Esempio n. 1
1
int Metric::cosine(vector<Coefficient>& table,
		   const map<int, map<int, double> >& profile)
{
    map<int, map<int, double> >::const_iterator iter;
    double sig_x_2 = 0;
    double sig_y_2 = 0;
    double prod_xy = 0;
    int cooc = 0;
    
    for (iter=profile.begin(); iter!=profile.end(); iter++) {
        map<int, double>::const_iterator xiter;
	sig_x_2 = 0;

	for (xiter=iter->second.begin(); xiter!=iter->second.end(); xiter++) {
	    sig_x_2 += xiter->second*xiter->second;
	}

	map<int, map<int, double> >::const_iterator jter = iter;

	for (++jter; jter != profile.end(); jter++) {
	    map<int, double>::const_iterator yiter;

	    sig_y_2 = 0;
	    prod_xy = 0;
	    for (yiter=jter->second.begin(); yiter!=jter->second.end(); yiter++) {
		sig_y_2 += yiter->second*yiter->second;
		
		if ( iter->second.find(yiter->first) != iter->second.end() ) {
		    prod_xy += yiter->second * iter->second.find(yiter->first)->second;
		}
	    }

	    double cor = prod_xy / (sqrt(sig_x_2) * sqrt(sig_y_2));
	    cooc = 0;

	    map<int, double>::const_iterator it;
	    if ( (it=iter->second.find(jter->first)) != iter->second.end() ) {
		cooc = (int) it->second;
	    }
	
	    Coefficient coef(iter->first,jter->first, cooc, cor);
	    table.push_back(coef);

        }
    }
    
    return 0;
}
Esempio n. 2
0
template <class T> void ossimShiftFilter::fillTile(T /* dummy */,
                                                   const ossimImageData* inputTile,
                                                   ossimImageData* outputTile) const
{
   const double BANDS = inputTile->getNumberOfBands();
   const ossim_uint32 SPB = inputTile->getSizePerBand();
   std::vector<double> inNull(BANDS);
   std::vector<double> inMin(BANDS);
   std::vector<double> inMax(BANDS);
   std::vector<double> coef(BANDS);
   ossim_uint32 band = 0;

   for( ; band < BANDS; ++band )
   {
      inNull[band] = inputTile->getNullPix(band);
      inMin[band]  = inputTile->getMinPix(band);
      inMax[band]  = inputTile->getMaxPix(band);
      coef[band]   = (m_max-m_min)/(inMax[band]-inMin[band]);
   }
   
   double pix = 0;
   for( band = 0; band < BANDS; ++band )
   {
      const T* inBuf = static_cast<const T*>(inputTile->getBuf(band));
      T* outBuf = static_cast<T*>(outputTile->getBuf(band));
      
      for ( ossim_uint32 i = 0; i < SPB; ++i )
      {
         pix = inBuf[i];
         if (  pix == inNull[band] )
         {
            pix = m_null;
         }
         else
         {
            // Shift and multiply:
            pix = m_min + (pix - inMin[band]) * coef[band];
            
            // Range check:
            pix = pix <= m_max ? (pix >= m_min ? pix : m_min) : m_max;
         }
         
         outBuf[i] = static_cast<T>(pix);
      }
   }

   outputTile->validate();
}
Esempio n. 3
0
//Evaluate right continuous surface data.
//Evaluate all positional data, 1st and 2nd derivatives.
void MGSBRep::eval_all(
		double u, double v,	// Parameter value of the surface.
		MGPosition& f,			// Positional data.
		MGVector&   fu,			// df(u,v)/du
		MGVector&   fv,			// df/dv
		MGVector&   fuv,		// d**2f/(du*dv)
		MGVector&   fuu,		// d**2f/(du**2)
		MGVector&   fvv			// d**2f/(dv**2)
		) const
{
	size_t ku=order_u(), kv=order_v(); 
	size_t ku2=ku+ku, kv2=kv+kv;
	double *ucoef=new double[ku*3], *vcoef=new double[kv*3];
	int bdum1=bdim_u()-1, bdvm1=bdim_v()-1;
	int uid=m_uknot.eval_coef(u,ucoef,0);
	int vid=m_vknot.eval_coef(v,vcoef,0);
	m_uknot.eval_coef(u,ucoef+ku,1); m_uknot.eval_coef(u,ucoef+ku2,2);
	m_vknot.eval_coef(v,vcoef+kv,1); m_vknot.eval_coef(v,vcoef+kv2,2);
	double s,su,suu,c,vj,vj1; size_t i,j,k,dim=sdim();
	int ii,jj;
	MGPosition p(dim);
	MGVector pu(dim),pv(dim),puv(dim),puu(dim),pvv(dim);
	for(k=0; k<dim; k++){
		p(k)=0.0;pu.set(k)=0.0;pv.set(k)=0.0;puv.set(k)=0.0;
		puu.set(k)=0.0;pvv.set(k)=0.0;
		for(j=0; j<kv; j++){
			s=su=suu=0.0;
			jj=vid+j;
			for(i=0; i<ku; i++){
				ii=uid+i;
				c=coef(ii,jj,k);
				s=s+ucoef[i]*c;
				su=su+ucoef[i+ku]*c;
				suu=suu+ucoef[i+ku2]*c;
			}
			vj=vcoef[j]; vj1=vcoef[j+kv];
			p(k)=p(k)+vj*s;
			pu.set(k)=pu.ref(k)+vj*su;
			pv.set(k)=pv.ref(k)+vj1*s;
			puv.set(k)=puv.ref(k)+vj1*su;
			puu.set(k)=puu.ref(k)+vj*suu;
			pvv.set(k)=pvv.ref(k)+vcoef[j+kv2]*s;
		}
	}
	f=p;fu=pu;fv=pv;fuv=puv;fuu=puu;fvv=pvv;
	delete[] ucoef; delete[] vcoef;
}
Esempio n. 4
0
MGPPRep::MGPPRep(unsigned order, const MGPPRep& pp1)
//Constructor to change order of original PP-Representation.
//New order may be greater or less than the original one. However,
//if new one is less than the original, PP-Rep constructed may not
//be able to hold the same shape.
:m_order(order)
,m_nbreak(pp1.m_nbreak)
,m_sdim(pp1.m_sdim)
,m_break_point(pp1.m_break_point)
,m_coef(new double[m_order*m_nbreak*m_sdim])
{
	size_t i,j,k;
	for(k=0; k<m_sdim; k++)
		for(j=0; j<m_nbreak-1; j++)
			for(i=0; i<m_order; i++)
				coef(i,j,k)=pp1.ref(i,j,k);
}
Esempio n. 5
0
//Change size. Change of sdim not allowed.
//Stored data so far will be guarateed to hold in the same id of coef(i,j,k).
void MGPPRep::reshape(size_t nbreak){
	if(nbreak==m_nbreak) return ;

	double* data=new double[m_order*nbreak*m_sdim];
	//Reshape of pp coef.
	size_t nb=nbreak; if(nb>m_nbreak) nb=m_nbreak;
	for(size_t k=0; k<m_sdim; k++){
		for(size_t j=0; j<nb; j++){
			for(unsigned i=0; i<m_order ; i++){
				data[i+m_order*j+m_order*nbreak*k]=coef(i,j,k);
			}
		}
	}

	delete[] m_coef; m_coef=data;
	m_break_point.reshape(nbreak);	//Reshape of break poits.
	m_nbreak=nbreak;
}
int main(void)
{
	int n;

	for (n = 0; n < 10; n++) {
		coef(n);
		printf("(x-1)^%d = ", n);
		show(n);
		putchar('\n');
	}

	printf("\nprimes (never mind the 1):");
	for (n = 1; n <= 63; n++)
		if (is_prime(n))
			printf(" %d", n);

	putchar('\n');
	return 0;
}
Esempio n. 7
0
        int bush(GF & gf, bclib::matrix<int> & A, int str, int ncol)
        {
            int q = gf.q;
            std::vector<int> coef(str);
            
            // bushcheck throws if it fails
            bushcheck(q, str, ncol);

            for (size_t i = 0; i < static_cast<size_t>(primes::ipow(q, str)); i++)
            {
                itopoly(static_cast<int>(i), q, str - 1, coef);
                A(i, static_cast<size_t>(0)) = coef[static_cast<size_t>(str) - 1];
                for (size_t j = 0; j < static_cast<size_t>(ncol) - 1; j++)
                {
                    polyeval(gf, str - 1, coef, static_cast<int>(j), &(A(i, 1 + j)));
                }
            }
            return SUCCESS_CHECK;
        }
Esempio n. 8
0
//Evaluate all of derivative data (d(i+j)f(u,v))/(du**i*dv**j),
//for 0<=i<=ndu and 0<=j<=ndv.
void MGSBRep::eval_all(
		double u, double v,	// Parameter value of the surface.
		size_t ndu,		//Order of Derivative along u.
		size_t ndv,		//Order of Derivative along v.
		double* deriv	//Output. (d(i+j)f(u,v))/(du**i*dv**j) in
						//deriv[r+j*dim+i*(ndv+1)*dim] for 0<=r<dim=sdim().
						//for 0<=i<=ndu and 0<=j<=ndv.
	//deriv is an array of deriv[ndu+1][ndv+1][r],
	//(d(i+j)f(u,v))/(du**i*dv**j) is returned in deriv[i][j][r].
	) const{
	size_t i,j,jj,r, dim=sdim();
	size_t ider,jder;
	const unsigned ku=order_u(), kv=order_v();
	size_t kundu=ku*(ndu+1), kvndv=kv*(ndv+1);
	double cu[30],cv[30]; double *cup=cu, *cvp=cv;
	if(kundu>30) cup=new double[kundu];	//Done to save "new".
	if(kvndv>30) cvp=new double[kvndv];	//Done to save "new".
	int idu,idv;
	for(ider=0; ider<=ndu; ider++) idu=m_uknot.eval_coef(u,cup+ider*ku,ider);
	for(jder=0; jder<=ndv; jder++) idv=m_vknot.eval_coef(v,cvp+jder*kv,jder);

	double coefall,coefu;
	for(ider=0; ider<=ndu;ider++){
		size_t iderndv1dim=ider*(ndv+1)*dim;
		for(jder=0; jder<=ndv; jder++){
			size_t jderdim=jder*dim;
			for(r=0; r<dim; r++){
				coefall=0.;
				for(j=0;j<kv;j++){
					coefu=0.;
					jj=idv+j;
					for(i=0;i<ku;i++)
						coefu=coefu+coef(idu+i,jj,r)*cup[i+ider*ku];
					coefall=coefall+coefu*cvp[j+jder*kv];
				}
				deriv[r+jderdim+iderndv1dim]=coefall;
			}	
		}
	}

	if(kundu>30) delete[] cup;
	if(kvndv>30) delete[] cvp;
}
Esempio n. 9
0
int sample()
{
    LL n = 3;
    int deg = 3;
    Poly W(deg), coef(deg);
    coef[2] = 1; coef[1] = 2;
    W[0] = 3; W[1] = 4;
    // W_i = 2 * W_{i-1} + 1 * W_{i - 2}
    // W_0 = 3, W_1 = 4, W_2 = 11, W_3 = 25 ...

    Poly P(deg);
    P[1] = 1;
    Poly A = power(P, n, coef);
    int ret = 0;
    for (int i = 0; i < deg; ++ i)
        add(ret, mul(W[i], coef[i]));

    return ret;
}
// append local profile to MNI space profile
void appendpf_local2std(string coordfile_std2local) {
  ifstream coordstream(coordfile_std2local);
  floatVector coord(3);
  vector<floatVector> coord_map_std2local;
  for (int i=0; i<3; i++)
    coordstream >> coord[i];
  while(coordstream.good()) {
    coord_map_std2local.push_back(coord);
    for (int i=0; i<3; i++)
      coordstream >> coord[i];
  }

  assert(coord_map_std2local.size()==conn_profile().size());
  floatVector append;
  intVector start(3);
  floatVector coef(3);
  intVector tmpCoord(3);
  int dim_profile = (conn_profile().begin()->second).size();

  auto it = conn_profile().begin();
  for (int i=0; i<conn_profile().size(); i++, it++) {
    for (int k=0; k<3; k++) {
      start[k]=(int)coord_map_std2local[i][k];
      coef[k] = coord_map_std2local[i][k]-start[k];
    }
    for (int z=0; z<2; z++) { // Note: we assume that all points are within the interiors, therefore exactly 8 neighbors
      float fracZ = (1-coef[2])*(1-z)+coef[2]*z;
      for (int y=0; y<2; y++) {
	float fracZY=fracZ * ( (1-coef[1])*(1-y)+coef[1]*y );
	for (int x=0; x<2; x++) {
	  float fracZYX=fracZY * ( (1-coef[0])*(1-x)+coef[0]*x );
	  tmpCoord[0]=start[0]+x; tmpCoord[1]=start[1]+y; tmpCoord[2]=start[2]+z;
	  if (conn_profile_local().count(tmpCoord)) {
	    for (int k=0; k<dim_profile; k++)
	      (it->second)[k] += fracZYX * conn_profile_local()[tmpCoord][k];
	  }
	}
      }
    }
  }
}
Esempio n. 11
0
MGPPRep::MGPPRep(const MGLBRep& lbrep)
	//Constructor to convert from Line B-Representation.
	:m_order(lbrep.order()),				//Order
	m_nbreak(lbrep.bdim()-m_order+2),		//Num of Break points
	m_sdim(lbrep.sdim()), 					//Space dimension
	m_break_point(m_nbreak),				//Break point area
	m_coef(new double[m_order*m_nbreak*m_sdim])	//Coef area
{
	const size_t irc=lbrep.line_bcoef().capacity();
	double* work=new double[m_order*m_order*m_sdim]; //Work array for BLCBP
	size_t nbdim= lbrep.bdim();
	const double* knotp= lbrep.knot_data();
	int nbreak;
	double* breakp=&(m_break_point(0));
	blcbpn_(m_order,nbdim,knotp,lbrep.coef_data(),irc,
		   m_sdim,m_nbreak,work,breakp,&coef(0,0,0),&nbreak);
	delete[] work;
	nbreak+=1; //Since ouput nbreak of BLCBP is interval number.
	if(nbreak<int(m_nbreak))
		reshape(nbreak);
}
Esempio n. 12
0
void Energy::read_parameters()
{
  ifstream parameters;
  parameters.open("energy.cfg");

  if(! parameters.is_open())
    {
      cout << "Error:File 'energy.cfg' could not be found\n";
      exit(0);
    }
  
  printf("Setting parameters\n");

  string dummy;
  
  la::vector<double> coef;

  while (!parameters.eof())
    {
      parameters >> dummy;

      if(dummy == "MODE:")
	parameters >> mode;

      if(dummy == "DATASET:")
	parameters >> dataset;

      if(dummy == "COEFFICIENTS:")
	{
	  parameters >> dummy;
	  while(dummy != "end")
	    {
	      coef.resize(coef.size()+1,true);
	      coef(coef.size()-1) = (double) atof(dummy.c_str());

	      parameters >> dummy;
	    }
	}

    } //end read file
Esempio n. 13
0
CzWINDOWEDFIR::CzWINDOWEDFIR()
{	
	int _LPcl;
	float _LPcllen	= (float)(1L<<WFIR_FRACBITS);	// number of precalculated lines for 0..1 (-1..0)
	float _LNorm	= 1.0f / (float)(2.0f * _LPcllen);
	float _LCut		= WFIR_CUTOFF;
	float _LScale	= (float)WFIR_QUANTSCALE;
	for( _LPcl=0;_LPcl<WFIR_LUTLEN;_LPcl++ )
	{	
		float _LGain,_LCoefs[WFIR_WIDTH];
		float _LOfs		= ((float)_LPcl-_LPcllen)*_LNorm;
		int _LCc,_LIdx	= _LPcl<<WFIR_LOG2WIDTH;
		for( _LCc=0,_LGain=0.0f;_LCc<WFIR_WIDTH;_LCc++ )
		{	_LGain	+= (_LCoefs[_LCc] = coef( _LCc, _LOfs, _LCut, WFIR_WIDTH, WFIR_TYPE ));
		}
		_LGain = 1.0f/_LGain;
		for( _LCc=0;_LCc<WFIR_WIDTH;_LCc++ )
		{	float _LCoef = (float)floor( 0.5 + _LScale*_LCoefs[_LCc]*_LGain );
		lut[_LIdx+_LCc] = (signed short)( (_LCoef<-_LScale)?-_LScale:((_LCoef>_LScale)?_LScale:_LCoef) );
		}
	}
}
Esempio n. 14
0
File: Glm.cpp Progetto: cran/Boom
 void GlmModel::set_included_coefficients(const Vector &beta,
                                          const Selector &inc) {
   coef().set_included_coefficients(beta, inc);
 }
Esempio n. 15
0
File: Glm.cpp Progetto: cran/Boom
 void GlmModel::set_included_coefficients(const Vector &b) {
   coef().set_included_coefficients(b);
 }
Esempio n. 16
0
File: Glm.cpp Progetto: cran/Boom
 Vector GlmModel::included_coefficients() const {
   return coef().included_coefficients();
 }
Esempio n. 17
0
File: Glm.cpp Progetto: cran/Boom
 double GlmModel::predict(const ConstVectorView &x) const {
   return coef().predict(x);
 }
Esempio n. 18
0
File: Glm.cpp Progetto: cran/Boom
 double GlmModel::Beta(uint I) const { return coef().Beta(I); }
Esempio n. 19
0
File: Glm.cpp Progetto: cran/Boom
 void GlmModel::drop(uint p) { coef().drop(p); }
Esempio n. 20
0
File: Glm.cpp Progetto: cran/Boom
 uint GlmModel::xdim() const { return coef().nvars_possible(); }
Esempio n. 21
0
//Modify the original Surface by extrapolating the specified perimeter.
//The extrapolation is C2 continuous if the order >=4.
//The extrapolation is done so that extrapolating length is "length"
//at the position of the parameter value "param" of the perimeter.
MGRSBRep& MGRSBRep::extend(
	int perimeter,	//perimeter number of the Surface.
					// =0:v=min, =1:u=max, =2:v=max, =3:u=min.
	double param,	// parameter value of above perimeter.
	double length,	//chord length to extend at the parameter param of the perimeter.
	double dk){  //Coefficient of how curvature should vary at
//    extrapolation start point. When dk=0, curvature keeps same, i.e.
//    dK/dS=0. When dk=1, curvature becomes zero at length extrapolated point,
//    i.e. dK/dS=-K/length at extrapolation start point.
//    (S=parameter of arc length, K=Curvature at start point)
//    That is, when dk reaches to 1 from 0, curve changes to flat.

	assert(sdim()<=3);
	assert(perimeter>=0 && perimeter<4);
	
	const size_t ncd=surface_bcoef().sdim();
	int at_start=1;//starting perimeter
	size_t nu, nv;
	size_t order; size_t n,m; MGKnotVector* t;
	if(perimeter==1 || perimeter==3){	// Extrapolate to u-direction
		order=order_u();
		n=bdim_u();
		t=&(knot_vector_u());
		if(perimeter==1)
			at_start=0;//ending perimeter
		m=nv=bdim_v();
	}else{
		// Extrapolate to v-direction
		order=order_v();
		n=bdim_v();
		t=&(knot_vector_v());
		if(perimeter==2)
			at_start=0;//ending perimeter
		m=nu=bdim_u();
	}
	//(nu,nv) are new surface B-Rep dimensions of u and v.
	//(order,n,t) is line B-rep to extrapolate.
	//m is the number of line B-reps to extrapolate.

	MGSPointSeq surf;
	MGRLBRep lbtemp;
	MGKnotVector& t1=lbtemp.knot_vector();
	MGBPointSeq& coeftemp=lbtemp.line_bcoef();
	coeftemp.resize(n,ncd);
	double tse;
	if(at_start)
		tse=t->param_s();
	else
		tse=t->param_e();

	MGPosition uv=perimeter_uv(perimeter,param);//Surface parameter value of param.
	size_t ndu=0,ndv=0;
	if(perimeter==0 || perimeter==2) ndv=1;
	else                             ndu=1;
	double slen=length/(eval(uv,ndu,ndv)).len();

	int nnew; double firstd_len,dlen;
	for(size_t i=0; i<m; i++){
		if(perimeter==0 || perimeter==2){
			for(size_t j=0; j<n; j++)
				for(size_t k=0; k<ncd; k++) coeftemp(j,k)=coef(i,j,k);
		}else{
			for(size_t j=0; j<n; j++)
				for(size_t k=0; k<ncd; k++) coeftemp(j,k)=coef(j,i,k);
		}
		coeftemp.set_length(n);

	//Compute first derivative length at the end of the extrapolating line.
		t1=*t; 
		firstd_len=lbtemp.eval(tse,1).len();
		dlen=firstd_len*slen;
		//std::cout<<"before:"<<lbtemp<<std::endl;///////
		lbtemp.extend(at_start,dlen,dk);
		//std::cout<<"after:"<<lbtemp<<std::endl;///////
		nnew=lbtemp.bdim();
		if(perimeter==0 || perimeter==2){
			if(i==0){
				nv=nnew;
				surf.resize(nu,nv,ncd);
			}
			for(int j=0; j<nnew; j++)
				for(size_t k=0; k<ncd; k++) surf(i,j,k)=coeftemp(j,k);
		}else{
			if(i==0){
				nu=nnew;
				surf.resize(nu,nv,ncd);
			}
			for(int j=0; j<nnew; j++)
				for(size_t k=0; k<ncd; k++) surf(j,i,k)=coeftemp(j,k);
		}
	}

	*t=t1;
	surf.set_length(nu,nv);
	surface_bcoef()=surf;

	update_mark();
	return *this;
}
Esempio n. 22
0
void
EigenExecutionerBase::chebyshev(Chebyshev_Parameters & chebyshev_parameters, unsigned int iter, const PostprocessorValue * solution_diff)
{
  if (!solution_diff) mooseError("solution diff is required for Chebyshev acceleration");

  if (chebyshev_parameters.lgac==0)
  {
    if (chebyshev_parameters.icho==0)
      chebyshev_parameters.ratio = *solution_diff / chebyshev_parameters.flux_error_norm_old;
    else
    {
      chebyshev_parameters.ratio = chebyshev_parameters.ratio_new;
      chebyshev_parameters.icho = 0;
    }

    if (iter > chebyshev_parameters.finit &&
        chebyshev_parameters.ratio>=0.4 &&
        chebyshev_parameters.ratio<=1)
    {
      chebyshev_parameters.lgac = 1;
      chebyshev_parameters.icheb = 1;
      chebyshev_parameters.error_begin = *solution_diff;
      chebyshev_parameters.iter_begin = iter;
      double alp = 2/(2-chebyshev_parameters.ratio);
      std::vector<double> coef(2);
      coef[0] = alp;
      coef[1] = 1-alp;
      _eigen_sys.combineSystemSolution(EigenSystem::EIGEN, coef);
      _problem.computeUserObjects(EXEC_LINEAR, UserObjectWarehouse::PRE_AUX);
      _problem.computeAuxiliaryKernels(EXEC_LINEAR);
      _problem.computeUserObjects(EXEC_LINEAR, UserObjectWarehouse::POST_AUX);
      _eigenvalue = _source_integral;
    }
  }
  else
  {
    chebyshev_parameters.icheb++;
    double gamma = acosh(2/chebyshev_parameters.ratio-1);
    double alp = 4/chebyshev_parameters.ratio*std::cosh((chebyshev_parameters.icheb-1)*gamma)
      /std::cosh(chebyshev_parameters.icheb*gamma);
    double beta = (1-chebyshev_parameters.ratio/2)*alp - 1;
/*  if (iter<int(chebyshev_parameters.iter_begin+chebyshev_parameters.n_iter))
    {
      std::vector<double> coef(3);
      coef[0] = alp;
      coef[1] = 1-alp+beta;
      coef[2] = -beta;
      _eigen_sys.combineSystemSolution(NonlinearSystem::EIGEN, coef);
    }
    else
    {*/
      double gamma_new = (*solution_diff/chebyshev_parameters.error_begin)*
        (std::cosh((chebyshev_parameters.icheb-1)*acosh(2/chebyshev_parameters.ratio-1)));
      if (gamma_new<1.0) gamma_new = 1.0;

      chebyshev_parameters.ratio_new = chebyshev_parameters.ratio/2*
        (std::cosh(acosh(gamma_new) / (chebyshev_parameters.icheb-1))+1);
      if (gamma_new>1.01)
      {
        chebyshev_parameters.lgac = 0;
//      chebyshev_parameters.icheb = 0;
//      if (chebyshev_parameters.icheb>30)
//      {
        if (chebyshev_parameters.icheb>0)
        {
          chebyshev_parameters.icho = 1;
          chebyshev_parameters.finit = iter;
        }
        else
        {
          chebyshev_parameters.icho = 0;
          chebyshev_parameters.finit = iter + chebyshev_parameters.fsmooth;
        }
      }
      else
      {
        std::vector<double> coef(3);
        coef[0] = alp;
        coef[1] = 1-alp+beta;
        coef[2] = -beta;
        _eigen_sys.combineSystemSolution(EigenSystem::EIGEN, coef);
        _problem.computeUserObjects(EXEC_LINEAR, UserObjectWarehouse::PRE_AUX);
        _problem.computeAuxiliaryKernels(EXEC_LINEAR);
        _problem.computeUserObjects(EXEC_LINEAR, UserObjectWarehouse::POST_AUX);
        _eigenvalue = _source_integral;
      }
//    }
  }
  chebyshev_parameters.flux_error_norm_old = *solution_diff;
}
Esempio n. 23
0
Polynom::Polynom(const string str)
{
   int tmp, tmp1, tmp2;

   coefficients.clear();
   if (str.length() < 8)
	   throw(invalid_argument("incorrect number input. You can try help\n"));

   for (auto i = 0; i < str.length(); i++)
	  if (!isdigit(str[i]) && str[i] != 'x' && str[i] != '^' && str[i] != '+' && str[i] != '-' && str[i] != '/' && str[i] != '(' && str[i] != ')')
		  throw(invalid_argument("incorrect number input. You can try help\n"));
	 
   tmp = 0;
   if (str[0] == '-' || str[0] == '+')
	  tmp++;

   do
   {
	  tmp1 = str.find("(", tmp);
	  if (tmp1 != tmp)
		  throw(invalid_argument("incorrect number input. You can try help\n"));

	  tmp = ++tmp1;
	  while (tmp < str.size() && isdigit(str[tmp]))
		 tmp++;
	  if (tmp == tmp1)
		  throw(invalid_argument("incorrect number input. You can try help\n"));

	  if (tmp != -1)
	  {
		 tmp1 = str.find("/", tmp);
		 if (tmp1 == -1 || (tmp1 - tmp) != 0)
			 throw(invalid_argument("incorrect number input. You can try help\n"));

		 tmp = ++tmp1;
		 while (tmp < str.size() && isdigit(str[tmp]))
			tmp++;
		 if (tmp == tmp1)
			 throw(invalid_argument("incorrect number input. You can try help\n"));

		 tmp1 = str.find(")", tmp);
		 if (tmp1 == -1 || (tmp1 - tmp) != 0)
			 throw(invalid_argument("incorrect number input. You can try help\n"));

		 tmp = ++tmp1;
		 tmp1 = str.find("x^", tmp);
		 if (tmp1 == -1 || (tmp1 - tmp) != 0)
			 throw(invalid_argument("incorrect number input. You can try help\n"));

		 tmp1 += 2;
		 while (tmp1 < str.size() && isdigit(str[tmp1]))
			tmp1++;

		 if (tmp == tmp1)
			 throw(invalid_argument("incorrect number input. You can try help\n"));

		 if (tmp1 == str.size())
			break;

		 tmp2 = tmp = tmp1;
		 tmp = str.find("+", tmp);
		 tmp1 = str.find("-", tmp1);
		 if (tmp == -1 && tmp1 == -1)
			 throw(invalid_argument("incorrect number input. You can try help\n"));
		 
		 if (tmp == -1)
			tmp = tmp1;

		 if (tmp1 < tmp)
			tmp = tmp1;

		 if ((tmp - tmp2) != 0)
			 throw(invalid_argument("incorrect number input. You can try help\n"));
		 tmp++;
	  }
	  else
		  throw(invalid_argument("incorrect number input. You can try help\n"));
   }
   while (true);

   MegaNatural lastCoef,b_lastCoef;
   int sign;
   MegaRational coef();
   bool first = true;
   int pos = 0;
   
   do
   {
	  if (first)
	  {
		 first = false;
		 if (str[0] == '-')
			sign = -1;
		 else
			sign = 1;

		 MegaInteger numerator(getNextNum(str, pos));
		 numerator = numerator*(MegaInteger)(-1);
		 MegaNatural denominator(getNextNum(str, pos));
		 coefficients.push_front(MegaRational(numerator, denominator));
		 lastCoef = getNextNum(str, pos);
		 continue;
	  }
	  tmp = str.find("+", pos);
	  tmp1 = str.find("-", pos);
	  if (tmp == -1 && tmp1 == -1)
		 break;

	  if (tmp != -1 && tmp1 != -1)
		 if (tmp < tmp1)
			sign = 1;
		 else
			sign = -1;

	  if (tmp == -1)
		 sign = -1;

	  if (tmp1 == -1)
		 sign = 1;

	  MegaInteger numerator(getNextNum(str, pos));
	  numerator = numerator*(MegaInteger) (-1);
	  MegaNatural denominator(getNextNum(str, pos));
	  coefficients.push_front(MegaRational(numerator, denominator));

	  b_lastCoef = lastCoef;
	  lastCoef = getNextNum(str, pos);
	  if (lastCoef >= b_lastCoef)
	  {
		 coefficients.clear();
		 coefficients.resize(0);
		 throw(invalid_argument("incorrect number input. You can try help\n"));
	  } 
	  else
	  {
		 while ((b_lastCoef - (MegaNatural) 1) > lastCoef)
		 {
			b_lastCoef = b_lastCoef - (MegaNatural) 1;
			coefficients.push_front(MegaRational());
		 }
	  }
   }
   while (pos < str.size());
   while (lastCoef>(MegaNatural)0)
   {
	   lastCoef = lastCoef - (MegaNatural)1;
	   coefficients.push_front(MegaRational());

   }
}
Esempio n. 24
0
File: Glm.cpp Progetto: cran/Boom
 // reports 0 for excluded positions
 const Vector &GlmModel::Beta() const { return coef().Beta(); }
Esempio n. 25
0
File: Glm.cpp Progetto: cran/Boom
 void GlmModel::set_Beta(const Vector &B) { coef().set_Beta(B); }
Esempio n. 26
0
File: Glm.cpp Progetto: cran/Boom
 void GlmModel::flip(uint p) { coef().flip(p); }
Esempio n. 27
0
File: Glm.cpp Progetto: cran/Boom
 const Selector &GlmModel::inc() const { return coef().inc(); }
Esempio n. 28
0
File: Glm.cpp Progetto: cran/Boom
 bool GlmModel::inc(uint p) const { return coef().inc(p); }
Esempio n. 29
0
File: Glm.cpp Progetto: cran/Boom
 void GlmModel::add(uint p) { coef().add(p); }
Esempio n. 30
0
void pose_estimation_from_line_correspondence(Eigen::MatrixXf start_points,
                                              Eigen::MatrixXf end_points,
                                              Eigen::MatrixXf directions,
                                              Eigen::MatrixXf points,
                                              Eigen::MatrixXf &rot_cw,
                                              Eigen::VectorXf &pos_cw)
{


    int n = start_points.cols();
    if(n != directions.cols())
    {
        return;
    }

    if(n<4)
    {
        return;
    }


    float condition_err_threshold = 1e-3;
    Eigen::VectorXf cosAngleThreshold(3);
    cosAngleThreshold << 1.1, 0.9659, 0.8660;
    Eigen::MatrixXf optimumrot_cw(3,3);
    Eigen::VectorXf optimumpos_cw(3);
    std::vector<float> lineLenVec(n,1);

    vfloat3 l1;
    vfloat3 l2;
    vfloat3 nc1;
    vfloat3 Vw1;
    vfloat3 Xm;
    vfloat3 Ym;
    vfloat3 Zm;
    Eigen::MatrixXf Rot(3,3);
    std::vector<vfloat3> nc_bar(n,vfloat3(0,0,0));
    std::vector<vfloat3> Vw_bar(n,vfloat3(0,0,0));
    std::vector<vfloat3> n_c(n,vfloat3(0,0,0));
    Eigen::MatrixXf Rx(3,3);
    int line_id;

    for(int HowToChooseFixedTwoLines = 1 ; HowToChooseFixedTwoLines <=3 ; HowToChooseFixedTwoLines++)
    {

        if(HowToChooseFixedTwoLines==1)
        {
#pragma omp parallel for
            for(int i = 0; i < n ; i++ )
            {
                // to correct
                float lineLen = 10;
                lineLenVec[i] = lineLen;
            }
            std::vector<float>::iterator result;
            result = std::max_element(lineLenVec.begin(), lineLenVec.end());
            line_id = std::distance(lineLenVec.begin(), result);
            vfloat3 temp;
            temp = start_points.col(0);
            start_points.col(0) = start_points.col(line_id);
            start_points.col(line_id) = temp;

            temp = end_points.col(0);
            end_points.col(0) = end_points.col(line_id);
            end_points.col(line_id) = temp;

            temp = directions.col(line_id);
            directions.col(0) = directions.col(line_id);
            directions.col(line_id) = temp;

            temp = points.col(0);
            points.col(0) = points.col(line_id);
            points.col(line_id) = temp;

            lineLenVec[line_id] = lineLenVec[1];
            lineLenVec[1] = 0;
            l1 = start_points.col(0) - end_points.col(0);
            l1 = l1/l1.norm();
        }


        for(int i = 1; i < n; i++)
        {
            std::vector<float>::iterator result;
            result = std::max_element(lineLenVec.begin(), lineLenVec.end());
            line_id = std::distance(lineLenVec.begin(), result);
            l2 = start_points.col(line_id) - end_points.col(line_id);
            l2 = l2/l2.norm();
            lineLenVec[line_id] = 0;
            MatrixXf cosAngle(3,3);
            cosAngle = (l1.transpose()*l2).cwiseAbs();
            if(cosAngle.maxCoeff() < cosAngleThreshold[HowToChooseFixedTwoLines])
            {
                break;
            }
        }



        vfloat3 temp;
        temp = start_points.col(1);
        start_points.col(1) = start_points.col(line_id);
        start_points.col(line_id) = temp;

        temp = end_points.col(1);
        end_points.col(1) = end_points.col(line_id);
        end_points.col(line_id) = temp;

        temp = directions.col(1);
        directions.col(1) = directions.col(line_id);
        directions.col(line_id) = temp;

        temp = points.col(1);
        points.col(1) = points.col(line_id);
        points.col(line_id) = temp;

        lineLenVec[line_id] = lineLenVec[1];
        lineLenVec[1] = 0;

        // The rotation matrix R_wc is decomposed in way which is slightly different from the description in the paper,
        // but the framework is the same.
        // R_wc = (Rot') * R * Rot =  (Rot') * (Ry(theta) * Rz(phi) * Rx(psi)) * Rot
        nc1 = x_cross(start_points.col(1),end_points.col(1));
        nc1 = nc1/nc1.norm();

        Vw1 = directions.col(1);
        Vw1 = Vw1/Vw1.norm();

        //the X axis of Model frame
        Xm = x_cross(nc1,Vw1);
        Xm = Xm/Xm.norm();

        //the Y axis of Model frame
        Ym = nc1;

        //the Z axis of Model frame
        Zm = x_cross(Xm,Zm);
        Zm = Zm/Zm.norm();

        //Rot * [Xm, Ym, Zm] = I.
        Rot.col(0) = Xm;
        Rot.col(1) = Ym;
        Rot.col(2) = Zm;

        Rot = Rot.transpose();


        //rotate all the vector by Rot.
        //nc_bar(:,i) = Rot * nc(:,i)
        //Vw_bar(:,i) = Rot * Vw(:,i)
#pragma omp parallel for
        for(int i = 0 ; i < n ; i++)
        {
            vfloat3 nc = x_cross(start_points.col(1),end_points.col(1));
            nc = nc/nc.norm();
            n_c[i] = nc;
            nc_bar[i] = Rot * nc;
            Vw_bar[i] = Rot * directions.col(i);
        }

        //Determine the angle psi, it is the angle between z axis and Vw_bar(:,1).
        //The rotation matrix Rx(psi) rotates Vw_bar(:,1) to z axis
        float cospsi = (Vw_bar[1])[2];//the angle between z axis and Vw_bar(:,1); cospsi=[0,0,1] * Vw_bar(:,1);.
        float sinpsi= sqrt(1 - cospsi*cospsi);
        Rx.row(0) = vfloat3(1,0,0);
        Rx.row(1) = vfloat3(0,cospsi,-sinpsi);
        Rx.row(2) = vfloat3(0,sinpsi,cospsi);
        vfloat3 Zaxis = Rx * Vw_bar[1];
        if(1-fabs(Zaxis[3]) > 1e-5)
        {
            Rx = Rx.transpose();
        }

        //estimate the rotation angle phi by least square residual.
        //i.e the rotation matrix Rz(phi)
        vfloat3 Vm2 = Rx * Vw_bar[1];
        float A2 = Vm2[0];
        float B2 = Vm2[1];
        float C2 = Vm2[2];
        float x2 = (nc_bar[1])[0];
        float y2 = (nc_bar[1])[1];
        float z2 = (nc_bar[1])[2];
        Eigen::PolynomialSolver<double, Eigen::Dynamic> solver;
        Eigen::VectorXf coeff(9);

        std::vector<float> coef(9,0); //coefficients of equation (7)
        Eigen::VectorXf polyDF = VectorXf::Zero(16); //%dF = ployDF(1) * t^15 + ployDF(2) * t^14 + ... + ployDF(15) * t + ployDF(16);

        //construct the  polynomial F'
#pragma omp parallel for
        for(int i = 3 ; i < n ; i++)
        {
            vfloat3 Vm3 = Rx*Vw_bar[i];
            float A3 = Vm3[0];
            float B3 = Vm3[1];
            float C3 = Vm3[2];
            float x3 = (nc_bar[i])[0];
            float y3 = (nc_bar[i])[1];
            float z3 = (nc_bar[i])[2];
            float u11 = -z2*A2*y3*B3 + y2*B2*z3*A3;
            float u12 = -y2*A2*z3*B3 + z2*B2*y3*A3;
            float u13 = -y2*B2*z3*B3 + z2*B2*y3*B3 + y2*A2*z3*A3 - z2*A2*y3*A3;
            float u14 = -y2*B2*x3*C3 + x2*C2*y3*B3;
            float u15 =  x2*C2*y3*A3 - y2*A2*x3*C3;
            float u21 = -x2*A2*y3*B3 + y2*B2*x3*A3;
            float u22 = -y2*A2*x3*B3 + x2*B2*y3*A3;
            float u23 =  x2*B2*y3*B3 - y2*B2*x3*B3 - x2*A2*y3*A3 + y2*A2*x3*A3;
            float u24 =  y2*B2*z3*C3 - z2*C2*y3*B3;
            float u25 =  y2*A2*z3*C3 - z2*C2*y3*A3;
            float u31 = -x2*A2*z3*A3 + z2*A2*x3*A3;
            float u32 = -x2*B2*z3*B3 + z2*B2*x3*B3;
            float u33 =  x2*A2*z3*B3 - z2*A2*x3*B3 + x2*B2*z3*A3 - z2*B2*x3*A3;
            float u34 =  z2*A2*z3*C3 + x2*A2*x3*C3 - z2*C2*z3*A3 - x2*C2*x3*A3;
            float u35 = -z2*B2*z3*C3 - x2*B2*x3*C3 + z2*C2*z3*B3 + x2*C2*x3*B3;
            float u36 = -x2*C2*z3*C3 + z2*C2*x3*C3;
            float a4 =   u11*u11 + u12*u12 - u13*u13 - 2*u11*u12 +   u21*u21 + u22*u22 - u23*u23
                    -2*u21*u22 - u31*u31 - u32*u32 +   u33*u33 + 2*u31*u32;
            float a3 =2*(u11*u14 - u13*u15 - u12*u14 +   u21*u24 -   u23*u25
                         - u22*u24 - u31*u34 + u33*u35 +   u32*u34);
            float a2 =-2*u12*u12 + u13*u13 + u14*u14 -   u15*u15 + 2*u11*u12 - 2*u22*u22 + u23*u23
                    + u24*u24 - u25*u25 +2*u21*u22+ 2*u32*u32 -   u33*u33
                    - u34*u34 + u35*u35 -2*u31*u32- 2*u31*u36 + 2*u32*u36;
            float a1 =2*(u12*u14 + u13*u15 +  u22*u24 +  u23*u25 -   u32*u34 - u33*u35 - u34*u36);
            float a0 =   u12*u12 + u15*u15+   u22*u22 +  u25*u25 -   u32*u32 - u35*u35 - u36*u36 - 2*u32*u36;
            float b3 =2*(u11*u13 - u12*u13 +  u21*u23 -  u22*u23 -   u31*u33 + u32*u33);
            float b2 =2*(u11*u15 - u12*u15 +  u13*u14 +  u21*u25 -   u22*u25 + u23*u24 - u31*u35 + u32*u35 - u33*u34);
            float b1 =2*(u12*u13 + u14*u15 +  u22*u23 +  u24*u25 -   u32*u33 - u34*u35 - u33*u36);
            float b0 =2*(u12*u15 + u22*u25 -  u32*u35 -  u35*u36);

            float d0 =    a0*a0 -   b0*b0;
            float d1 = 2*(a0*a1 -   b0*b1);
            float d2 =    a1*a1 + 2*a0*a2 +   b0*b0 - b1*b1 - 2*b0*b2;
            float d3 = 2*(a0*a3 +   a1*a2 +   b0*b1 - b1*b2 -   b0*b3);
            float d4 =    a2*a2 + 2*a0*a4 + 2*a1*a3 + b1*b1 + 2*b0*b2 - b2*b2 - 2*b1*b3;
            float d5 = 2*(a1*a4 +   a2*a3 +   b1*b2 + b0*b3 -   b2*b3);
            float d6 =    a3*a3 + 2*a2*a4 +   b2*b2 - b3*b3 + 2*b1*b3;
            float d7 = 2*(a3*a4 +   b2*b3);
            float d8 =    a4*a4 +   b3*b3;
            std::vector<float> v { a4, a3, a2, a1, a0, b3, b2, b1, b0 };
            Eigen::VectorXf vp;
            vp <<  a4, a3, a2, a1, a0, b3, b2, b1, b0 ;
            //coef = coef + v;
            coeff = coeff + vp;

            polyDF[0] = polyDF[0] + 8*d8*d8;
            polyDF[1] = polyDF[1] + 15* d7*d8;
            polyDF[2] = polyDF[2] + 14* d6*d8 + 7*d7*d7;
            polyDF[3] = polyDF[3] + 13*(d5*d8 +  d6*d7);
            polyDF[4] = polyDF[4] + 12*(d4*d8 +  d5*d7) +  6*d6*d6;
            polyDF[5] = polyDF[5] + 11*(d3*d8 +  d4*d7 +  d5*d6);
            polyDF[6] = polyDF[6] + 10*(d2*d8 +  d3*d7 +  d4*d6) + 5*d5*d5;
            polyDF[7] = polyDF[7] + 9 *(d1*d8 +  d2*d7 +  d3*d6  + d4*d5);
            polyDF[8] = polyDF[8] + 8 *(d1*d7 +  d2*d6 +  d3*d5) + 4*d4*d4 + 8*d0*d8;
            polyDF[9] = polyDF[9] + 7 *(d1*d6 +  d2*d5 +  d3*d4) + 7*d0*d7;
            polyDF[10] = polyDF[10] + 6 *(d1*d5 +  d2*d4) + 3*d3*d3 + 6*d0*d6;
            polyDF[11] = polyDF[11] + 5 *(d1*d4 +  d2*d3)+ 5*d0*d5;
            polyDF[12] = polyDF[12] + 4 * d1*d3 +  2*d2*d2 + 4*d0*d4;
            polyDF[13] = polyDF[13] + 3 * d1*d2 +  3*d0*d3;
            polyDF[14] = polyDF[14] + d1*d1 + 2*d0*d2;
            polyDF[15] = polyDF[15] + d0*d1;
        }


        Eigen::VectorXd coefficientPoly = VectorXd::Zero(16);

        for(int j =0; j < 16 ; j++)
        {
            coefficientPoly[j] = polyDF[15-j];
        }


        //solve polyDF
        solver.compute(coefficientPoly);
        const Eigen::PolynomialSolver<double, Eigen::Dynamic>::RootsType & r = solver.roots();
        Eigen::VectorXd rs(r.rows());
        Eigen::VectorXd is(r.rows());
        std::vector<float> min_roots;
        for(int j =0;j<r.rows();j++)
        {
            rs[j] = fabs(r[j].real());
            is[j] = fabs(r[j].imag());
        }


        float maxreal = rs.maxCoeff();

        for(int j = 0 ; j < rs.rows() ; j++ )
        {
            if(is[j]/maxreal <= 0.001)
            {
                min_roots.push_back(rs[j]);
            }
        }

        std::vector<float> temp_v(15);
        std::vector<float> poly(15);
        for(int j = 0 ; j < 15 ; j++)
        {
            temp_v[j] = j+1;
        }

        for(int j = 0 ; j < 15 ; j++)
        {
            poly[j] = polyDF[j]*temp_v[j];
        }

        Eigen::Matrix<double,16,1> polynomial;

        Eigen::VectorXd evaluation(min_roots.size());

        for( int j = 0; j < min_roots.size(); j++ )
        {
            evaluation[j] = poly_eval( polynomial, min_roots[j] );
        }


        std::vector<float> minRoots;


        for( int j = 0; j < min_roots.size(); j++ )
        {
            if(!evaluation[j]<=0)
            {
                minRoots.push_back(min_roots[j]);
            }
        }


        if(minRoots.size()==0)
        {
            cout << "No solution" << endl;
            return;
        }

        int numOfRoots = minRoots.size();
        //for each minimum, we try to find a solution of the camera pose, then
        //choose the one with the least reprojection residual as the optimum of the solution.
        float minimalReprojectionError = 100;
        // In general, there are two solutions which yields small re-projection error
        // or condition error:"n_c * R_wc * V_w=0". One of the solution transforms the
        // world scene behind the camera center, the other solution transforms the world
        // scene in front of camera center. While only the latter one is correct.
        // This can easily be checked by verifying their Z coordinates in the camera frame.
        // P_c(Z) must be larger than 0 if it's in front of the camera.



        for(int rootId = 0 ; rootId < numOfRoots ; rootId++)
        {

            float cosphi = minRoots[rootId];
            float sign1 = sign_of_number(coeff[0] * pow(cosphi,4)
                    + coeff[1] * pow(cosphi,3) + coeff[2] * pow(cosphi,2)
                    + coeff[3] * cosphi + coeff[4]);
            float  sign2 = sign_of_number(coeff[5] * pow(cosphi,3)
                    + coeff[6] * pow(cosphi,2) + coeff[7] * cosphi   + coeff[8]);
            float sinphi= -sign1*sign2*sqrt(abs(1-cosphi*cosphi));
            Eigen::MatrixXf Rz(3,3);
            Rz.row(0) = vfloat3(cosphi,-sinphi,0);
            Rz.row(1) = vfloat3(sinphi,cosphi,0);
            Rz.row(2) = vfloat3(0,0,1);
            //now, according to Sec4.3, we estimate the rotation angle theta
            //and the translation vector at a time.
            Eigen::MatrixXf RzRxRot(3,3);
            RzRxRot = Rz*Rx*Rot;


            //According to the fact that n_i^C should be orthogonal to Pi^c and Vi^c, we
            //have: scalarproduct(Vi^c, ni^c) = 0  and scalarproduct(Pi^c, ni^c) = 0.
            //where Vi^c = Rwc * Vi^w,  Pi^c = Rwc *(Pi^w - pos_cw) = Rwc * Pi^w - pos;
            //Using the above two constraints to construct linear equation system Mat about
            //[costheta, sintheta, tx, ty, tz, 1].
            Eigen::MatrixXf Matrice(2*n-1,6);
#pragma omp parallel for
            for(int i = 0 ; i < n ; i++)
            {
                float nxi = (nc_bar[i])[0];
                float nyi = (nc_bar[i])[1];
                float nzi = (nc_bar[i])[2];
                Eigen::VectorXf Vm(3);
                Vm = RzRxRot * directions.col(i);
                float Vxi = Vm[0];
                float Vyi = Vm[1];
                float Vzi = Vm[2];
                Eigen::VectorXf Pm(3);
                Pm = RzRxRot * points.col(i);
                float Pxi = Pm(1);
                float Pyi = Pm(2);
                float Pzi = Pm(3);
                //apply the constraint scalarproduct(Vi^c, ni^c) = 0
                //if i=1, then scalarproduct(Vi^c, ni^c) always be 0
                if(i>1)
                {
                    Matrice(2*i-3, 0) = nxi * Vxi + nzi * Vzi;
                    Matrice(2*i-3, 1) = nxi * Vzi - nzi * Vxi;
                    Matrice(2*i-3, 5) = nyi * Vyi;
                }
                //apply the constraint scalarproduct(Pi^c, ni^c) = 0
                Matrice(2*i-2, 0) = nxi * Pxi + nzi * Pzi;
                Matrice(2*i-2, 1) = nxi * Pzi - nzi * Pxi;
                Matrice(2*i-2, 2) = -nxi;
                Matrice(2*i-2, 3) = -nyi;
                Matrice(2*i-2, 4) = -nzi;
                Matrice(2*i-2, 5) = nyi * Pyi;
            }

            //solve the linear system Mat * [costheta, sintheta, tx, ty, tz, 1]' = 0  using SVD,
            JacobiSVD<MatrixXf> svd(Matrice, ComputeThinU | ComputeThinV);
            Eigen::MatrixXf VMat = svd.matrixV();
            Eigen::VectorXf vec(2*n-1);
            //the last column of Vmat;
            vec = VMat.col(5);
            //the condition that the last element of vec should be 1.
            vec = vec/vec[5];
            //the condition costheta^2+sintheta^2 = 1;
            float normalizeTheta = 1/sqrt(vec[0]*vec[1]+vec[1]*vec[1]);
            float costheta = vec[0]*normalizeTheta;
            float sintheta = vec[1]*normalizeTheta;
            Eigen::MatrixXf Ry(3,3);
            Ry << costheta, 0, sintheta , 0, 1, 0 , -sintheta, 0, costheta;

            //now, we get the rotation matrix rot_wc and translation pos_wc
            Eigen::MatrixXf rot_wc(3,3);
            rot_wc = (Rot.transpose()) * (Ry * Rz * Rx) * Rot;
            Eigen::VectorXf pos_wc(3);
            pos_wc = - Rot.transpose() * vec.segment(2,4);

            //now normalize the camera pose by 3D alignment. We first translate the points
            //on line in the world frame Pw to points in the camera frame Pc. Then we project
            //Pc onto the line interpretation plane as Pc_new. So we could call the point
            //alignment algorithm to normalize the camera by aligning Pc_new and Pw.
            //In order to improve the accuracy of the aligment step, we choose two points for each
            //lines. The first point is Pwi, the second point is  the closest point on line i to camera center.
            //(Pw2i = Pwi - (Pwi'*Vwi)*Vwi.)
            Eigen::MatrixXf Pw2(3,n);
            Pw2.setZero();
            Eigen::MatrixXf Pc_new(3,n);
            Pc_new.setZero();
            Eigen::MatrixXf Pc2_new(3,n);
            Pc2_new.setZero();

            for(int i = 0 ; i < n ; i++)
            {
                vfloat3 nci = n_c[i];
                vfloat3 Pwi = points.col(i);
                vfloat3 Vwi = directions.col(i);
                //first point on line i
                vfloat3 Pci;
                Pci = rot_wc * Pwi + pos_wc;
                Pc_new.col(i) = Pci - (Pci.transpose() * nci) * nci;
                //second point is the closest point on line i to camera center.
                vfloat3 Pw2i;
                Pw2i = Pwi - (Pwi.transpose() * Vwi) * Vwi;
                Pw2.col(i) = Pw2i;
                vfloat3 Pc2i;
                Pc2i = rot_wc * Pw2i + pos_wc;
                Pc2_new.col(i) = Pc2i - ( Pc2i.transpose() * nci ) * nci;
            }

            MatrixXf XXc(Pc_new.rows(), Pc_new.cols()+Pc2_new.cols());
            XXc << Pc_new, Pc2_new;
            MatrixXf XXw(points.rows(), points.cols()+Pw2.cols());
            XXw << points, Pw2;
            int nm = points.cols()+Pw2.cols();
            cal_campose(XXc,XXw,nm,rot_wc,pos_wc);
            pos_cw = -rot_wc.transpose() * pos_wc;

            //check the condition n_c^T * rot_wc * V_w = 0;
            float conditionErr = 0;
            for(int i =0 ; i < n ; i++)
            {
                float val = ( (n_c[i]).transpose() * rot_wc * directions.col(i) );
                conditionErr = conditionErr + val*val;
            }

            if(conditionErr/n < condition_err_threshold || HowToChooseFixedTwoLines ==3)
            {
                //check whether the world scene is in front of the camera.
                int numLineInFrontofCamera = 0;
                if(HowToChooseFixedTwoLines<3)
                {
                    for(int i = 0 ; i < n ; i++)
                    {
                        vfloat3 P_c = rot_wc * (points.col(i) - pos_cw);
                        if(P_c[2]>0)
                        {
                            numLineInFrontofCamera++;
                        }
                    }
                }
                else
                {
                    numLineInFrontofCamera = n;
                }

                if(numLineInFrontofCamera > 0.5*n)
                {
                    //most of the lines are in front of camera, then check the reprojection error.
                    int reprojectionError = 0;
                    for(int i =0; i < n ; i++)
                    {
                        //line projection function
                        vfloat3 nc = rot_wc * x_cross(points.col(i) - pos_cw , directions.col(i));
                        float h1 = nc.transpose() * start_points.col(i);
                        float h2 = nc.transpose() * end_points.col(i);
                        float lineLen = (start_points.col(i) - end_points.col(i)).norm()/3;
                        reprojectionError += lineLen * (h1*h1 + h1*h2 + h2*h2) / (nc[0]*nc[0]+nc[1]*nc[1]);
                    }
                    if(reprojectionError < minimalReprojectionError)
                    {
                        optimumrot_cw = rot_wc.transpose();
                        optimumpos_cw = pos_cw;
                        minimalReprojectionError = reprojectionError;
                    }
                }
            }
        }
        if(optimumrot_cw.rows()>0)
        {
            break;
        }
    }
    pos_cw = optimumpos_cw;
    rot_cw = optimumrot_cw;
}