,
			      msg_type,
			      response_length, 
			      msg_length,
			      eot,
			      header_present,
			      simd_mode);
   }

   if (need_stall) {
      struct brw_reg reg = vec8(offset(dest, response_length-1));

      /*  mov (8) r9.0<1>:f    r9.0<8;8,1>:f    { Align1 }
       */
      brw_push_insn_state(p);
      brw_set_compression_control(p, BRW_COMPRESSION_NONE);
      brw_MOV(p, reg, reg);	      
      brw_pop_insn_state(p);
   }

}
Esempio n. 3
0
const GLuint *
brw_blorp_const_color_program::compile(struct brw_context *brw,
                                       GLuint *program_size)
{
   /* Set up prog_data */
   memset(&prog_data, 0, sizeof(prog_data));
   prog_data.persample_msaa_dispatch = false;

   alloc_regs();

   brw_set_compression_control(&func, BRW_COMPRESSION_NONE);

   struct brw_reg mrf_rt_write =
      retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_F);

   uint32_t mlen, msg_type;
   if (key->use_simd16_replicated_data) {
      /* The message payload is a single register with the low 4 floats/ints
       * filled with the constant clear color.
       */
      brw_set_mask_control(&func, BRW_MASK_DISABLE);
      brw_MOV(&func, vec4(brw_message_reg(base_mrf)), clear_rgba);
      brw_set_mask_control(&func, BRW_MASK_ENABLE);

      msg_type = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
      mlen = 1;
   } else {
      for (int i = 0; i < 4; i++) {
         /* The message payload is pairs of registers for 16 pixels each of r,
          * g, b, and a.
          */
         brw_set_compression_control(&func, BRW_COMPRESSION_COMPRESSED);
         brw_MOV(&func,
                 brw_message_reg(base_mrf + i * 2),
                 brw_vec1_grf(clear_rgba.nr, i));
         brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
      }

      msg_type = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
      mlen = 8;
   }

   /* Now write to the render target and terminate the thread */
   brw_fb_WRITE(&func,
                16 /* dispatch_width */,
                base_mrf /* msg_reg_nr */,
                mrf_rt_write /* src0 */,
                msg_type,
                BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
                mlen,
                0 /* response_length */,
                true /* eot */,
                false /* header present */);

   if (unlikely(INTEL_DEBUG & DEBUG_BLORP)) {
      printf("Native code for BLORP clear:\n");
      brw_dump_compile(&func, stdout, 0, func.next_insn_offset);
      printf("\n");
   }
   return brw_get_program(&func, program_size);
}
Esempio n. 4
0
static void compile_gs_prog( struct brw_context *brw,
			     struct brw_gs_prog_key *key )
{
   struct intel_context *intel = &brw->intel;
   struct brw_gs_compile c;
   const GLuint *program;
   void *mem_ctx;
   GLuint program_size;

   memset(&c, 0, sizeof(c));
   
   c.key = *key;
   /* The geometry shader needs to access the entire VUE. */
   brw_compute_vue_map(&c.vue_map, intel, c.key.userclip_active, c.key.attrs);
   c.nr_regs = (c.vue_map.num_slots + 1)/2;

   mem_ctx = NULL;
   
   /* Begin the compilation:
    */
   brw_init_compile(brw, &c.func, mem_ctx);

   c.func.single_program_flow = 1;

   /* For some reason the thread is spawned with only 4 channels
    * unmasked.  
    */
   brw_set_mask_control(&c.func, BRW_MASK_DISABLE);

   if (intel->gen >= 6) {
      unsigned num_verts;
      bool check_edge_flag;
      /* On Sandybridge, we use the GS for implementing transform feedback
       * (called "Stream Out" in the PRM).
       */
      switch (key->primitive) {
      case _3DPRIM_POINTLIST:
         num_verts = 1;
         check_edge_flag = false;
	 break;
      case _3DPRIM_LINELIST:
      case _3DPRIM_LINESTRIP:
      case _3DPRIM_LINELOOP:
         num_verts = 2;
         check_edge_flag = false;
	 break;
      case _3DPRIM_TRILIST:
      case _3DPRIM_TRIFAN:
      case _3DPRIM_TRISTRIP:
      case _3DPRIM_RECTLIST:
	 num_verts = 3;
         check_edge_flag = false;
         break;
      case _3DPRIM_QUADLIST:
      case _3DPRIM_QUADSTRIP:
      case _3DPRIM_POLYGON:
         num_verts = 3;
         check_edge_flag = true;
         break;
      default:
	 assert(!"Unexpected primitive type in Gen6 SOL program.");
	 return;
      }
      gen6_sol_program(&c, key, num_verts, check_edge_flag);
   } else {
      /* On Gen4-5, we use the GS to decompose certain types of primitives.
       * Note that primitives which don't require a GS program have already
       * been weeded out by now.
       */
      switch (key->primitive) {
      case _3DPRIM_QUADLIST:
	 brw_gs_quads( &c, key );
	 break;
      case _3DPRIM_QUADSTRIP:
	 brw_gs_quad_strip( &c, key );
	 break;
      case _3DPRIM_LINELOOP:
	 brw_gs_lines( &c );
	 break;
      default:
	 ralloc_free(mem_ctx);
	 return;
      }
   }

   /* get the program
    */
   program = brw_get_program(&c.func, &program_size);

   if (unlikely(INTEL_DEBUG & DEBUG_GS)) {
      int i;

      printf("gs:\n");
      for (i = 0; i < program_size / sizeof(struct brw_instruction); i++)
	 brw_disasm(stdout, &((struct brw_instruction *)program)[i],
		    intel->gen);
      printf("\n");
    }

   brw_upload_cache(&brw->cache, BRW_GS_PROG,
		    &c.key, sizeof(c.key),
		    program, program_size,
		    &c.prog_data, sizeof(c.prog_data),
		    &brw->gs.prog_offset, &brw->gs.prog_data);
   ralloc_free(mem_ctx);
}
Esempio n. 5
0
void
vec4_generator::generate_gs_set_channel_masks(struct brw_reg dst,
                                              struct brw_reg src)
{
   /* From p21 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
    * Header: M0.5):
    *
    *     15 Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask
    *
    *        When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1
    *        DATA[3], when Swizzle Control = URB_NOSWIZZLE this bit controls
    *        Vertex 0 DATA[7].  This bit is ANDed with the corresponding
    *        channel enable to determine the final channel enable.  For the
    *        URB_READ_OWORD & URB_READ_HWORD messages, when final channel
    *        enable is 1 it indicates that Vertex 1 DATA [3] will be included
    *        in the writeback message.  For the URB_WRITE_OWORD &
    *        URB_WRITE_HWORD messages, when final channel enable is 1 it
    *        indicates that Vertex 1 DATA [3] will be written to the surface.
    *
    *        0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included
    *        1: Vertex DATA [3] / Vertex 0 DATA[7] channel included
    *
    *     14 Vertex 1 DATA [2] Channel Mask
    *     13 Vertex 1 DATA [1] Channel Mask
    *     12 Vertex 1 DATA [0] Channel Mask
    *     11 Vertex 0 DATA [3] Channel Mask
    *     10 Vertex 0 DATA [2] Channel Mask
    *      9 Vertex 0 DATA [1] Channel Mask
    *      8 Vertex 0 DATA [0] Channel Mask
    *
    * (This is from a section of the PRM that is agnostic to the particular
    * type of shader being executed, so "Vertex 0" and "Vertex 1" refer to
    * geometry shader invocations 0 and 1, respectively).  Since we have the
    * enable flags for geometry shader invocation 0 in bits 3:0 of DWORD 0,
    * and the enable flags for geometry shader invocation 1 in bits 7:0 of
    * DWORD 4, we just need to OR them together and store the result in bits
    * 15:8 of DWORD 5.
    *
    * It's easier to get the EU to do this if we think of the src and dst
    * registers as composed of 32 bytes each; then, we want to pick up the
    * contents of bytes 0 and 16 from src, OR them together, and store them in
    * byte 21.
    *
    * We can do that by the following EU instruction:
    *
    *     or(1) dst.21<1>UB src<0,1,0>UB src.16<0,1,0>UB { align1 WE_all }
    *
    * Note: this relies on the source register having zeros in (a) bits 7:4 of
    * DWORD 0 and (b) bits 3:0 of DWORD 4.  We can rely on (b) because the
    * source register was prepared by GS_OPCODE_PREPARE_CHANNEL_MASKS (which
    * shifts DWORD 4 left by 4 bits), and we can rely on (a) because prior to
    * the execution of GS_OPCODE_PREPARE_CHANNEL_MASKS, DWORDs 0 and 4 need to
    * contain valid channel mask values (which are in the range 0x0-0xf).
    */
   dst = retype(dst, BRW_REGISTER_TYPE_UB);
   src = retype(src, BRW_REGISTER_TYPE_UB);
   brw_push_insn_state(p);
   brw_set_access_mode(p, BRW_ALIGN_1);
   brw_set_mask_control(p, BRW_MASK_DISABLE);
   brw_OR(p, suboffset(vec1(dst), 21), vec1(src), suboffset(vec1(src), 16));
   brw_pop_insn_state(p);
}
Esempio n. 6
0
void
vec4_generator::generate_tex(vec4_instruction *inst,
                             struct brw_reg dst,
                             struct brw_reg src)
{
   int msg_type = -1;

   if (brw->gen >= 5) {
      switch (inst->opcode) {
      case SHADER_OPCODE_TEX:
      case SHADER_OPCODE_TXL:
	 if (inst->shadow_compare) {
	    msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
	 } else {
	    msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
	 }
	 break;
      case SHADER_OPCODE_TXD:
         if (inst->shadow_compare) {
            /* Gen7.5+.  Otherwise, lowered by brw_lower_texture_gradients(). */
            assert(brw->is_haswell);
            msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
         } else {
            msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
         }
	 break;
      case SHADER_OPCODE_TXF:
	 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
	 break;
      case SHADER_OPCODE_TXF_CMS:
         if (brw->gen >= 7)
            msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
         else
            msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
         break;
      case SHADER_OPCODE_TXF_MCS:
         assert(brw->gen >= 7);
         msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
         break;
      case SHADER_OPCODE_TXS:
	 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
	 break;
      case SHADER_OPCODE_TG4:
         if (inst->shadow_compare) {
            msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
         } else {
            msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
         }
         break;
      case SHADER_OPCODE_TG4_OFFSET:
         if (inst->shadow_compare) {
            msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
         } else {
            msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
         }
         break;
      default:
	 assert(!"should not get here: invalid vec4 texture opcode");
	 break;
      }
   } else {
      switch (inst->opcode) {
      case SHADER_OPCODE_TEX:
      case SHADER_OPCODE_TXL:
	 if (inst->shadow_compare) {
	    msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD_COMPARE;
	    assert(inst->mlen == 3);
	 } else {
	    msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD;
	    assert(inst->mlen == 2);
	 }
	 break;
      case SHADER_OPCODE_TXD:
	 /* There is no sample_d_c message; comparisons are done manually. */
	 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_GRADIENTS;
	 assert(inst->mlen == 4);
	 break;
      case SHADER_OPCODE_TXF:
	 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_LD;
	 assert(inst->mlen == 2);
	 break;
      case SHADER_OPCODE_TXS:
	 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_RESINFO;
	 assert(inst->mlen == 2);
	 break;
      default:
	 assert(!"should not get here: invalid vec4 texture opcode");
	 break;
      }
   }

   assert(msg_type != -1);

   /* Load the message header if present.  If there's a texture offset, we need
    * to set it up explicitly and load the offset bitfield.  Otherwise, we can
    * use an implied move from g0 to the first message register.
    */
   if (inst->header_present) {
      if (brw->gen < 6 && !inst->texture_offset) {
         /* Set up an implied move from g0 to the MRF. */
         src = brw_vec8_grf(0, 0);
      } else {
         struct brw_reg header =
            retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);

         /* Explicitly set up the message header by copying g0 to the MRF. */
         brw_push_insn_state(p);
         brw_set_mask_control(p, BRW_MASK_DISABLE);
         brw_MOV(p, header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));

         brw_set_access_mode(p, BRW_ALIGN_1);

         if (inst->texture_offset) {
            /* Set the texel offset bits in DWord 2. */
            brw_MOV(p, get_element_ud(header, 2),
                    brw_imm_ud(inst->texture_offset));
         }

         if (inst->sampler >= 16) {
            /* The "Sampler Index" field can only store values between 0 and 15.
             * However, we can add an offset to the "Sampler State Pointer"
             * field, effectively selecting a different set of 16 samplers.
             *
             * The "Sampler State Pointer" needs to be aligned to a 32-byte
             * offset, and each sampler state is only 16-bytes, so we can't
             * exclusively use the offset - we have to use both.
             */
            assert(brw->is_haswell); /* field only exists on Haswell */
            brw_ADD(p,
                    get_element_ud(header, 3),
                    get_element_ud(brw_vec8_grf(0, 0), 3),
                    brw_imm_ud(16 * (inst->sampler / 16) *
                               sizeof(gen7_sampler_state)));
         }
         brw_pop_insn_state(p);
      }
   }

   uint32_t return_format;

   switch (dst.type) {
   case BRW_REGISTER_TYPE_D:
      return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
      break;
   case BRW_REGISTER_TYPE_UD:
      return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
      break;
   default:
      return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
      break;
   }

   uint32_t surface_index = ((inst->opcode == SHADER_OPCODE_TG4 ||
      inst->opcode == SHADER_OPCODE_TG4_OFFSET)
      ? prog_data->base.binding_table.gather_texture_start
      : prog_data->base.binding_table.texture_start) + inst->sampler;

   brw_SAMPLE(p,
	      dst,
	      inst->base_mrf,
	      src,
              surface_index,
	      inst->sampler % 16,
	      msg_type,
	      1, /* response length */
	      inst->mlen,
	      inst->header_present,
	      BRW_SAMPLER_SIMD_MODE_SIMD4X2,
	      return_format);

   mark_surface_used(surface_index);
}
Esempio n. 7
0
void
vec4_generator::generate_code(exec_list *instructions)
{
   int last_native_insn_offset = 0;
   const char *last_annotation_string = NULL;
   const void *last_annotation_ir = NULL;

   if (unlikely(debug_flag)) {
      if (shader_prog) {
         printf("Native code for vertex shader %d:\n", shader_prog->Name);
      } else {
         printf("Native code for vertex program %d:\n", prog->Id);
      }
   }

   foreach_list(node, instructions) {
      vec4_instruction *inst = (vec4_instruction *)node;
      struct brw_reg src[3], dst;

      if (unlikely(debug_flag)) {
	 if (last_annotation_ir != inst->ir) {
	    last_annotation_ir = inst->ir;
	    if (last_annotation_ir) {
	       printf("   ");
               if (shader_prog) {
                  ((ir_instruction *) last_annotation_ir)->print();
               } else {
                  const prog_instruction *vpi;
                  vpi = (const prog_instruction *) inst->ir;
                  printf("%d: ", (int)(vpi - prog->Instructions));
                  _mesa_fprint_instruction_opt(stdout, vpi, 0,
                                               PROG_PRINT_DEBUG, NULL);
               }
	       printf("\n");
	    }
	 }
	 if (last_annotation_string != inst->annotation) {
	    last_annotation_string = inst->annotation;
	    if (last_annotation_string)
	       printf("   %s\n", last_annotation_string);
	 }
      }

      for (unsigned int i = 0; i < 3; i++) {
	 src[i] = inst->get_src(this->prog_data, i);
      }
      dst = inst->get_dst();

      brw_set_conditionalmod(p, inst->conditional_mod);
      brw_set_predicate_control(p, inst->predicate);
      brw_set_predicate_inverse(p, inst->predicate_inverse);
      brw_set_saturate(p, inst->saturate);
      brw_set_mask_control(p, inst->force_writemask_all);

      unsigned pre_emit_nr_insn = p->nr_insn;

      generate_vec4_instruction(inst, dst, src);

      if (inst->no_dd_clear || inst->no_dd_check) {
         assert(p->nr_insn == pre_emit_nr_insn + 1 ||
                !"no_dd_check or no_dd_clear set for IR emitting more "
                "than 1 instruction");

         struct brw_instruction *last = &p->store[pre_emit_nr_insn];

         if (inst->no_dd_clear)
            last->header.dependency_control |= BRW_DEPENDENCY_NOTCLEARED;
         if (inst->no_dd_check)
            last->header.dependency_control |= BRW_DEPENDENCY_NOTCHECKED;
      }

      if (unlikely(debug_flag)) {
	 brw_dump_compile(p, stdout,
			  last_native_insn_offset, p->next_insn_offset);
      }

      last_native_insn_offset = p->next_insn_offset;
   }
Esempio n. 8
0
static void compile_clip_prog( struct brw_context *brw,
			     struct brw_clip_prog_key *key )
{
   struct intel_context *intel = &brw->intel;
   struct brw_clip_compile c;
   const GLuint *program;
   GLuint program_size;
   GLuint delta;
   GLuint i;
   GLuint header_regs;

   memset(&c, 0, sizeof(c));
   
   /* Begin the compilation:
    */
   brw_init_compile(brw, &c.func);

   c.func.single_program_flow = 1;

   c.key = *key;

   /* Need to locate the two positions present in vertex + header.
    * These are currently hardcoded:
    */
   c.header_position_offset = ATTR_SIZE;

   if (intel->gen == 5)
      header_regs = 3;
   else
      header_regs = 1;

   delta = header_regs * REG_SIZE;

   for (i = 0; i < VERT_RESULT_MAX; i++) {
      if (c.key.attrs & BITFIELD64_BIT(i)) {
	 c.offset[i] = delta;
	 delta += ATTR_SIZE;

	 c.idx_to_attr[c.nr_attrs] = i;
	 c.nr_attrs++;
      }
   }

   /* The vertex attributes start at a URB row-aligned offset after
    * the 8-20 dword vertex header, and continue for a URB row-aligned
    * length.  nr_regs determines the urb_read_length from the start
    * of the header to the end of the vertex data.
    */
   c.nr_regs = header_regs + (c.nr_attrs + 1) / 2;

   c.nr_bytes = c.nr_regs * REG_SIZE;

   c.prog_data.clip_mode = c.key.clip_mode; /* XXX */

   /* For some reason the thread is spawned with only 4 channels
    * unmasked.  
    */
   brw_set_mask_control(&c.func, BRW_MASK_DISABLE);


   /* Would ideally have the option of producing a program which could
    * do all three:
    */
   switch (key->primitive) {
   case GL_TRIANGLES: 
      if (key->do_unfilled)
	 brw_emit_unfilled_clip( &c );
      else
	 brw_emit_tri_clip( &c );
      break;
   case GL_LINES:
      brw_emit_line_clip( &c );
      break;
   case GL_POINTS:
      brw_emit_point_clip( &c );
      break;
   default:
      assert(0);
      return;
   }

	 

   /* get the program
    */
   program = brw_get_program(&c.func, &program_size);

    if (INTEL_DEBUG & DEBUG_CLIP) {
      printf("clip:\n");
      for (i = 0; i < program_size / sizeof(struct brw_instruction); i++)
	 brw_disasm(stdout, &((struct brw_instruction *)program)[i],
		    intel->gen);
      printf("\n");
    }

   /* Upload
    */
   drm_intel_bo_unreference(brw->clip.prog_bo);
   brw->clip.prog_bo = brw_upload_cache_with_auxdata(&brw->cache,
						     BRW_CLIP_PROG,
						     &c.key, sizeof(c.key),
						     NULL, 0,
						     program, program_size,
						     &c.prog_data,
						     sizeof(c.prog_data),
						     &brw->clip.prog_data);
}
static void brw_wm_emit_glsl(struct brw_context *brw, struct brw_wm_compile *c)
{
#define MAX_IFSN 32
#define MAX_LOOP_DEPTH 32
    struct brw_instruction *if_inst[MAX_IFSN], *loop_inst[MAX_LOOP_DEPTH];
    struct brw_instruction *inst0, *inst1;
    int i, if_insn = 0, loop_insn = 0;
    struct brw_compile *p = &c->func;
    struct brw_indirect stack_index = brw_indirect(0, 0);

    c->reg_index = 0;
    prealloc_reg(c);
    brw_set_compression_control(p, BRW_COMPRESSION_NONE);
    brw_MOV(p, get_addr_reg(stack_index), brw_address(c->stack));

    for (i = 0; i < c->nr_fp_insns; i++) {
	struct prog_instruction *inst = &c->prog_instructions[i];
	struct prog_instruction *orig_inst;

	if ((orig_inst = inst->Data) != 0)
	    orig_inst->Data = current_insn(p);

	if (inst->CondUpdate)
	    brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
	else
	    brw_set_conditionalmod(p, BRW_CONDITIONAL_NONE);

	switch (inst->Opcode) {
	    case WM_PIXELXY:
		emit_pixel_xy(c, inst);
		break;
	    case WM_DELTAXY: 
		emit_delta_xy(c, inst);
		break;
	    case WM_PIXELW:
		emit_pixel_w(c, inst);
		break;	
	    case WM_LINTERP:
		emit_linterp(c, inst);
		break;
	    case WM_PINTERP:
		emit_pinterp(c, inst);
		break;
	    case WM_CINTERP:
		emit_cinterp(c, inst);
		break;
	    case WM_WPOSXY:
		emit_wpos_xy(c, inst);
		break;
	    case WM_FB_WRITE:
		emit_fb_write(c, inst);
		break;
	    case OPCODE_ABS:
		emit_abs(c, inst);
		break;
	    case OPCODE_ADD:
		emit_add(c, inst);
		break;
	    case OPCODE_SUB:
		emit_sub(c, inst);
		break;
	    case OPCODE_FRC:
		emit_frc(c, inst);
		break;
	    case OPCODE_FLR:
		emit_flr(c, inst);
		break;
	    case OPCODE_LRP:
		emit_lrp(c, inst);
		break;
	    case OPCODE_INT:
		emit_int(c, inst);
		break;
	    case OPCODE_MOV:
		emit_mov(c, inst);
		break;
	    case OPCODE_DP3:
		emit_dp3(c, inst);
		break;
	    case OPCODE_DP4:
		emit_dp4(c, inst);
		break;
	    case OPCODE_XPD:
		emit_xpd(c, inst);
		break;
	    case OPCODE_DPH:
		emit_dph(c, inst);
		break;
	    case OPCODE_RCP:
		emit_rcp(c, inst);
		break;
	    case OPCODE_RSQ:
		emit_rsq(c, inst);
		break;
	    case OPCODE_SIN:
		emit_sin(c, inst);
		break;
	    case OPCODE_COS:
		emit_cos(c, inst);
		break;
	    case OPCODE_EX2:
		emit_ex2(c, inst);
		break;
	    case OPCODE_LG2:
		emit_lg2(c, inst);
		break;
	    case OPCODE_MAX:	
		emit_max(c, inst);
		break;
	    case OPCODE_MIN:	
		emit_min(c, inst);
		break;
	    case OPCODE_DDX:
		emit_ddx(c, inst);
		break;
	    case OPCODE_DDY:
                emit_ddy(c, inst);
                break;
	    case OPCODE_SLT:
		emit_slt(c, inst);
		break;
	    case OPCODE_SLE:
		emit_sle(c, inst);
		break;
	    case OPCODE_SGT:
		emit_sgt(c, inst);
		break;
	    case OPCODE_SGE:
		emit_sge(c, inst);
		break;
	    case OPCODE_SEQ:
		emit_seq(c, inst);
		break;
	    case OPCODE_SNE:
		emit_sne(c, inst);
		break;
	    case OPCODE_MUL:
		emit_mul(c, inst);
		break;
	    case OPCODE_POW:
		emit_pow(c, inst);
		break;
	    case OPCODE_MAD:
		emit_mad(c, inst);
		break;
	    case OPCODE_TEX:
		emit_tex(c, inst);
		break;
	    case OPCODE_TXB:
		emit_txb(c, inst);
		break;
	    case OPCODE_KIL_NV:
		emit_kil(c);
		break;
	    case OPCODE_IF:
		assert(if_insn < MAX_IFSN);
		if_inst[if_insn++] = brw_IF(p, BRW_EXECUTE_8);
		break;
	    case OPCODE_ELSE:
		if_inst[if_insn-1]  = brw_ELSE(p, if_inst[if_insn-1]);
		break;
	    case OPCODE_ENDIF:
		assert(if_insn > 0);
		brw_ENDIF(p, if_inst[--if_insn]);
		break;
	    case OPCODE_BGNSUB:
	    case OPCODE_ENDSUB:
		break;
	    case OPCODE_CAL: 
		brw_push_insn_state(p);
		brw_set_mask_control(p, BRW_MASK_DISABLE);
                brw_set_access_mode(p, BRW_ALIGN_1);
                brw_ADD(p, deref_1ud(stack_index, 0), brw_ip_reg(), brw_imm_d(3*16));
                brw_set_access_mode(p, BRW_ALIGN_16);
                brw_ADD(p, get_addr_reg(stack_index),
                         get_addr_reg(stack_index), brw_imm_d(4));
                orig_inst = inst->Data;
                orig_inst->Data = &p->store[p->nr_insn];
                brw_ADD(p, brw_ip_reg(), brw_ip_reg(), brw_imm_d(1*16));
                brw_pop_insn_state(p);
		break;

	    case OPCODE_RET:
		brw_push_insn_state(p);
		brw_set_mask_control(p, BRW_MASK_DISABLE);
                brw_ADD(p, get_addr_reg(stack_index),
                        get_addr_reg(stack_index), brw_imm_d(-4));
                brw_set_access_mode(p, BRW_ALIGN_1);
                brw_MOV(p, brw_ip_reg(), deref_1ud(stack_index, 0));
                brw_set_access_mode(p, BRW_ALIGN_16);
		brw_pop_insn_state(p);

		break;
	    case OPCODE_BGNLOOP:
		loop_inst[loop_insn++] = brw_DO(p, BRW_EXECUTE_8);
		break;
	    case OPCODE_BRK:
		brw_BREAK(p);
		brw_set_predicate_control(p, BRW_PREDICATE_NONE);
		break;
	    case OPCODE_CONT:
		brw_CONT(p);
		brw_set_predicate_control(p, BRW_PREDICATE_NONE);
		break;
	    case OPCODE_ENDLOOP: 
		loop_insn--;
		inst0 = inst1 = brw_WHILE(p, loop_inst[loop_insn]);
		/* patch all the BREAK instructions from
		   last BEGINLOOP */
		while (inst0 > loop_inst[loop_insn]) {
		    inst0--;
		    if (inst0->header.opcode == BRW_OPCODE_BREAK) {
			inst0->bits3.if_else.jump_count = inst1 - inst0 + 1;
			inst0->bits3.if_else.pop_count = 0;
		    } else if (inst0->header.opcode == BRW_OPCODE_CONTINUE) {
                        inst0->bits3.if_else.jump_count = inst1 - inst0;
                        inst0->bits3.if_else.pop_count = 0;
                    }
		}
		break;
	    default:
		_mesa_printf("unsupported IR in fragment shader %d\n",
			inst->Opcode);
	}
	if (inst->CondUpdate)
	    brw_set_predicate_control(p, BRW_PREDICATE_NORMAL);
	else
	    brw_set_predicate_control(p, BRW_PREDICATE_NONE);
    }
    post_wm_emit(c);
    for (i = 0; i < c->fp->program.Base.NumInstructions; i++)
	c->fp->program.Base.Instructions[i].Data = NULL;
}