Esempio n. 1
0
static void riscv_sifive_board_init(MachineState *args)
{
    ram_addr_t ram_size = args->ram_size;
    const char *cpu_model = args->cpu_model;
    const char *kernel_filename = args->kernel_filename;
    const char *kernel_cmdline = args->kernel_cmdline;
    const char *initrd_filename = args->initrd_filename;
    MemoryRegion *system_memory = get_system_memory();
    MemoryRegion *main_mem = g_new(MemoryRegion, 1);
    RISCVCPU *cpu;
    CPURISCVState *env;
    int i;
    DeviceState *dev = qdev_create(NULL, TYPE_RISCV_SIFIVE_BOARD);
    object_property_set_bool(OBJECT(dev), true, "realized", NULL);

    /* Make sure the first 3 serial ports are associated with a device. */
    for (i = 0; i < 3; i++) {
        if (!serial_hds[i]) {
            char label[32];
            snprintf(label, sizeof(label), "serial%d", i);
            serial_hds[i] = qemu_chr_new(label, "null", NULL);
        }
    }

    /* init CPUs */
    if (cpu_model == NULL) {
        cpu_model = "any";
    }

    for (i = 0; i < smp_cpus; i++) {
        cpu = cpu_riscv_init(cpu_model);
        if (cpu == NULL) {
            fprintf(stderr, "Unable to find CPU definition\n");
            exit(1);
        }
        env = &cpu->env;

        /* Init internal devices */
        cpu_riscv_irq_init_cpu(env);
        cpu_riscv_clock_init(env);
        qemu_register_reset(main_cpu_reset, cpu);
    }
    cpu = RISCV_CPU(first_cpu);
    env = &cpu->env;

    /* register system main memory (actual RAM) */
    memory_region_init_ram(main_mem, NULL, "riscv_sifive_board.ram", 2147483648ll +
                           ram_size, &error_fatal);
    /* for phys mem size check in page table walk */
    env->memsize = ram_size;
    vmstate_register_ram_global(main_mem);
    memory_region_add_subregion(system_memory, 0x0, main_mem);

    if (kernel_filename) {
        loaderparams.ram_size = ram_size;
        loaderparams.kernel_filename = kernel_filename;
        loaderparams.kernel_cmdline = kernel_cmdline;
        loaderparams.initrd_filename = initrd_filename;
        load_kernel();
    }

    uint32_t reset_vec[8] = {
        0x297 + 0x80000000 - 0x1000, /* reset vector */
        0x00028067,                  /* jump to DRAM_BASE */
        0x00000000,                  /* reserved */
        0x0,                         /* config string pointer */
        0, 0, 0, 0                   /* trap vector */
    };
    reset_vec[3] = 0x1000 + sizeof(reset_vec); /* config string pointer */

    /* part one of config string - before memory size specified */
    const char *config_string1 = "platform {\n"
                                 "  vendor ucb;\n"
                                 "  arch spike;\n"
                                 "};\n"
                                 "plic { \n"
                                 "  interface \"plic\"; \n"
                                 "  ndevs 2; \n"
                                 "  priority { mem { 0x60000000 0x60000fff; }; }; \n"
                                 "  pending  { mem { 0x60001000 0x6000107f; }; }; \n"
                                 "  0 { \n"
                                 "    0 { \n"
                                 "      m { \n"
                                 "        ie  { mem { 0x60002000 0x6000207f; }; }; \n"
                                 "        ctl { mem { 0x60200000 0x60200007; }; }; \n"
                                 "      }; \n"
                                 "      s { \n"
                                 "        ie  { mem { 0x60002080 0x600020ff; }; }; \n"
                                 "        ctl { mem { 0x60201000 0x60201007; }; }; \n"
                                 "      }; \n"
                                 "    }; \n"
                                 "  }; \n"
                                 "}; \n"
                                 "rtc {\n"
                                 "  addr 0x" "40000000" ";\n"
                                 "};\n"
                                 "uart {\n"
                                 "  addr 0x40002000;\n"
                                 "};\n"
                                 "ram {\n"
                                 "  0 {\n"
                                 "    addr 0x" "80000000" ";\n"
                                 "    size 0x";


    /* part two of config string - after memory size specified */
    const char *config_string2 =  ";\n"
                                  "  };\n"
                                  "};\n"
                                  "core {\n"
                                  "  0" " {\n"
                                  "    " "0 {\n"
                                  "      isa " "rv64imafd" ";\n"
                                  "      timecmp 0x" "40000008" ";\n"
                                  "      ipi 0x" "40001000" ";\n"
                                  "    };\n"
                                  "  };\n"
                                  "};\n";

    /* build config string with supplied memory size */
    uint64_t rsz = ram_size;
    char *ramsize_as_hex_str = malloc(17);
    sprintf(ramsize_as_hex_str, "%016" PRIx64, rsz);
    char *config_string = malloc(strlen(config_string1) +
                                 strlen(ramsize_as_hex_str) +
                                 strlen(config_string2) + 1);
    config_string[0] = 0;
    strcat(config_string, config_string1);
    strcat(config_string, ramsize_as_hex_str);
    strcat(config_string, config_string2);

    /* copy in the reset vec and configstring */
    int q;
    for (q = 0; q < sizeof(reset_vec) / sizeof(reset_vec[0]); q++) {
        stl_p(memory_region_get_ram_ptr(main_mem) + 0x1000 + q * 4,
              reset_vec[q]);
    }

    int confstrlen = strlen(config_string);
    for (q = 0; q < confstrlen; q++) {
        stb_p(memory_region_get_ram_ptr(main_mem) + reset_vec[3] + q,
              config_string[q]);
    }

    sifive_uart_create(0x40002000, serial_hds[0]);

    /* timer device at 0x40000000, as specified in the config string above */
    timer_mm_init(system_memory, 0x40000000, env);

    /* TODO: VIRTIO */
}
Esempio n. 2
0
void sysbus_add_memory_overlap(SysBusDevice *dev, target_phys_addr_t addr,
                               MemoryRegion *mem, unsigned priority)
{
    memory_region_add_subregion_overlap(get_system_memory(), addr, mem,
                                        priority);
}
Esempio n. 3
0
MemoryRegion *sysbus_address_space(SysBusDevice *dev)
{
    return get_system_memory();
}
Esempio n. 4
0
static void bamboo_init(ram_addr_t ram_size,
                        const char *boot_device,
                        const char *kernel_filename,
                        const char *kernel_cmdline,
                        const char *initrd_filename,
                        const char *cpu_model)
{
    unsigned int pci_irq_nrs[4] = { 28, 27, 26, 25 };
    MemoryRegion *address_space_mem = get_system_memory();
    MemoryRegion *ram_memories
        = g_malloc(PPC440EP_SDRAM_NR_BANKS * sizeof(*ram_memories));
    target_phys_addr_t ram_bases[PPC440EP_SDRAM_NR_BANKS];
    target_phys_addr_t ram_sizes[PPC440EP_SDRAM_NR_BANKS];
    qemu_irq *pic;
    qemu_irq *irqs;
    PCIBus *pcibus;
    CPUState *env;
    uint64_t elf_entry;
    uint64_t elf_lowaddr;
    target_phys_addr_t loadaddr = 0;
    target_long initrd_size = 0;
    DeviceState *dev;
    int success;
    int i;

    /* Setup CPU. */
    if (cpu_model == NULL) {
        cpu_model = "440EP";
    }
    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to initialize CPU!\n");
        exit(1);
    }

    qemu_register_reset(main_cpu_reset, env);
    ppc_booke_timers_init(env, 400000000, 0);
    ppc_dcr_init(env, NULL, NULL);

    /* interrupt controller */
    irqs = g_malloc0(sizeof(qemu_irq) * PPCUIC_OUTPUT_NB);
    irqs[PPCUIC_OUTPUT_INT] = ((qemu_irq *)env->irq_inputs)[PPC40x_INPUT_INT];
    irqs[PPCUIC_OUTPUT_CINT] = ((qemu_irq *)env->irq_inputs)[PPC40x_INPUT_CINT];
    pic = ppcuic_init(env, irqs, 0x0C0, 0, 1);

    /* SDRAM controller */
    memset(ram_bases, 0, sizeof(ram_bases));
    memset(ram_sizes, 0, sizeof(ram_sizes));
    ram_size = ppc4xx_sdram_adjust(ram_size, PPC440EP_SDRAM_NR_BANKS,
                                   ram_memories,
                                   ram_bases, ram_sizes,
                                   ppc440ep_sdram_bank_sizes);
    /* XXX 440EP's ECC interrupts are on UIC1, but we've only created UIC0. */
    ppc4xx_sdram_init(env, pic[14], PPC440EP_SDRAM_NR_BANKS, ram_memories,
                      ram_bases, ram_sizes, 1);

    /* PCI */
    dev = sysbus_create_varargs("ppc4xx-pcihost", PPC440EP_PCI_CONFIG,
                                pic[pci_irq_nrs[0]], pic[pci_irq_nrs[1]],
                                pic[pci_irq_nrs[2]], pic[pci_irq_nrs[3]],
                                NULL);
    pcibus = (PCIBus *)qdev_get_child_bus(dev, "pci.0");
    if (!pcibus) {
        fprintf(stderr, "couldn't create PCI controller!\n");
        exit(1);
    }

    isa_mmio_init(PPC440EP_PCI_IO, PPC440EP_PCI_IOLEN);

    if (serial_hds[0] != NULL) {
        serial_mm_init(address_space_mem, 0xef600300, 0, pic[0],
                       PPC_SERIAL_MM_BAUDBASE, serial_hds[0],
                       DEVICE_BIG_ENDIAN);
    }
    if (serial_hds[1] != NULL) {
        serial_mm_init(address_space_mem, 0xef600400, 0, pic[1],
                       PPC_SERIAL_MM_BAUDBASE, serial_hds[1],
                       DEVICE_BIG_ENDIAN);
    }

    if (pcibus) {
        /* Register network interfaces. */
        for (i = 0; i < nb_nics; i++) {
            /* There are no PCI NICs on the Bamboo board, but there are
             * PCI slots, so we can pick whatever default model we want. */
            pci_nic_init_nofail(&nd_table[i], "e1000", NULL);
        }
    }

    /* Load kernel. */
    if (kernel_filename) {
        success = load_uimage(kernel_filename, &entry, &loadaddr, NULL);
        if (success < 0) {
            success = load_elf(kernel_filename, NULL, NULL, &elf_entry,
                               &elf_lowaddr, NULL, 1, ELF_MACHINE, 0);
            entry = elf_entry;
            loadaddr = elf_lowaddr;
        }
        /* XXX try again as binary */
        if (success < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }
    }

    /* Load initrd. */
    if (initrd_filename) {
        initrd_size = load_image_targphys(initrd_filename, RAMDISK_ADDR,
                                          ram_size - RAMDISK_ADDR);

        if (initrd_size < 0) {
            fprintf(stderr, "qemu: could not load ram disk '%s' at %x\n",
                    initrd_filename, RAMDISK_ADDR);
            exit(1);
        }
    }

    /* If we're loading a kernel directly, we must load the device tree too. */
    if (kernel_filename) {
        if (bamboo_load_device_tree(FDT_ADDR, ram_size, RAMDISK_ADDR,
                                    initrd_size, kernel_cmdline) < 0) {
            fprintf(stderr, "couldn't load device tree\n");
            exit(1);
        }
    }

    if (kvm_enabled())
        kvmppc_init();
}
Esempio n. 5
0
/* PC hardware initialisation */
static void pc_init1(MachineState *machine,
                     const char *host_type, const char *pci_type)
{
    PCMachineState *pcms = PC_MACHINE(machine);
    MemoryRegion *system_memory = get_system_memory();
    MemoryRegion *system_io = get_system_io();
    int i;
    PCIBus *pci_bus;
    ISABus *isa_bus;
    PCII440FXState *i440fx_state;
    int piix3_devfn = -1;
    qemu_irq *gsi;
    qemu_irq *i8259;
    qemu_irq smi_irq;
    GSIState *gsi_state;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    BusState *idebus[MAX_IDE_BUS];
    ISADevice *rtc_state;
    MemoryRegion *ram_memory;
    MemoryRegion *pci_memory;
    MemoryRegion *rom_memory;
    DeviceState *icc_bridge;
    PcGuestInfo *guest_info;
    ram_addr_t lowmem;

    /* Check whether RAM fits below 4G (leaving 1/2 GByte for IO memory).
     * If it doesn't, we need to split it in chunks below and above 4G.
     * In any case, try to make sure that guest addresses aligned at
     * 1G boundaries get mapped to host addresses aligned at 1G boundaries.
     * For old machine types, use whatever split we used historically to avoid
     * breaking migration.
     */
    if (machine->ram_size >= 0xe0000000) {
        lowmem = gigabyte_align ? 0xc0000000 : 0xe0000000;
    } else {
        lowmem = 0xe0000000;
    }

    /* Handle the machine opt max-ram-below-4g.  It is basically doing
     * min(qemu limit, user limit).
     */
    if (lowmem > pcms->max_ram_below_4g) {
        lowmem = pcms->max_ram_below_4g;
        if (machine->ram_size - lowmem > lowmem &&
            lowmem & ((1ULL << 30) - 1)) {
            error_report("Warning: Large machine and max_ram_below_4g(%"PRIu64
                         ") not a multiple of 1G; possible bad performance.",
                         pcms->max_ram_below_4g);
        }
    }

    if (machine->ram_size >= lowmem) {
        pcms->above_4g_mem_size = machine->ram_size - lowmem;
        pcms->below_4g_mem_size = lowmem;
    } else {
        pcms->above_4g_mem_size = 0;
        pcms->below_4g_mem_size = machine->ram_size;
    }

    if (xen_enabled() && xen_hvm_init(pcms, &ram_memory) != 0) {
        fprintf(stderr, "xen hardware virtual machine initialisation failed\n");
        exit(1);
    }

    icc_bridge = qdev_create(NULL, TYPE_ICC_BRIDGE);
    object_property_add_child(qdev_get_machine(), "icc-bridge",
                              OBJECT(icc_bridge), NULL);

    pc_cpus_init(machine->cpu_model, icc_bridge);

    if (kvm_enabled() && kvmclock_enabled) {
        kvmclock_create();
    }

    if (pci_enabled) {
        pci_memory = g_new(MemoryRegion, 1);
        memory_region_init(pci_memory, NULL, "pci", UINT64_MAX);
        rom_memory = pci_memory;
    } else {
        pci_memory = NULL;
        rom_memory = system_memory;
    }

    guest_info = pc_guest_info_init(pcms);

    guest_info->has_acpi_build = has_acpi_build;
    guest_info->legacy_acpi_table_size = legacy_acpi_table_size;

    guest_info->isapc_ram_fw = !pci_enabled;
    guest_info->has_reserved_memory = has_reserved_memory;
    guest_info->rsdp_in_ram = rsdp_in_ram;

    if (smbios_defaults) {
        MachineClass *mc = MACHINE_GET_CLASS(machine);
        /* These values are guest ABI, do not change */
        smbios_set_defaults("QEMU", "Standard PC (i440FX + PIIX, 1996)",
                            mc->name, smbios_legacy_mode, smbios_uuid_encoded,
                            SMBIOS_ENTRY_POINT_21);
    }

    /* allocate ram and load rom/bios */
    if (!xen_enabled()) {
        pc_memory_init(pcms, system_memory,
                       rom_memory, &ram_memory, guest_info);
    } else if (machine->kernel_filename != NULL) {
        /* For xen HVM direct kernel boot, load linux here */
        xen_load_linux(pcms, guest_info);
    }

    gsi_state = g_malloc0(sizeof(*gsi_state));
    if (kvm_irqchip_in_kernel()) {
        kvm_pc_setup_irq_routing(pci_enabled);
        gsi = qemu_allocate_irqs(kvm_pc_gsi_handler, gsi_state,
                                 GSI_NUM_PINS);
    } else {
        gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS);
    }

    if (pci_enabled) {
        pci_bus = i440fx_init(host_type,
                              pci_type,
                              &i440fx_state, &piix3_devfn, &isa_bus, gsi,
                              system_memory, system_io, machine->ram_size,
                              pcms->below_4g_mem_size,
                              pcms->above_4g_mem_size,
                              pci_memory, ram_memory);
    } else {
        pci_bus = NULL;
        i440fx_state = NULL;
        isa_bus = isa_bus_new(NULL, get_system_memory(), system_io);
        no_hpet = 1;
    }
    isa_bus_irqs(isa_bus, gsi);

    if (kvm_irqchip_in_kernel()) {
        i8259 = kvm_i8259_init(isa_bus);
    } else if (xen_enabled()) {
        i8259 = xen_interrupt_controller_init();
    } else {
        i8259 = i8259_init(isa_bus, pc_allocate_cpu_irq());
    }

    for (i = 0; i < ISA_NUM_IRQS; i++) {
        gsi_state->i8259_irq[i] = i8259[i];
    }
    g_free(i8259);
    if (pci_enabled) {
        ioapic_init_gsi(gsi_state, "i440fx");
    }
    qdev_init_nofail(icc_bridge);

    pc_register_ferr_irq(gsi[13]);

    pc_vga_init(isa_bus, pci_enabled ? pci_bus : NULL);

    assert(pcms->vmport != ON_OFF_AUTO_MAX);
    if (pcms->vmport == ON_OFF_AUTO_AUTO) {
        pcms->vmport = xen_enabled() ? ON_OFF_AUTO_OFF : ON_OFF_AUTO_ON;
    }

    /* init basic PC hardware */
    pc_basic_device_init(isa_bus, gsi, &rtc_state, true,
                         (pcms->vmport != ON_OFF_AUTO_ON), 0x4);

    pc_nic_init(isa_bus, pci_bus);

    ide_drive_get(hd, ARRAY_SIZE(hd));
    if (pci_enabled) {
        PCIDevice *dev;
        if (xen_enabled()) {
            dev = pci_piix3_xen_ide_init(pci_bus, hd, piix3_devfn + 1);
        } else {
            dev = pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1);
        }
        idebus[0] = qdev_get_child_bus(&dev->qdev, "ide.0");
        idebus[1] = qdev_get_child_bus(&dev->qdev, "ide.1");
    } else {
        for(i = 0; i < MAX_IDE_BUS; i++) {
            ISADevice *dev;
            char busname[] = "ide.0";
            dev = isa_ide_init(isa_bus, ide_iobase[i], ide_iobase2[i],
                               ide_irq[i],
                               hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]);
            /*
             * The ide bus name is ide.0 for the first bus and ide.1 for the
             * second one.
             */
            busname[4] = '0' + i;
            idebus[i] = qdev_get_child_bus(DEVICE(dev), busname);
        }
    }

    pc_cmos_init(pcms, idebus[0], idebus[1], rtc_state);

    if (pci_enabled && usb_enabled()) {
        pci_create_simple(pci_bus, piix3_devfn + 2, "piix3-usb-uhci");
    }

    if (pci_enabled && acpi_enabled) {
        DeviceState *piix4_pm;
        I2CBus *smbus;

        smi_irq = qemu_allocate_irq(pc_acpi_smi_interrupt, first_cpu, 0);
        /* TODO: Populate SPD eeprom data.  */
        smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100,
                              gsi[9], smi_irq,
                              pc_machine_is_smm_enabled(pcms),
                              &piix4_pm);
        smbus_eeprom_init(smbus, 8, NULL, 0);

        object_property_add_link(OBJECT(machine), PC_MACHINE_ACPI_DEVICE_PROP,
                                 TYPE_HOTPLUG_HANDLER,
                                 (Object **)&pcms->acpi_dev,
                                 object_property_allow_set_link,
                                 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
        object_property_set_link(OBJECT(machine), OBJECT(piix4_pm),
                                 PC_MACHINE_ACPI_DEVICE_PROP, &error_abort);
    }

    if (pci_enabled) {
        pc_pci_device_init(pci_bus);
    }
}
Esempio n. 6
0
static void lm32_uclinux_init(QEMUMachineInitArgs *args)
{
    const char *cpu_model = args->cpu_model;
    const char *kernel_filename = args->kernel_filename;
    const char *kernel_cmdline = args->kernel_cmdline;
    const char *initrd_filename = args->initrd_filename;
    LM32CPU *cpu;
    CPULM32State *env;
    DriveInfo *dinfo;
    MemoryRegion *address_space_mem =  get_system_memory();
    MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
    qemu_irq *cpu_irq, irq[32];
    HWSetup *hw;
    ResetInfo *reset_info;
    int i;

    /* memory map */
    hwaddr flash_base   = 0x04000000;
    size_t flash_sector_size        = 256 * 1024;
    size_t flash_size               = 32 * 1024 * 1024;
    hwaddr ram_base     = 0x08000000;
    size_t ram_size                 = 64 * 1024 * 1024;
    hwaddr uart0_base   = 0x80000000;
    hwaddr timer0_base  = 0x80002000;
    hwaddr timer1_base  = 0x80010000;
    hwaddr timer2_base  = 0x80012000;
    int uart0_irq                   = 0;
    int timer0_irq                  = 1;
    int timer1_irq                  = 20;
    int timer2_irq                  = 21;
    hwaddr hwsetup_base = 0x0bffe000;
    hwaddr cmdline_base = 0x0bfff000;
    hwaddr initrd_base  = 0x08400000;
    size_t initrd_max               = 0x01000000;

    reset_info = g_malloc0(sizeof(ResetInfo));

    if (cpu_model == NULL) {
        cpu_model = "lm32-full";
    }
    cpu = cpu_lm32_init(cpu_model);
    env = &cpu->env;
    reset_info->cpu = cpu;

    reset_info->flash_base = flash_base;

    memory_region_init_ram(phys_ram, "lm32_uclinux.sdram", ram_size);
    vmstate_register_ram_global(phys_ram);
    memory_region_add_subregion(address_space_mem, ram_base, phys_ram);

    dinfo = drive_get(IF_PFLASH, 0, 0);
    /* Spansion S29NS128P */
    pflash_cfi02_register(flash_base, NULL, "lm32_uclinux.flash", flash_size,
                          dinfo ? dinfo->bdrv : NULL, flash_sector_size,
                          flash_size / flash_sector_size, 1, 2,
                          0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);

    /* create irq lines */
    cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
    env->pic_state = lm32_pic_init(*cpu_irq);
    for (i = 0; i < 32; i++) {
        irq[i] = qdev_get_gpio_in(env->pic_state, i);
    }

    sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
    sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
    sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
    sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);

    /* make sure juart isn't the first chardev */
    env->juart_state = lm32_juart_init();

    reset_info->bootstrap_pc = flash_base;

    if (kernel_filename) {
        uint64_t entry;
        int kernel_size;

        kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
                               1, ELF_MACHINE, 0);
        reset_info->bootstrap_pc = entry;

        if (kernel_size < 0) {
            kernel_size = load_image_targphys(kernel_filename, ram_base,
                                              ram_size);
            reset_info->bootstrap_pc = ram_base;
        }

        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }
    }

    /* generate a rom with the hardware description */
    hw = hwsetup_init();
    hwsetup_add_cpu(hw, "LM32", 75000000);
    hwsetup_add_flash(hw, "flash", flash_base, flash_size);
    hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
    hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
    hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
    hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
    hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
    hwsetup_add_trailer(hw);
    hwsetup_create_rom(hw, hwsetup_base);
    hwsetup_free(hw);

    reset_info->hwsetup_base = hwsetup_base;

    if (kernel_cmdline && strlen(kernel_cmdline)) {
        pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
                kernel_cmdline);
        reset_info->cmdline_base = cmdline_base;
    }

    if (initrd_filename) {
        size_t initrd_size;
        initrd_size = load_image_targphys(initrd_filename, initrd_base,
                initrd_max);
        reset_info->initrd_base = initrd_base;
        reset_info->initrd_size = initrd_size;
    }

    qemu_register_reset(main_cpu_reset, reset_info);
}
Esempio n. 7
0
static void ppc_heathrow_init(QEMUMachineInitArgs *args)
{
    ram_addr_t ram_size = args->ram_size;
    const char *cpu_model = args->cpu_model;
    const char *kernel_filename = args->kernel_filename;
    const char *kernel_cmdline = args->kernel_cmdline;
    const char *initrd_filename = args->initrd_filename;
    const char *boot_device = args->boot_device;
    MemoryRegion *sysmem = get_system_memory();
    PowerPCCPU *cpu = NULL;
    CPUPPCState *env = NULL;
    char *filename;
    qemu_irq *pic, **heathrow_irqs;
    int linux_boot, i;
    MemoryRegion *ram = g_new(MemoryRegion, 1);
    MemoryRegion *bios = g_new(MemoryRegion, 1);
    uint32_t kernel_base, initrd_base, cmdline_base = 0;
    int32_t kernel_size, initrd_size;
    PCIBus *pci_bus;
    PCIDevice *macio;
    MACIOIDEState *macio_ide;
    DeviceState *dev;
    BusState *adb_bus;
    int bios_size;
    MemoryRegion *pic_mem;
    MemoryRegion *escc_mem, *escc_bar = g_new(MemoryRegion, 1);
    uint16_t ppc_boot_device;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    void *fw_cfg;

    linux_boot = (kernel_filename != NULL);

    /* init CPUs */
    if (cpu_model == NULL)
        cpu_model = "G3";
    for (i = 0; i < smp_cpus; i++) {
        cpu = cpu_ppc_init(cpu_model);
        if (cpu == NULL) {
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
        env = &cpu->env;

        /* Set time-base frequency to 16.6 Mhz */
        cpu_ppc_tb_init(env,  16600000UL);
        qemu_register_reset(ppc_heathrow_reset, cpu);
    }

    /* allocate RAM */
    if (ram_size > (2047 << 20)) {
        fprintf(stderr,
                "qemu: Too much memory for this machine: %d MB, maximum 2047 MB\n",
                ((unsigned int)ram_size / (1 << 20)));
        exit(1);
    }

    memory_region_init_ram(ram, "ppc_heathrow.ram", ram_size);
    vmstate_register_ram_global(ram);
    memory_region_add_subregion(sysmem, 0, ram);

    /* allocate and load BIOS */
    memory_region_init_ram(bios, "ppc_heathrow.bios", BIOS_SIZE);
    vmstate_register_ram_global(bios);
    if (bios_name == NULL)
        bios_name = PROM_FILENAME;
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
    memory_region_set_readonly(bios, true);
    memory_region_add_subregion(sysmem, PROM_ADDR, bios);

    /* Load OpenBIOS (ELF) */
    if (filename) {
        bios_size = load_elf(filename, 0, NULL, NULL, NULL, NULL,
                             1, ELF_MACHINE, 0);
        g_free(filename);
    } else {
        bios_size = -1;
    }
    if (bios_size < 0 || bios_size > BIOS_SIZE) {
        hw_error("qemu: could not load PowerPC bios '%s'\n", bios_name);
        exit(1);
    }

    if (linux_boot) {
        uint64_t lowaddr = 0;
        int bswap_needed;

#ifdef BSWAP_NEEDED
        bswap_needed = 1;
#else
        bswap_needed = 0;
#endif
        kernel_base = KERNEL_LOAD_ADDR;
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
        if (kernel_size < 0)
            kernel_size = load_aout(kernel_filename, kernel_base,
                                    ram_size - kernel_base, bswap_needed,
                                    TARGET_PAGE_SIZE);
        if (kernel_size < 0)
            kernel_size = load_image_targphys(kernel_filename,
                                              kernel_base,
                                              ram_size - kernel_base);
        if (kernel_size < 0) {
            hw_error("qemu: could not load kernel '%s'\n",
                      kernel_filename);
            exit(1);
        }
        /* load initrd */
        if (initrd_filename) {
            initrd_base = round_page(kernel_base + kernel_size + KERNEL_GAP);
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
                                              ram_size - initrd_base);
            if (initrd_size < 0) {
                hw_error("qemu: could not load initial ram disk '%s'\n",
                         initrd_filename);
                exit(1);
            }
            cmdline_base = round_page(initrd_base + initrd_size);
        } else {
            initrd_base = 0;
            initrd_size = 0;
            cmdline_base = round_page(kernel_base + kernel_size + KERNEL_GAP);
        }
        ppc_boot_device = 'm';
    } else {
        kernel_base = 0;
        kernel_size = 0;
        initrd_base = 0;
        initrd_size = 0;
        ppc_boot_device = '\0';
        for (i = 0; boot_device[i] != '\0'; i++) {
            /* TOFIX: for now, the second IDE channel is not properly
             *        used by OHW. The Mac floppy disk are not emulated.
             *        For now, OHW cannot boot from the network.
             */
#if 0
            if (boot_device[i] >= 'a' && boot_device[i] <= 'f') {
                ppc_boot_device = boot_device[i];
                break;
            }
#else
            if (boot_device[i] >= 'c' && boot_device[i] <= 'd') {
                ppc_boot_device = boot_device[i];
                break;
            }
#endif
        }
        if (ppc_boot_device == '\0') {
            fprintf(stderr, "No valid boot device for G3 Beige machine\n");
            exit(1);
        }
    }

    /* Register 2 MB of ISA IO space */
    isa_mmio_init(0xfe000000, 0x00200000);

    /* XXX: we register only 1 output pin for heathrow PIC */
    heathrow_irqs = g_malloc0(smp_cpus * sizeof(qemu_irq *));
    heathrow_irqs[0] =
        g_malloc0(smp_cpus * sizeof(qemu_irq) * 1);
    /* Connect the heathrow PIC outputs to the 6xx bus */
    for (i = 0; i < smp_cpus; i++) {
        switch (PPC_INPUT(env)) {
        case PPC_FLAGS_INPUT_6xx:
            heathrow_irqs[i] = heathrow_irqs[0] + (i * 1);
            heathrow_irqs[i][0] =
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_INT];
            break;
        default:
            hw_error("Bus model not supported on OldWorld Mac machine\n");
        }
    }

    /* init basic PC hardware */
    if (PPC_INPUT(env) != PPC_FLAGS_INPUT_6xx) {
        hw_error("Only 6xx bus is supported on heathrow machine\n");
    }
    pic = heathrow_pic_init(&pic_mem, 1, heathrow_irqs);
    pci_bus = pci_grackle_init(0xfec00000, pic,
                               get_system_memory(),
                               get_system_io());
    pci_vga_init(pci_bus);

    escc_mem = escc_init(0, pic[0x0f], pic[0x10], serial_hds[0],
                               serial_hds[1], ESCC_CLOCK, 4);
    memory_region_init_alias(escc_bar, "escc-bar",
                             escc_mem, 0, memory_region_size(escc_mem));

    for(i = 0; i < nb_nics; i++)
        pci_nic_init_nofail(&nd_table[i], "ne2k_pci", NULL);


    ide_drive_get(hd, MAX_IDE_BUS);

    macio = pci_create(pci_bus, -1, TYPE_OLDWORLD_MACIO);
    dev = DEVICE(macio);
    qdev_connect_gpio_out(dev, 0, pic[0x12]); /* CUDA */
    qdev_connect_gpio_out(dev, 1, pic[0x0D]); /* IDE */
    qdev_connect_gpio_out(dev, 2, pic[0x02]); /* IDE DMA */
    macio_init(macio, pic_mem, escc_bar);

    /* First IDE channel is a MAC IDE on the MacIO bus */
    macio_ide = MACIO_IDE(object_resolve_path_component(OBJECT(macio),
                                                        "ide"));
    macio_ide_init_drives(macio_ide, hd);

    /* Second IDE channel is a CMD646 on the PCI bus */
    hd[0] = hd[MAX_IDE_DEVS];
    hd[1] = hd[MAX_IDE_DEVS + 1];
    hd[3] = hd[2] = NULL;
    pci_cmd646_ide_init(pci_bus, hd, 0);

    dev = DEVICE(object_resolve_path_component(OBJECT(macio), "cuda"));
    adb_bus = qdev_get_child_bus(dev, "adb.0");
    dev = qdev_create(adb_bus, TYPE_ADB_KEYBOARD);
    qdev_init_nofail(dev);
    dev = qdev_create(adb_bus, TYPE_ADB_MOUSE);
    qdev_init_nofail(dev);

    if (usb_enabled(false)) {
        pci_create_simple(pci_bus, -1, "pci-ohci");
    }

    if (graphic_depth != 15 && graphic_depth != 32 && graphic_depth != 8)
        graphic_depth = 15;

    /* No PCI init: the BIOS will do it */

    fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, ARCH_HEATHROW);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_base);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
    if (kernel_cmdline) {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, cmdline_base);
        pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE, kernel_cmdline);
    } else {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
    }
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_base);
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, ppc_boot_device);

    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_WIDTH, graphic_width);
    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_HEIGHT, graphic_height);
    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_DEPTH, graphic_depth);

    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_IS_KVM, kvm_enabled());
    if (kvm_enabled()) {
#ifdef CONFIG_KVM
        uint8_t *hypercall;

        fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_TBFREQ, kvmppc_get_tbfreq());
        hypercall = g_malloc(16);
        kvmppc_get_hypercall(env, hypercall, 16);
        fw_cfg_add_bytes(fw_cfg, FW_CFG_PPC_KVM_HC, hypercall, 16);
        fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_KVM_PID, getpid());
#endif
    } else {
        fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_TBFREQ, get_ticks_per_sec());
    }

    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
Esempio n. 8
0
static void a15_daughterboard_init(const VEDBoardInfo *daughterboard,
                                   ram_addr_t ram_size,
                                   const char *cpu_model,
                                   qemu_irq *pic)
{
    int n;
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
    MemoryRegion *sram = g_new(MemoryRegion, 1);
    qemu_irq cpu_irq[4];
    DeviceState *dev;
    SysBusDevice *busdev;

    if (!cpu_model) {
        cpu_model = "cortex-a15";
    }

    for (n = 0; n < smp_cpus; n++) {
        ARMCPU *cpu;
        qemu_irq *irqp;

        cpu = cpu_arm_init(cpu_model);
        if (!cpu) {
            fprintf(stderr, "Unable to find CPU definition\n");
            exit(1);
        }
        irqp = arm_pic_init_cpu(cpu);
        cpu_irq[n] = irqp[ARM_PIC_CPU_IRQ];
    }

    {
        /* We have to use a separate 64 bit variable here to avoid the gcc
         * "comparison is always false due to limited range of data type"
         * warning if we are on a host where ram_addr_t is 32 bits.
         */
        uint64_t rsz = ram_size;
        if (rsz > (30ULL * 1024 * 1024 * 1024)) {
            fprintf(stderr, "vexpress-a15: cannot model more than 30GB RAM\n");
            exit(1);
        }
    }

    memory_region_init_ram(ram, NULL, "vexpress.highmem", ram_size);
    vmstate_register_ram_global(ram);
    /* RAM is from 0x80000000 upwards; there is no low-memory alias for it. */
    memory_region_add_subregion(sysmem, 0x80000000, ram);

    /* 0x2c000000 A15MPCore private memory region (GIC) */
    dev = qdev_create(NULL, "a15mpcore_priv");
    qdev_prop_set_uint32(dev, "num-cpu", smp_cpus);
    qdev_init_nofail(dev);
    busdev = SYS_BUS_DEVICE(dev);
    sysbus_mmio_map(busdev, 0, 0x2c000000);
    for (n = 0; n < smp_cpus; n++) {
        sysbus_connect_irq(busdev, n, cpu_irq[n]);
    }
    /* Interrupts [42:0] are from the motherboard;
     * [47:43] are reserved; [63:48] are daughterboard
     * peripherals. Note that some documentation numbers
     * external interrupts starting from 32 (because there
     * are internal interrupts 0..31).
     */
    for (n = 0; n < 64; n++) {
        pic[n] = qdev_get_gpio_in(dev, n);
    }

    /* A15 daughterboard peripherals: */

    /* 0x20000000: CoreSight interfaces: not modelled */
    /* 0x2a000000: PL301 AXI interconnect: not modelled */
    /* 0x2a420000: SCC: not modelled */
    /* 0x2a430000: system counter: not modelled */
    /* 0x2b000000: HDLCD controller: not modelled */
    /* 0x2b060000: SP805 watchdog: not modelled */
    /* 0x2b0a0000: PL341 dynamic memory controller: not modelled */
    /* 0x2e000000: system SRAM */
    memory_region_init_ram(sram, NULL, "vexpress.a15sram", 0x10000);
    vmstate_register_ram_global(sram);
    memory_region_add_subregion(sysmem, 0x2e000000, sram);

    /* 0x7ffb0000: DMA330 DMA controller: not modelled */
    /* 0x7ffd0000: PL354 static memory controller: not modelled */
}
Esempio n. 9
0
static void vexpress_common_init(const VEDBoardInfo *daughterboard,
                                 QEMUMachineInitArgs *args)
{
    DeviceState *dev, *sysctl, *pl041;
    qemu_irq pic[64];
    uint32_t sys_id;
    DriveInfo *dinfo;
    ram_addr_t vram_size, sram_size;
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *vram = g_new(MemoryRegion, 1);
    MemoryRegion *sram = g_new(MemoryRegion, 1);
    const hwaddr *map = daughterboard->motherboard_map;
    int i;

    daughterboard->init(daughterboard, args->ram_size, args->cpu_model, pic);

    /* Motherboard peripherals: the wiring is the same but the
     * addresses vary between the legacy and A-Series memory maps.
     */

    sys_id = 0x1190f500;

    sysctl = qdev_create(NULL, "realview_sysctl");
    qdev_prop_set_uint32(sysctl, "sys_id", sys_id);
    qdev_prop_set_uint32(sysctl, "proc_id", daughterboard->proc_id);
    qdev_prop_set_uint32(sysctl, "len-db-voltage",
                         daughterboard->num_voltage_sensors);
    for (i = 0; i < daughterboard->num_voltage_sensors; i++) {
        char *propname = g_strdup_printf("db-voltage[%d]", i);
        qdev_prop_set_uint32(sysctl, propname, daughterboard->voltages[i]);
        g_free(propname);
    }
    qdev_prop_set_uint32(sysctl, "len-db-clock",
                         daughterboard->num_clocks);
    for (i = 0; i < daughterboard->num_clocks; i++) {
        char *propname = g_strdup_printf("db-clock[%d]", i);
        qdev_prop_set_uint32(sysctl, propname, daughterboard->clocks[i]);
        g_free(propname);
    }
    qdev_init_nofail(sysctl);
    sysbus_mmio_map(SYS_BUS_DEVICE(sysctl), 0, map[VE_SYSREGS]);

    /* VE_SP810: not modelled */
    /* VE_SERIALPCI: not modelled */

    pl041 = qdev_create(NULL, "pl041");
    qdev_prop_set_uint32(pl041, "nc_fifo_depth", 512);
    qdev_init_nofail(pl041);
    sysbus_mmio_map(SYS_BUS_DEVICE(pl041), 0, map[VE_PL041]);
    sysbus_connect_irq(SYS_BUS_DEVICE(pl041), 0, pic[11]);

    dev = sysbus_create_varargs("pl181", map[VE_MMCI], pic[9], pic[10], NULL);
    /* Wire up MMC card detect and read-only signals */
    qdev_connect_gpio_out(dev, 0,
                          qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_WPROT));
    qdev_connect_gpio_out(dev, 1,
                          qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_CARDIN));

    sysbus_create_simple("pl050_keyboard", map[VE_KMI0], pic[12]);
    sysbus_create_simple("pl050_mouse", map[VE_KMI1], pic[13]);

    sysbus_create_simple("pl011", map[VE_UART0], pic[5]);
    sysbus_create_simple("pl011", map[VE_UART1], pic[6]);
    sysbus_create_simple("pl011", map[VE_UART2], pic[7]);
    sysbus_create_simple("pl011", map[VE_UART3], pic[8]);

    sysbus_create_simple("sp804", map[VE_TIMER01], pic[2]);
    sysbus_create_simple("sp804", map[VE_TIMER23], pic[3]);

    /* VE_SERIALDVI: not modelled */

    sysbus_create_simple("pl031", map[VE_RTC], pic[4]); /* RTC */

    /* VE_COMPACTFLASH: not modelled */

    sysbus_create_simple("pl111", map[VE_CLCD], pic[14]);

    dinfo = drive_get_next(IF_PFLASH);
    if (!pflash_cfi01_register(map[VE_NORFLASH0], NULL, "vexpress.flash0",
            VEXPRESS_FLASH_SIZE, dinfo ? dinfo->bdrv : NULL,
            VEXPRESS_FLASH_SECT_SIZE,
            VEXPRESS_FLASH_SIZE / VEXPRESS_FLASH_SECT_SIZE, 4,
            0x00, 0x89, 0x00, 0x18, 0)) {
        fprintf(stderr, "vexpress: error registering flash 0.\n");
        exit(1);
    }

    dinfo = drive_get_next(IF_PFLASH);
    if (!pflash_cfi01_register(map[VE_NORFLASH1], NULL, "vexpress.flash1",
            VEXPRESS_FLASH_SIZE, dinfo ? dinfo->bdrv : NULL,
            VEXPRESS_FLASH_SECT_SIZE,
            VEXPRESS_FLASH_SIZE / VEXPRESS_FLASH_SECT_SIZE, 4,
            0x00, 0x89, 0x00, 0x18, 0)) {
        fprintf(stderr, "vexpress: error registering flash 1.\n");
        exit(1);
    }

    sram_size = 0x2000000;
    memory_region_init_ram(sram, NULL, "vexpress.sram", sram_size);
    vmstate_register_ram_global(sram);
    memory_region_add_subregion(sysmem, map[VE_SRAM], sram);

    vram_size = 0x800000;
    memory_region_init_ram(vram, NULL, "vexpress.vram", vram_size);
    vmstate_register_ram_global(vram);
    memory_region_add_subregion(sysmem, map[VE_VIDEORAM], vram);

    /* 0x4e000000 LAN9118 Ethernet */
    if (nd_table[0].used) {
        lan9118_init(&nd_table[0], map[VE_ETHERNET], pic[15]);
    }

    /* VE_USB: not modelled */

    /* VE_DAPROM: not modelled */

    vexpress_binfo.ram_size = args->ram_size;
    vexpress_binfo.kernel_filename = args->kernel_filename;
    vexpress_binfo.kernel_cmdline = args->kernel_cmdline;
    vexpress_binfo.initrd_filename = args->initrd_filename;
    vexpress_binfo.nb_cpus = smp_cpus;
    vexpress_binfo.board_id = VEXPRESS_BOARD_ID;
    vexpress_binfo.loader_start = daughterboard->loader_start;
    vexpress_binfo.smp_loader_start = map[VE_SRAM];
    vexpress_binfo.smp_bootreg_addr = map[VE_SYSREGS] + 0x30;
    vexpress_binfo.gic_cpu_if_addr = daughterboard->gic_cpu_if_addr;
    arm_load_kernel(arm_env_get_cpu(first_cpu), &vexpress_binfo);
}
Esempio n. 10
0
static void fsl_imx31_realize(DeviceState *dev, Error **errp)
{
    FslIMX31State *s = FSL_IMX31(dev);
    uint16_t i;
    Error *err = NULL;

    object_property_set_bool(OBJECT(&s->cpu), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }

    object_property_set_bool(OBJECT(&s->avic), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_mmio_map(SYS_BUS_DEVICE(&s->avic), 0, FSL_IMX31_AVIC_ADDR);
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->avic), 0,
                       qdev_get_gpio_in(DEVICE(&s->cpu), ARM_CPU_IRQ));
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->avic), 1,
                       qdev_get_gpio_in(DEVICE(&s->cpu), ARM_CPU_FIQ));

    object_property_set_bool(OBJECT(&s->ccm), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_mmio_map(SYS_BUS_DEVICE(&s->ccm), 0, FSL_IMX31_CCM_ADDR);

    /* Initialize all UARTS */
    for (i = 0; i < FSL_IMX31_NUM_UARTS; i++) {
        static const struct {
            hwaddr addr;
            unsigned int irq;
        } serial_table[FSL_IMX31_NUM_UARTS] = {
            { FSL_IMX31_UART1_ADDR, FSL_IMX31_UART1_IRQ },
            { FSL_IMX31_UART2_ADDR, FSL_IMX31_UART2_IRQ },
        };

        qdev_prop_set_chr(DEVICE(&s->uart[i]), "chardev", serial_hd(i));

        object_property_set_bool(OBJECT(&s->uart[i]), true, "realized", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }

        sysbus_mmio_map(SYS_BUS_DEVICE(&s->uart[i]), 0, serial_table[i].addr);
        sysbus_connect_irq(SYS_BUS_DEVICE(&s->uart[i]), 0,
                           qdev_get_gpio_in(DEVICE(&s->avic),
                                            serial_table[i].irq));
    }

    s->gpt.ccm = IMX_CCM(&s->ccm);

    object_property_set_bool(OBJECT(&s->gpt), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }

    sysbus_mmio_map(SYS_BUS_DEVICE(&s->gpt), 0, FSL_IMX31_GPT_ADDR);
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->gpt), 0,
                       qdev_get_gpio_in(DEVICE(&s->avic), FSL_IMX31_GPT_IRQ));

    /* Initialize all EPIT timers */
    for (i = 0; i < FSL_IMX31_NUM_EPITS; i++) {
        static const struct {
            hwaddr addr;
            unsigned int irq;
        } epit_table[FSL_IMX31_NUM_EPITS] = {
            { FSL_IMX31_EPIT1_ADDR, FSL_IMX31_EPIT1_IRQ },
            { FSL_IMX31_EPIT2_ADDR, FSL_IMX31_EPIT2_IRQ },
        };

        s->epit[i].ccm = IMX_CCM(&s->ccm);

        object_property_set_bool(OBJECT(&s->epit[i]), true, "realized", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }

        sysbus_mmio_map(SYS_BUS_DEVICE(&s->epit[i]), 0, epit_table[i].addr);
        sysbus_connect_irq(SYS_BUS_DEVICE(&s->epit[i]), 0,
                           qdev_get_gpio_in(DEVICE(&s->avic),
                                            epit_table[i].irq));
    }

    /* Initialize all I2C */
    for (i = 0; i < FSL_IMX31_NUM_I2CS; i++) {
        static const struct {
            hwaddr addr;
            unsigned int irq;
        } i2c_table[FSL_IMX31_NUM_I2CS] = {
            { FSL_IMX31_I2C1_ADDR, FSL_IMX31_I2C1_IRQ },
            { FSL_IMX31_I2C2_ADDR, FSL_IMX31_I2C2_IRQ },
            { FSL_IMX31_I2C3_ADDR, FSL_IMX31_I2C3_IRQ }
        };

        /* Initialize the I2C */
        object_property_set_bool(OBJECT(&s->i2c[i]), true, "realized", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }
        /* Map I2C memory */
        sysbus_mmio_map(SYS_BUS_DEVICE(&s->i2c[i]), 0, i2c_table[i].addr);
        /* Connect I2C IRQ to PIC */
        sysbus_connect_irq(SYS_BUS_DEVICE(&s->i2c[i]), 0,
                           qdev_get_gpio_in(DEVICE(&s->avic),
                                            i2c_table[i].irq));
    }

    /* Initialize all GPIOs */
    for (i = 0; i < FSL_IMX31_NUM_GPIOS; i++) {
        static const struct {
            hwaddr addr;
            unsigned int irq;
        } gpio_table[FSL_IMX31_NUM_GPIOS] = {
            { FSL_IMX31_GPIO1_ADDR, FSL_IMX31_GPIO1_IRQ },
            { FSL_IMX31_GPIO2_ADDR, FSL_IMX31_GPIO2_IRQ },
            { FSL_IMX31_GPIO3_ADDR, FSL_IMX31_GPIO3_IRQ }
        };

        object_property_set_bool(OBJECT(&s->gpio[i]), false, "has-edge-sel",
                                 &error_abort);
        object_property_set_bool(OBJECT(&s->gpio[i]), true, "realized", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }
        sysbus_mmio_map(SYS_BUS_DEVICE(&s->gpio[i]), 0, gpio_table[i].addr);
        /* Connect GPIO IRQ to PIC */
        sysbus_connect_irq(SYS_BUS_DEVICE(&s->gpio[i]), 0,
                           qdev_get_gpio_in(DEVICE(&s->avic),
                                            gpio_table[i].irq));
    }

    /* On a real system, the first 16k is a `secure boot rom' */
    memory_region_init_rom(&s->secure_rom, NULL, "imx31.secure_rom",
                           FSL_IMX31_SECURE_ROM_SIZE, &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    memory_region_add_subregion(get_system_memory(), FSL_IMX31_SECURE_ROM_ADDR,
                                &s->secure_rom);

    /* There is also a 16k ROM */
    memory_region_init_rom(&s->rom, NULL, "imx31.rom",
                           FSL_IMX31_ROM_SIZE, &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    memory_region_add_subregion(get_system_memory(), FSL_IMX31_ROM_ADDR,
                                &s->rom);

    /* initialize internal RAM (16 KB) */
    memory_region_init_ram(&s->iram, NULL, "imx31.iram", FSL_IMX31_IRAM_SIZE,
                           &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    memory_region_add_subregion(get_system_memory(), FSL_IMX31_IRAM_ADDR,
                                &s->iram);

    /* internal RAM (16 KB) is aliased over 256 MB - 16 KB */
    memory_region_init_alias(&s->iram_alias, NULL, "imx31.iram_alias",
                             &s->iram, 0, FSL_IMX31_IRAM_ALIAS_SIZE);
    memory_region_add_subregion(get_system_memory(), FSL_IMX31_IRAM_ALIAS_ADDR,
                                &s->iram_alias);
}
Esempio n. 11
0
static void a9_daughterboard_init(const VEDBoardInfo *daughterboard,
                                  ram_addr_t ram_size,
                                  const char *cpu_model,
                                  qemu_irq *pic)
{
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
    MemoryRegion *lowram = g_new(MemoryRegion, 1);
    DeviceState *dev;
    SysBusDevice *busdev;
    qemu_irq *irqp;
    int n;
    qemu_irq cpu_irq[4];
    ram_addr_t low_ram_size;

    if (!cpu_model) {
        cpu_model = "cortex-a9";
    }

    for (n = 0; n < smp_cpus; n++) {
        ARMCPU *cpu = cpu_arm_init(cpu_model);
        if (!cpu) {
            fprintf(stderr, "Unable to find CPU definition\n");
            exit(1);
        }
        irqp = arm_pic_init_cpu(cpu);
        cpu_irq[n] = irqp[ARM_PIC_CPU_IRQ];
    }

    if (ram_size > 0x40000000) {
        /* 1GB is the maximum the address space permits */
        fprintf(stderr, "vexpress-a9: cannot model more than 1GB RAM\n");
        exit(1);
    }

    memory_region_init_ram(ram, NULL, "vexpress.highmem", ram_size);
    vmstate_register_ram_global(ram);
    low_ram_size = ram_size;
    if (low_ram_size > 0x4000000) {
        low_ram_size = 0x4000000;
    }
    /* RAM is from 0x60000000 upwards. The bottom 64MB of the
     * address space should in theory be remappable to various
     * things including ROM or RAM; we always map the RAM there.
     */
    memory_region_init_alias(lowram, NULL, "vexpress.lowmem", ram, 0, low_ram_size);
    memory_region_add_subregion(sysmem, 0x0, lowram);
    memory_region_add_subregion(sysmem, 0x60000000, ram);

    /* 0x1e000000 A9MPCore (SCU) private memory region */
    dev = qdev_create(NULL, "a9mpcore_priv");
    qdev_prop_set_uint32(dev, "num-cpu", smp_cpus);
    qdev_init_nofail(dev);
    busdev = SYS_BUS_DEVICE(dev);
    sysbus_mmio_map(busdev, 0, 0x1e000000);
    for (n = 0; n < smp_cpus; n++) {
        sysbus_connect_irq(busdev, n, cpu_irq[n]);
    }
    /* Interrupts [42:0] are from the motherboard;
     * [47:43] are reserved; [63:48] are daughterboard
     * peripherals. Note that some documentation numbers
     * external interrupts starting from 32 (because the
     * A9MP has internal interrupts 0..31).
     */
    for (n = 0; n < 64; n++) {
        pic[n] = qdev_get_gpio_in(dev, n);
    }

    /* Daughterboard peripherals : 0x10020000 .. 0x20000000 */

    /* 0x10020000 PL111 CLCD (daughterboard) */
    sysbus_create_simple("pl111", 0x10020000, pic[44]);

    /* 0x10060000 AXI RAM */
    /* 0x100e0000 PL341 Dynamic Memory Controller */
    /* 0x100e1000 PL354 Static Memory Controller */
    /* 0x100e2000 System Configuration Controller */

    sysbus_create_simple("sp804", 0x100e4000, pic[48]);
    /* 0x100e5000 SP805 Watchdog module */
    /* 0x100e6000 BP147 TrustZone Protection Controller */
    /* 0x100e9000 PL301 'Fast' AXI matrix */
    /* 0x100ea000 PL301 'Slow' AXI matrix */
    /* 0x100ec000 TrustZone Address Space Controller */
    /* 0x10200000 CoreSight debug APB */
    /* 0x1e00a000 PL310 L2 Cache Controller */
    sysbus_create_varargs("l2x0", 0x1e00a000, NULL);
}
Esempio n. 12
0
static void bamboo_init(MachineState *machine)
{
    ram_addr_t ram_size = machine->ram_size;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
    unsigned int pci_irq_nrs[4] = { 28, 27, 26, 25 };
    MemoryRegion *address_space_mem = get_system_memory();
    MemoryRegion *isa = g_new(MemoryRegion, 1);
    MemoryRegion *ram_memories
        = g_malloc(PPC440EP_SDRAM_NR_BANKS * sizeof(*ram_memories));
    hwaddr ram_bases[PPC440EP_SDRAM_NR_BANKS];
    hwaddr ram_sizes[PPC440EP_SDRAM_NR_BANKS];
    qemu_irq *pic;
    qemu_irq *irqs;
    PCIBus *pcibus;
    PowerPCCPU *cpu;
    CPUPPCState *env;
    uint64_t elf_entry;
    uint64_t elf_lowaddr;
    hwaddr loadaddr = 0;
    target_long initrd_size = 0;
    DeviceState *dev;
    int success;
    int i;

    cpu = POWERPC_CPU(cpu_create(machine->cpu_type));
    env = &cpu->env;

    if (env->mmu_model != POWERPC_MMU_BOOKE) {
        fprintf(stderr, "MMU model %i not supported by this machine.\n",
            env->mmu_model);
        exit(1);
    }

    qemu_register_reset(main_cpu_reset, cpu);
    ppc_booke_timers_init(cpu, 400000000, 0);
    ppc_dcr_init(env, NULL, NULL);

    /* interrupt controller */
    irqs = g_malloc0(sizeof(qemu_irq) * PPCUIC_OUTPUT_NB);
    irqs[PPCUIC_OUTPUT_INT] = ((qemu_irq *)env->irq_inputs)[PPC40x_INPUT_INT];
    irqs[PPCUIC_OUTPUT_CINT] = ((qemu_irq *)env->irq_inputs)[PPC40x_INPUT_CINT];
    pic = ppcuic_init(env, irqs, 0x0C0, 0, 1);

    /* SDRAM controller */
    memset(ram_bases, 0, sizeof(ram_bases));
    memset(ram_sizes, 0, sizeof(ram_sizes));
    ram_size = ppc4xx_sdram_adjust(ram_size, PPC440EP_SDRAM_NR_BANKS,
                                   ram_memories,
                                   ram_bases, ram_sizes,
                                   ppc440ep_sdram_bank_sizes);
    /* XXX 440EP's ECC interrupts are on UIC1, but we've only created UIC0. */
    ppc4xx_sdram_init(env, pic[14], PPC440EP_SDRAM_NR_BANKS, ram_memories,
                      ram_bases, ram_sizes, 1);

    /* PCI */
    dev = sysbus_create_varargs(TYPE_PPC4xx_PCI_HOST_BRIDGE,
                                PPC440EP_PCI_CONFIG,
                                pic[pci_irq_nrs[0]], pic[pci_irq_nrs[1]],
                                pic[pci_irq_nrs[2]], pic[pci_irq_nrs[3]],
                                NULL);
    pcibus = (PCIBus *)qdev_get_child_bus(dev, "pci.0");
    if (!pcibus) {
        fprintf(stderr, "couldn't create PCI controller!\n");
        exit(1);
    }

    memory_region_init_alias(isa, NULL, "isa_mmio",
                             get_system_io(), 0, PPC440EP_PCI_IOLEN);
    memory_region_add_subregion(get_system_memory(), PPC440EP_PCI_IO, isa);

    if (serial_hds[0] != NULL) {
        serial_mm_init(address_space_mem, 0xef600300, 0, pic[0],
                       PPC_SERIAL_MM_BAUDBASE, serial_hds[0],
                       DEVICE_BIG_ENDIAN);
    }
    if (serial_hds[1] != NULL) {
        serial_mm_init(address_space_mem, 0xef600400, 0, pic[1],
                       PPC_SERIAL_MM_BAUDBASE, serial_hds[1],
                       DEVICE_BIG_ENDIAN);
    }

    if (pcibus) {
        /* Register network interfaces. */
        for (i = 0; i < nb_nics; i++) {
            /* There are no PCI NICs on the Bamboo board, but there are
             * PCI slots, so we can pick whatever default model we want. */
            pci_nic_init_nofail(&nd_table[i], pcibus, "e1000", NULL);
        }
    }

    /* Load kernel. */
    if (kernel_filename) {
        success = load_uimage(kernel_filename, &entry, &loadaddr, NULL,
                              NULL, NULL);
        if (success < 0) {
            success = load_elf(kernel_filename, NULL, NULL, &elf_entry,
                               &elf_lowaddr, NULL, 1, PPC_ELF_MACHINE,
                               0, 0);
            entry = elf_entry;
            loadaddr = elf_lowaddr;
        }
        /* XXX try again as binary */
        if (success < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }
    }

    /* Load initrd. */
    if (initrd_filename) {
        initrd_size = load_image_targphys(initrd_filename, RAMDISK_ADDR,
                                          ram_size - RAMDISK_ADDR);

        if (initrd_size < 0) {
            fprintf(stderr, "qemu: could not load ram disk '%s' at %x\n",
                    initrd_filename, RAMDISK_ADDR);
            exit(1);
        }
    }

    /* If we're loading a kernel directly, we must load the device tree too. */
    if (kernel_filename) {
        if (bamboo_load_device_tree(FDT_ADDR, ram_size, RAMDISK_ADDR,
                                    initrd_size, kernel_cmdline) < 0) {
            fprintf(stderr, "couldn't load device tree\n");
            exit(1);
        }
    }
}
Esempio n. 13
0
File: palm.c Progetto: Kozzi11/qemu
static void palmte_init(MachineState *machine)
{
    const char *cpu_model = machine->cpu_model;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
    MemoryRegion *address_space_mem = get_system_memory();
    struct omap_mpu_state_s *mpu;
    int flash_size = 0x00800000;
    int sdram_size = palmte_binfo.ram_size;
    static uint32_t cs0val = 0xffffffff;
    static uint32_t cs1val = 0x0000e1a0;
    static uint32_t cs2val = 0x0000e1a0;
    static uint32_t cs3val = 0xe1a0e1a0;
    int rom_size, rom_loaded = 0;
    MemoryRegion *flash = g_new(MemoryRegion, 1);
    MemoryRegion *cs = g_new(MemoryRegion, 4);

    mpu = omap310_mpu_init(address_space_mem, sdram_size, cpu_model);

    /* External Flash (EMIFS) */
    memory_region_init_ram(flash, NULL, "palmte.flash", flash_size);
    vmstate_register_ram_global(flash);
    memory_region_set_readonly(flash, true);
    memory_region_add_subregion(address_space_mem, OMAP_CS0_BASE, flash);

    memory_region_init_io(&cs[0], NULL, &static_ops, &cs0val, "palmte-cs0",
                          OMAP_CS0_SIZE - flash_size);
    memory_region_add_subregion(address_space_mem, OMAP_CS0_BASE + flash_size,
                                &cs[0]);
    memory_region_init_io(&cs[1], NULL, &static_ops, &cs1val, "palmte-cs1",
                          OMAP_CS1_SIZE);
    memory_region_add_subregion(address_space_mem, OMAP_CS1_BASE, &cs[1]);
    memory_region_init_io(&cs[2], NULL, &static_ops, &cs2val, "palmte-cs2",
                          OMAP_CS2_SIZE);
    memory_region_add_subregion(address_space_mem, OMAP_CS2_BASE, &cs[2]);
    memory_region_init_io(&cs[3], NULL, &static_ops, &cs3val, "palmte-cs3",
                          OMAP_CS3_SIZE);
    memory_region_add_subregion(address_space_mem, OMAP_CS3_BASE, &cs[3]);

    palmte_microwire_setup(mpu);

    qemu_add_kbd_event_handler(palmte_button_event, mpu);

    palmte_gpio_setup(mpu);

    /* Setup initial (reset) machine state */
    if (nb_option_roms) {
        rom_size = get_image_size(option_rom[0].name);
        if (rom_size > flash_size) {
            fprintf(stderr, "%s: ROM image too big (%x > %x)\n",
                    __FUNCTION__, rom_size, flash_size);
            rom_size = 0;
        }
        if (rom_size > 0) {
            rom_size = load_image_targphys(option_rom[0].name, OMAP_CS0_BASE,
                                           flash_size);
            rom_loaded = 1;
        }
        if (rom_size < 0) {
            fprintf(stderr, "%s: error loading '%s'\n",
                    __FUNCTION__, option_rom[0].name);
        }
    }

    if (!rom_loaded && !kernel_filename && !qtest_enabled()) {
        fprintf(stderr, "Kernel or ROM image must be specified\n");
        exit(1);
    }

    /* Load the kernel.  */
    palmte_binfo.kernel_filename = kernel_filename;
    palmte_binfo.kernel_cmdline = kernel_cmdline;
    palmte_binfo.initrd_filename = initrd_filename;
    arm_load_kernel(mpu->cpu, &palmte_binfo);
}
Esempio n. 14
0
/* PC hardware initialisation */
static void pc_init1(QEMUMachineInitArgs *args,
                     int pci_enabled,
                     int kvmclock_enabled)
{
    MemoryRegion *system_memory = get_system_memory();
    MemoryRegion *system_io = get_system_io();
    int i;
    ram_addr_t below_4g_mem_size, above_4g_mem_size;
    PCIBus *pci_bus;
    ISABus *isa_bus;
    PCII440FXState *i440fx_state;
    int piix3_devfn = -1;
    qemu_irq *cpu_irq;
    qemu_irq *gsi;
    qemu_irq *i8259;
    qemu_irq *smi_irq;
    GSIState *gsi_state;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    BusState *idebus[MAX_IDE_BUS];
    ISADevice *rtc_state;
    ISADevice *floppy;
    MemoryRegion *ram_memory;
    MemoryRegion *pci_memory;
    MemoryRegion *rom_memory;
    DeviceState *icc_bridge;
    FWCfgState *fw_cfg = NULL;
    PcGuestInfo *guest_info;
    ram_addr_t lowmem;

    /* Check whether RAM fits below 4G (leaving 1/2 GByte for IO memory).
     * If it doesn't, we need to split it in chunks below and above 4G.
     * In any case, try to make sure that guest addresses aligned at
     * 1G boundaries get mapped to host addresses aligned at 1G boundaries.
     * For old machine types, use whatever split we used historically to avoid
     * breaking migration.
     */
    if (args->ram_size >= 0xe0000000) {
        lowmem = gigabyte_align ? 0xc0000000 : 0xe0000000;
    } else {
        lowmem = 0xe0000000;
    }

    /* Handle the machine opt max-ram-below-4g.  It is basicly doing
     * min(qemu limit, user limit).
     */
    if (lowmem > max_ram_below_4g) {
        lowmem = max_ram_below_4g;
        if (args->ram_size - lowmem > lowmem &&
            lowmem & ((1ULL << 30) - 1)) {
            error_report("Warning: Large machine and max_ram_below_4g(%"PRIu64
                         ") not a multiple of 1G; possible bad performance.",
                         max_ram_below_4g);
        }
    }

    if (args->ram_size >= lowmem) {
        above_4g_mem_size = args->ram_size - lowmem;
        below_4g_mem_size = lowmem;
    } else {
        above_4g_mem_size = 0;
        below_4g_mem_size = args->ram_size;
    }

    if (xen_enabled() && xen_hvm_init(&below_4g_mem_size, &above_4g_mem_size,
                                      &ram_memory) != 0) {
        fprintf(stderr, "xen hardware virtual machine initialisation failed\n");
        exit(1);
    }

    icc_bridge = qdev_create(NULL, TYPE_ICC_BRIDGE);
    object_property_add_child(qdev_get_machine(), "icc-bridge",
                              OBJECT(icc_bridge), NULL);

    pc_cpus_init(args->cpu_model, icc_bridge);

    if (kvm_enabled() && kvmclock_enabled) {
        kvmclock_create();
    }

    if (pci_enabled) {
        pci_memory = g_new(MemoryRegion, 1);
        memory_region_init(pci_memory, NULL, "pci", UINT64_MAX);
        rom_memory = pci_memory;
    } else {
        pci_memory = NULL;
        rom_memory = system_memory;
    }

    guest_info = pc_guest_info_init(below_4g_mem_size, above_4g_mem_size);

    guest_info->has_acpi_build = has_acpi_build;

    guest_info->has_pci_info = has_pci_info;
    guest_info->isapc_ram_fw = !pci_enabled;

    if (smbios_defaults) {
        /* These values are guest ABI, do not change */
        smbios_set_defaults("QEMU", "Standard PC (i440FX + PIIX, 1996)",
                            args->machine->name);
    }

    /* allocate ram and load rom/bios */
    if (!xen_enabled()) {
        fw_cfg = pc_memory_init(system_memory,
                       args->kernel_filename, args->kernel_cmdline,
                       args->initrd_filename,
                       below_4g_mem_size, above_4g_mem_size,
                       rom_memory, &ram_memory, guest_info);
    } else if (args->kernel_filename != NULL) {
        /* For xen HVM direct kernel boot, load linux here */
        fw_cfg = xen_load_linux(args->kernel_filename,
                                args->kernel_cmdline,
                                args->initrd_filename,
                                below_4g_mem_size,
                                guest_info);
    }

    gsi_state = g_malloc0(sizeof(*gsi_state));
    if (kvm_irqchip_in_kernel()) {
        kvm_pc_setup_irq_routing(pci_enabled);
        gsi = qemu_allocate_irqs(kvm_pc_gsi_handler, gsi_state,
                                 GSI_NUM_PINS);
    } else {
        gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS);
    }

    if (pci_enabled) {
        pci_bus = i440fx_init(&i440fx_state, &piix3_devfn, &isa_bus, gsi,
                              system_memory, system_io, args->ram_size,
                              below_4g_mem_size,
                              above_4g_mem_size,
                              pci_memory, ram_memory);
    } else {
        pci_bus = NULL;
        i440fx_state = NULL;
        isa_bus = isa_bus_new(NULL, system_io);
        no_hpet = 1;
    }
    isa_bus_irqs(isa_bus, gsi);

    if (kvm_irqchip_in_kernel()) {
        i8259 = kvm_i8259_init(isa_bus);
    } else if (xen_enabled()) {
        i8259 = xen_interrupt_controller_init();
    } else {
        cpu_irq = pc_allocate_cpu_irq();
        i8259 = i8259_init(isa_bus, cpu_irq[0]);
    }

    for (i = 0; i < ISA_NUM_IRQS; i++) {
        gsi_state->i8259_irq[i] = i8259[i];
    }
    if (pci_enabled) {
        ioapic_init_gsi(gsi_state, "i440fx");
    }
    qdev_init_nofail(icc_bridge);

    pc_register_ferr_irq(gsi[13]);

    pc_vga_init(isa_bus, pci_enabled ? pci_bus : NULL);

    /* init basic PC hardware */
    pc_basic_device_init(isa_bus, gsi, &rtc_state, &floppy, xen_enabled(),
        0x4);

    pc_nic_init(isa_bus, pci_bus);

    ide_drive_get(hd, MAX_IDE_BUS);
    if (pci_enabled) {
        PCIDevice *dev;
        if (xen_enabled()) {
            dev = pci_piix3_xen_ide_init(pci_bus, hd, piix3_devfn + 1);
        } else {
            dev = pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1);
        }
        idebus[0] = qdev_get_child_bus(&dev->qdev, "ide.0");
        idebus[1] = qdev_get_child_bus(&dev->qdev, "ide.1");
    } else {
        for(i = 0; i < MAX_IDE_BUS; i++) {
            ISADevice *dev;
            char busname[] = "ide.0";
            dev = isa_ide_init(isa_bus, ide_iobase[i], ide_iobase2[i],
                               ide_irq[i],
                               hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]);
            /*
             * The ide bus name is ide.0 for the first bus and ide.1 for the
             * second one.
             */
            busname[4] = '0' + i;
            idebus[i] = qdev_get_child_bus(DEVICE(dev), busname);
        }
    }

    pc_cmos_init(below_4g_mem_size, above_4g_mem_size, args->boot_order,
                 floppy, idebus[0], idebus[1], rtc_state);

    if (pci_enabled && usb_enabled(false)) {
        pci_create_simple(pci_bus, piix3_devfn + 2, "piix3-usb-uhci");
    }

    if (pci_enabled && acpi_enabled) {
        I2CBus *smbus;

        smi_irq = qemu_allocate_irqs(pc_acpi_smi_interrupt, first_cpu, 1);
        /* TODO: Populate SPD eeprom data.  */
        smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100,
                              gsi[9], *smi_irq,
                              kvm_enabled(), fw_cfg);
        smbus_eeprom_init(smbus, 8, NULL, 0);
    }

    if (pci_enabled) {
        pc_pci_device_init(pci_bus);
    }
}
Esempio n. 15
0
/* ram_size must be set to match the upper bound of memory in the
 * device tree (linux/arch/arm/boot/dts/highbank.dts), which is
 * normally 0xff900000 or -m 4089. When running this board on a
 * 32-bit host, set the reg value of memory to 0xf7ff00000 in the
 * device tree and pass -m 2047 to QEMU.
 */
static void highbank_init(QEMUMachineInitArgs *args)
{
    ram_addr_t ram_size = args->ram_size;
    const char *cpu_model = args->cpu_model;
    const char *kernel_filename = args->kernel_filename;
    const char *kernel_cmdline = args->kernel_cmdline;
    const char *initrd_filename = args->initrd_filename;
    DeviceState *dev;
    SysBusDevice *busdev;
    qemu_irq *irqp;
    qemu_irq pic[128];
    int n;
    qemu_irq cpu_irq[4];
    MemoryRegion *sysram;
    MemoryRegion *dram;
    MemoryRegion *sysmem;
    char *sysboot_filename;

    if (!cpu_model) {
        cpu_model = "cortex-a9";
    }

    for (n = 0; n < smp_cpus; n++) {
        ARMCPU *cpu;
        cpu = cpu_arm_init(cpu_model);
        if (cpu == NULL) {
            fprintf(stderr, "Unable to find CPU definition\n");
            exit(1);
        }

        /* This will become a QOM property eventually */
        cpu->reset_cbar = GIC_BASE_ADDR;
        irqp = arm_pic_init_cpu(cpu);
        cpu_irq[n] = irqp[ARM_PIC_CPU_IRQ];
    }

    sysmem = get_system_memory();
    dram = g_new(MemoryRegion, 1);
    memory_region_init_ram(dram, "highbank.dram", ram_size);
    /* SDRAM at address zero.  */
    memory_region_add_subregion(sysmem, 0, dram);

    sysram = g_new(MemoryRegion, 1);
    memory_region_init_ram(sysram, "highbank.sysram", 0x8000);
    memory_region_add_subregion(sysmem, 0xfff88000, sysram);
    if (bios_name != NULL) {
        sysboot_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
        if (sysboot_filename != NULL) {
            uint32_t filesize = get_image_size(sysboot_filename);
            if (load_image_targphys("sysram.bin", 0xfff88000, filesize) < 0) {
                hw_error("Unable to load %s\n", bios_name);
            }
        } else {
           hw_error("Unable to find %s\n", bios_name);
        }
    }

    dev = qdev_create(NULL, "a9mpcore_priv");
    qdev_prop_set_uint32(dev, "num-cpu", smp_cpus);
    qdev_prop_set_uint32(dev, "num-irq", NIRQ_GIC);
    qdev_init_nofail(dev);
    busdev = sysbus_from_qdev(dev);
    sysbus_mmio_map(busdev, 0, GIC_BASE_ADDR);
    for (n = 0; n < smp_cpus; n++) {
        sysbus_connect_irq(busdev, n, cpu_irq[n]);
    }

    for (n = 0; n < 128; n++) {
        pic[n] = qdev_get_gpio_in(dev, n);
    }

    dev = qdev_create(NULL, "l2x0");
    qdev_init_nofail(dev);
    busdev = sysbus_from_qdev(dev);
    sysbus_mmio_map(busdev, 0, 0xfff12000);

    dev = qdev_create(NULL, "sp804");
    qdev_prop_set_uint32(dev, "freq0", 150000000);
    qdev_prop_set_uint32(dev, "freq1", 150000000);
    qdev_init_nofail(dev);
    busdev = sysbus_from_qdev(dev);
    sysbus_mmio_map(busdev, 0, 0xfff34000);
    sysbus_connect_irq(busdev, 0, pic[18]);
    sysbus_create_simple("pl011", 0xfff36000, pic[20]);

    dev = qdev_create(NULL, "highbank-regs");
    qdev_init_nofail(dev);
    busdev = sysbus_from_qdev(dev);
    sysbus_mmio_map(busdev, 0, 0xfff3c000);

    sysbus_create_simple("pl061", 0xfff30000, pic[14]);
    sysbus_create_simple("pl061", 0xfff31000, pic[15]);
    sysbus_create_simple("pl061", 0xfff32000, pic[16]);
    sysbus_create_simple("pl061", 0xfff33000, pic[17]);
    sysbus_create_simple("pl031", 0xfff35000, pic[19]);
    sysbus_create_simple("pl022", 0xfff39000, pic[23]);

    sysbus_create_simple("sysbus-ahci", 0xffe08000, pic[83]);

    if (nd_table[0].used) {
        qemu_check_nic_model(&nd_table[0], "xgmac");
        dev = qdev_create(NULL, "xgmac");
        qdev_set_nic_properties(dev, &nd_table[0]);
        qdev_init_nofail(dev);
        sysbus_mmio_map(sysbus_from_qdev(dev), 0, 0xfff50000);
        sysbus_connect_irq(sysbus_from_qdev(dev), 0, pic[77]);
        sysbus_connect_irq(sysbus_from_qdev(dev), 1, pic[78]);
        sysbus_connect_irq(sysbus_from_qdev(dev), 2, pic[79]);

        qemu_check_nic_model(&nd_table[1], "xgmac");
        dev = qdev_create(NULL, "xgmac");
        qdev_set_nic_properties(dev, &nd_table[1]);
        qdev_init_nofail(dev);
        sysbus_mmio_map(sysbus_from_qdev(dev), 0, 0xfff51000);
        sysbus_connect_irq(sysbus_from_qdev(dev), 0, pic[80]);
        sysbus_connect_irq(sysbus_from_qdev(dev), 1, pic[81]);
        sysbus_connect_irq(sysbus_from_qdev(dev), 2, pic[82]);
    }

    highbank_binfo.ram_size = ram_size;
    highbank_binfo.kernel_filename = kernel_filename;
    highbank_binfo.kernel_cmdline = kernel_cmdline;
    highbank_binfo.initrd_filename = initrd_filename;
    /* highbank requires a dtb in order to boot, and the dtb will override
     * the board ID. The following value is ignored, so set it to -1 to be
     * clear that the value is meaningless.
     */
    highbank_binfo.board_id = -1;
    highbank_binfo.nb_cpus = smp_cpus;
    highbank_binfo.loader_start = 0;
    highbank_binfo.write_secondary_boot = hb_write_secondary;
    highbank_binfo.secondary_cpu_reset_hook = hb_reset_secondary;
    arm_load_kernel(arm_env_get_cpu(first_cpu), &highbank_binfo);
}
Esempio n. 16
0
void ppce500_init(PPCE500Params *params)
{
    MemoryRegion *address_space_mem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
    PCIBus *pci_bus;
    CPUPPCState *env = NULL;
    uint64_t elf_entry;
    uint64_t elf_lowaddr;
    target_phys_addr_t entry=0;
    target_phys_addr_t loadaddr=UIMAGE_LOAD_BASE;
    target_long kernel_size=0;
    target_ulong dt_base = 0;
    target_ulong initrd_base = 0;
    target_long initrd_size=0;
    int i=0;
    unsigned int pci_irq_nrs[4] = {1, 2, 3, 4};
    qemu_irq **irqs, *mpic;
    DeviceState *dev;
    CPUPPCState *firstenv = NULL;

    /* Setup CPUs */
    if (params->cpu_model == NULL) {
        params->cpu_model = "e500v2_v30";
    }

    irqs = g_malloc0(smp_cpus * sizeof(qemu_irq *));
    irqs[0] = g_malloc0(smp_cpus * sizeof(qemu_irq) * OPENPIC_OUTPUT_NB);
    for (i = 0; i < smp_cpus; i++) {
        PowerPCCPU *cpu;
        qemu_irq *input;

        cpu = cpu_ppc_init(params->cpu_model);
        if (cpu == NULL) {
            fprintf(stderr, "Unable to initialize CPU!\n");
            exit(1);
        }
        env = &cpu->env;

        if (!firstenv) {
            firstenv = env;
        }

        irqs[i] = irqs[0] + (i * OPENPIC_OUTPUT_NB);
        input = (qemu_irq *)env->irq_inputs;
        irqs[i][OPENPIC_OUTPUT_INT] = input[PPCE500_INPUT_INT];
        irqs[i][OPENPIC_OUTPUT_CINT] = input[PPCE500_INPUT_CINT];
        env->spr[SPR_BOOKE_PIR] = env->cpu_index = i;
        env->mpic_cpu_base = MPC8544_MPIC_REGS_BASE + 0x20000;

        ppc_booke_timers_init(env, 400000000, PPC_TIMER_E500);

        /* Register reset handler */
        if (!i) {
            /* Primary CPU */
            struct boot_info *boot_info;
            boot_info = g_malloc0(sizeof(struct boot_info));
            qemu_register_reset(ppce500_cpu_reset, cpu);
            env->load_info = boot_info;
        } else {
            /* Secondary CPUs */
            qemu_register_reset(ppce500_cpu_reset_sec, cpu);
        }
    }

    env = firstenv;

    /* Fixup Memory size on a alignment boundary */
    ram_size &= ~(RAM_SIZES_ALIGN - 1);

    /* Register Memory */
    memory_region_init_ram(ram, "mpc8544ds.ram", ram_size);
    vmstate_register_ram_global(ram);
    memory_region_add_subregion(address_space_mem, 0, ram);

    /* MPIC */
    mpic = mpic_init(address_space_mem, MPC8544_MPIC_REGS_BASE,
                     smp_cpus, irqs, NULL);

    if (!mpic) {
        cpu_abort(env, "MPIC failed to initialize\n");
    }

    /* Serial */
    if (serial_hds[0]) {
        serial_mm_init(address_space_mem, MPC8544_SERIAL0_REGS_BASE,
                       0, mpic[12+26], 399193,
                       serial_hds[0], DEVICE_BIG_ENDIAN);
    }

    if (serial_hds[1]) {
        serial_mm_init(address_space_mem, MPC8544_SERIAL1_REGS_BASE,
                       0, mpic[12+26], 399193,
                       serial_hds[0], DEVICE_BIG_ENDIAN);
    }

    /* General Utility device */
    sysbus_create_simple("mpc8544-guts", MPC8544_UTIL_BASE, NULL);

    /* PCI */
    dev = sysbus_create_varargs("e500-pcihost", MPC8544_PCI_REGS_BASE,
                                mpic[pci_irq_nrs[0]], mpic[pci_irq_nrs[1]],
                                mpic[pci_irq_nrs[2]], mpic[pci_irq_nrs[3]],
                                NULL);
    pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci.0");
    if (!pci_bus)
        printf("couldn't create PCI controller!\n");

    isa_mmio_init(MPC8544_PCI_IO, MPC8544_PCI_IOLEN);

    if (pci_bus) {
        /* Register network interfaces. */
        for (i = 0; i < nb_nics; i++) {
            pci_nic_init_nofail(&nd_table[i], "virtio", NULL);
        }
    }

    /* Register spinning region */
    sysbus_create_simple("e500-spin", MPC8544_SPIN_BASE, NULL);

    /* Load kernel. */
    if (params->kernel_filename) {
        kernel_size = load_uimage(params->kernel_filename, &entry,
                                  &loadaddr, NULL);
        if (kernel_size < 0) {
            kernel_size = load_elf(params->kernel_filename, NULL, NULL,
                                   &elf_entry, &elf_lowaddr, NULL, 1,
                                   ELF_MACHINE, 0);
            entry = elf_entry;
            loadaddr = elf_lowaddr;
        }
        /* XXX try again as binary */
        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    params->kernel_filename);
            exit(1);
        }
    }

    /* Load initrd. */
    if (params->initrd_filename) {
        initrd_base = (loadaddr + kernel_size + INITRD_LOAD_PAD) &
            ~INITRD_PAD_MASK;
        initrd_size = load_image_targphys(params->initrd_filename, initrd_base,
                                          ram_size - initrd_base);

        if (initrd_size < 0) {
            fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                    params->initrd_filename);
            exit(1);
        }
    }

    /* If we're loading a kernel directly, we must load the device tree too. */
    if (params->kernel_filename) {
        struct boot_info *boot_info;
        int dt_size;

        dt_base = (loadaddr + kernel_size + DTC_LOAD_PAD) & ~DTC_PAD_MASK;
        dt_size = ppce500_load_device_tree(env, params, dt_base, initrd_base,
                                           initrd_size);
        if (dt_size < 0) {
            fprintf(stderr, "couldn't load device tree\n");
            exit(1);
        }

        boot_info = env->load_info;
        boot_info->entry = entry;
        boot_info->dt_base = dt_base;
        boot_info->dt_size = dt_size;
    }

    if (kvm_enabled()) {
        kvmppc_init();
    }
}
Esempio n. 17
0
PCIBus *typhoon_init(ram_addr_t ram_size, ISABus **isa_bus,
                     qemu_irq *p_rtc_irq,
                     CPUState *cpus[4], pci_map_irq_fn sys_map_irq)
{
    const uint64_t MB = 1024 * 1024;
    const uint64_t GB = 1024 * MB;
    MemoryRegion *addr_space = get_system_memory();
    MemoryRegion *addr_space_io = get_system_io();
    DeviceState *dev;
    PCIHostState *p;
    TyphoonState *s;
    PCIBus *b;
    int i;

    dev = qdev_create(NULL, "typhoon-pcihost");
    qdev_init_nofail(dev);

    p = FROM_SYSBUS(PCIHostState, sysbus_from_qdev(dev));
    s = container_of(p, TyphoonState, host);

    /* Remember the CPUs so that we can deliver interrupts to them.  */
    for (i = 0; i < 4; i++) {
        CPUState *env = cpus[i];
        s->cchip.cpu[i] = env;
        if (env) {
            env->alarm_timer = qemu_new_timer_ns(rtc_clock,
                                                 typhoon_alarm_timer,
                                                 (void *)((uintptr_t)s + i));
        }
    }

    *p_rtc_irq = *qemu_allocate_irqs(typhoon_set_timer_irq, s, 1);

    /* Main memory region, 0x00.0000.0000.  Real hardware supports 32GB,
       but the address space hole reserved at this point is 8TB.  */
    memory_region_init_ram(&s->ram_region, "ram", ram_size);
    vmstate_register_ram_global(&s->ram_region);
    memory_region_add_subregion(addr_space, 0, &s->ram_region);

    /* TIGbus, 0x801.0000.0000, 1GB.  */
    /* ??? The TIGbus is used for delivering interrupts, and access to
       the flash ROM.  I'm not sure that we need to implement it at all.  */

    /* Pchip0 CSRs, 0x801.8000.0000, 256MB.  */
    memory_region_init_io(&s->pchip.region, &pchip_ops, s, "pchip0", 256*MB);
    memory_region_add_subregion(addr_space, 0x80180000000ULL,
                                &s->pchip.region);

    /* Cchip CSRs, 0x801.A000.0000, 256MB.  */
    memory_region_init_io(&s->cchip.region, &cchip_ops, s, "cchip0", 256*MB);
    memory_region_add_subregion(addr_space, 0x801a0000000ULL,
                                &s->cchip.region);

    /* Dchip CSRs, 0x801.B000.0000, 256MB.  */
    memory_region_init_io(&s->dchip_region, &dchip_ops, s, "dchip0", 256*MB);
    memory_region_add_subregion(addr_space, 0x801b0000000ULL,
                                &s->dchip_region);

    /* Pchip0 PCI memory, 0x800.0000.0000, 4GB.  */
    memory_region_init(&s->pchip.reg_mem, "pci0-mem", 4*GB);
    memory_region_add_subregion(addr_space, 0x80000000000ULL,
                                &s->pchip.reg_mem);

    /* Pchip0 PCI I/O, 0x801.FC00.0000, 32MB.  */
    /* ??? Ideally we drop the "system" i/o space on the floor and give the
       PCI subsystem the full address space reserved by the chipset.
       We can't do that until the MEM and IO paths in memory.c are unified.  */
    memory_region_init_io(&s->pchip.reg_io, &alpha_pci_bw_io_ops, NULL,
                          "pci0-io", 32*MB);
    memory_region_add_subregion(addr_space, 0x801fc000000ULL,
                                &s->pchip.reg_io);

    b = pci_register_bus(&s->host.busdev.qdev, "pci",
                         typhoon_set_irq, sys_map_irq, s,
                         &s->pchip.reg_mem, addr_space_io, 0, 64);
    s->host.bus = b;

    /* Pchip0 PCI special/interrupt acknowledge, 0x801.F800.0000, 64MB.  */
    memory_region_init_io(&s->pchip.reg_iack, &alpha_pci_iack_ops, b,
                          "pci0-iack", 64*MB);
    memory_region_add_subregion(addr_space, 0x801f8000000ULL,
                                &s->pchip.reg_iack);

    /* Pchip0 PCI configuration, 0x801.FE00.0000, 16MB.  */
    memory_region_init_io(&s->pchip.reg_conf, &alpha_pci_conf1_ops, b,
                          "pci0-conf", 16*MB);
    memory_region_add_subregion(addr_space, 0x801fe000000ULL,
                                &s->pchip.reg_conf);

    /* For the record, these are the mappings for the second PCI bus.
       We can get away with not implementing them because we indicate
       via the Cchip.CSC<PIP> bit that Pchip1 is not present.  */
    /* Pchip1 PCI memory, 0x802.0000.0000, 4GB.  */
    /* Pchip1 CSRs, 0x802.8000.0000, 256MB.  */
    /* Pchip1 PCI special/interrupt acknowledge, 0x802.F800.0000, 64MB.  */
    /* Pchip1 PCI I/O, 0x802.FC00.0000, 32MB.  */
    /* Pchip1 PCI configuration, 0x802.FE00.0000, 16MB.  */

    /* Init the ISA bus.  */
    /* ??? Technically there should be a cy82c693ub pci-isa bridge.  */
    {
        qemu_irq isa_pci_irq, *isa_irqs;

        *isa_bus = isa_bus_new(NULL, addr_space_io);
        isa_pci_irq = *qemu_allocate_irqs(typhoon_set_isa_irq, s, 1);
        isa_irqs = i8259_init(*isa_bus, isa_pci_irq);
        isa_bus_irqs(*isa_bus, isa_irqs);
    }

    return b;
}
Esempio n. 18
0
static void versal_virt_init(MachineState *machine)
{
    VersalVirt *s = XLNX_VERSAL_VIRT_MACHINE(machine);
    int psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;

    /*
     * If the user provides an Operating System to be loaded, we expect them
     * to use the -kernel command line option.
     *
     * Users can load firmware or boot-loaders with the -device loader options.
     *
     * When loading an OS, we generate a dtb and let arm_load_kernel() select
     * where it gets loaded. This dtb will be passed to the kernel in x0.
     *
     * If there's no -kernel option, we generate a DTB and place it at 0x1000
     * for the bootloaders or firmware to pick up.
     *
     * If users want to provide their own DTB, they can use the -dtb option.
     * These dtb's will have their memory nodes modified to match QEMU's
     * selected ram_size option before they get passed to the kernel or fw.
     *
     * When loading an OS, we turn on QEMU's PSCI implementation with SMC
     * as the PSCI conduit. When there's no -kernel, we assume the user
     * provides EL3 firmware to handle PSCI.
     */
    if (machine->kernel_filename) {
        psci_conduit = QEMU_PSCI_CONDUIT_SMC;
    }

    memory_region_allocate_system_memory(&s->mr_ddr, NULL, "ddr",
                                         machine->ram_size);

    sysbus_init_child_obj(OBJECT(machine), "xlnx-ve", &s->soc,
                          sizeof(s->soc), TYPE_XLNX_VERSAL);
    object_property_set_link(OBJECT(&s->soc), OBJECT(&s->mr_ddr),
                             "ddr", &error_abort);
    object_property_set_int(OBJECT(&s->soc), psci_conduit,
                            "psci-conduit", &error_abort);
    object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_fatal);

    fdt_create(s);
    create_virtio_regions(s);
    fdt_add_gem_nodes(s);
    fdt_add_uart_nodes(s);
    fdt_add_gic_nodes(s);
    fdt_add_timer_nodes(s);
    fdt_add_cpu_nodes(s, psci_conduit);
    fdt_add_clk_node(s, "/clk125", 125000000, s->phandle.clk_125Mhz);
    fdt_add_clk_node(s, "/clk25", 25000000, s->phandle.clk_25Mhz);

    /* Make the APU cpu address space visible to virtio and other
     * modules unaware of muliple address-spaces.  */
    memory_region_add_subregion_overlap(get_system_memory(),
                                        0, &s->soc.fpd.apu.mr, 0);

    s->binfo.ram_size = machine->ram_size;
    s->binfo.kernel_filename = machine->kernel_filename;
    s->binfo.kernel_cmdline = machine->kernel_cmdline;
    s->binfo.initrd_filename = machine->initrd_filename;
    s->binfo.loader_start = 0x0;
    s->binfo.get_dtb = versal_virt_get_dtb;
    s->binfo.modify_dtb = versal_virt_modify_dtb;
    if (machine->kernel_filename) {
        arm_load_kernel(s->soc.fpd.apu.cpu[0], &s->binfo);
    } else {
        AddressSpace *as = arm_boot_address_space(s->soc.fpd.apu.cpu[0],
                                                  &s->binfo);
        /* Some boot-loaders (e.g u-boot) don't like blobs at address 0 (NULL).
         * Offset things by 4K.  */
        s->binfo.loader_start = 0x1000;
        s->binfo.dtb_limit = 0x1000000;
        if (arm_load_dtb(s->binfo.loader_start,
                         &s->binfo, s->binfo.dtb_limit, as) < 0) {
            exit(EXIT_FAILURE);
        }
    }
}
Esempio n. 19
0
static void lm32_evr_init(QEMUMachineInitArgs *args)
{
    const char *cpu_model = args->cpu_model;
    const char *kernel_filename = args->kernel_filename;
    LM32CPU *cpu;
    CPULM32State *env;
    DriveInfo *dinfo;
    MemoryRegion *address_space_mem =  get_system_memory();
    MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
    qemu_irq *cpu_irq, irq[32];
    ResetInfo *reset_info;
    int i;

    /* memory map */
    hwaddr flash_base  = 0x04000000;
    size_t flash_sector_size       = 256 * 1024;
    size_t flash_size              = 32 * 1024 * 1024;
    hwaddr ram_base    = 0x08000000;
    size_t ram_size                = 64 * 1024 * 1024;
    hwaddr timer0_base = 0x80002000;
    hwaddr uart0_base  = 0x80006000;
    hwaddr timer1_base = 0x8000a000;
    int uart0_irq                  = 0;
    int timer0_irq                 = 1;
    int timer1_irq                 = 3;

    reset_info = g_malloc0(sizeof(ResetInfo));

    if (cpu_model == NULL) {
        cpu_model = "lm32-full";
    }
    cpu = cpu_lm32_init(cpu_model);
    env = &cpu->env;
    reset_info->cpu = cpu;

    reset_info->flash_base = flash_base;

    memory_region_init_ram(phys_ram, "lm32_evr.sdram", ram_size);
    vmstate_register_ram_global(phys_ram);
    memory_region_add_subregion(address_space_mem, ram_base, phys_ram);

    dinfo = drive_get(IF_PFLASH, 0, 0);
    /* Spansion S29NS128P */
    pflash_cfi02_register(flash_base, NULL, "lm32_evr.flash", flash_size,
                          dinfo ? dinfo->bdrv : NULL, flash_sector_size,
                          flash_size / flash_sector_size, 1, 2,
                          0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);

    /* create irq lines */
    cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
    env->pic_state = lm32_pic_init(*cpu_irq);
    for (i = 0; i < 32; i++) {
        irq[i] = qdev_get_gpio_in(env->pic_state, i);
    }

    sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
    sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
    sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);

    /* make sure juart isn't the first chardev */
    env->juart_state = lm32_juart_init();

    reset_info->bootstrap_pc = flash_base;

    if (kernel_filename) {
        uint64_t entry;
        int kernel_size;

        kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
                               1, ELF_MACHINE, 0);
        reset_info->bootstrap_pc = entry;

        if (kernel_size < 0) {
            kernel_size = load_image_targphys(kernel_filename, ram_base,
                                              ram_size);
            reset_info->bootstrap_pc = ram_base;
        }

        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }
    }

    qemu_register_reset(main_cpu_reset, reset_info);
}
Esempio n. 20
0
static
void mips_r4k_init(MachineState *machine)
{
    ram_addr_t ram_size = machine->ram_size;
    const char *cpu_model = machine->cpu_model;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
    char *filename;
    MemoryRegion *address_space_mem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
    MemoryRegion *bios;
    MemoryRegion *iomem = g_new(MemoryRegion, 1);
    MemoryRegion *isa_io = g_new(MemoryRegion, 1);
    MemoryRegion *isa_mem = g_new(MemoryRegion, 1);
    int bios_size;
    MIPSCPU *cpu;
    CPUMIPSState *env;
    ResetData *reset_info;
    int i;
    qemu_irq *i8259;
    ISABus *isa_bus;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    DriveInfo *dinfo;
    int be;

    /* init CPUs */
    if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
        cpu_model = "R4000";
#else
        cpu_model = "24Kf";
#endif
    }
    cpu = cpu_mips_init(cpu_model);
    if (cpu == NULL) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }
    env = &cpu->env;

    reset_info = g_malloc0(sizeof(ResetData));
    reset_info->cpu = cpu;
    reset_info->vector = env->active_tc.PC;
    qemu_register_reset(main_cpu_reset, reset_info);

    /* allocate RAM */
    if (ram_size > (256 << 20)) {
        fprintf(stderr,
                "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
                ((unsigned int)ram_size / (1 << 20)));
        exit(1);
    }
    memory_region_allocate_system_memory(ram, NULL, "mips_r4k.ram", ram_size);

    memory_region_add_subregion(address_space_mem, 0, ram);

    memory_region_init_io(iomem, NULL, &mips_qemu_ops, NULL, "mips-qemu", 0x10000);
    memory_region_add_subregion(address_space_mem, 0x1fbf0000, iomem);

    /* Try to load a BIOS image. If this fails, we continue regardless,
       but initialize the hardware ourselves. When a kernel gets
       preloaded we also initialize the hardware, since the BIOS wasn't
       run. */
    if (bios_name == NULL)
        bios_name = BIOS_FILENAME;
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
    if (filename) {
        bios_size = get_image_size(filename);
    } else {
        bios_size = -1;
    }
#ifdef TARGET_WORDS_BIGENDIAN
    be = 1;
#else
    be = 0;
#endif
    if ((bios_size > 0) && (bios_size <= BIOS_SIZE)) {
        bios = g_new(MemoryRegion, 1);
        memory_region_init_ram(bios, NULL, "mips_r4k.bios", BIOS_SIZE,
                               &error_fatal);
        vmstate_register_ram_global(bios);
        memory_region_set_readonly(bios, true);
        memory_region_add_subregion(get_system_memory(), 0x1fc00000, bios);

        load_image_targphys(filename, 0x1fc00000, BIOS_SIZE);
    } else if ((dinfo = drive_get(IF_PFLASH, 0, 0)) != NULL) {
        uint32_t mips_rom = 0x00400000;
        if (!pflash_cfi01_register(0x1fc00000, NULL, "mips_r4k.bios", mips_rom,
                                   blk_by_legacy_dinfo(dinfo),
                                   sector_len, mips_rom / sector_len,
                                   4, 0, 0, 0, 0, be)) {
            fprintf(stderr, "qemu: Error registering flash memory.\n");
	}
    } else if (!qtest_enabled()) {
	/* not fatal */
        fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n",
		bios_name);
    }
    g_free(filename);

    if (kernel_filename) {
        loaderparams.ram_size = ram_size;
        loaderparams.kernel_filename = kernel_filename;
        loaderparams.kernel_cmdline = kernel_cmdline;
        loaderparams.initrd_filename = initrd_filename;
        reset_info->vector = load_kernel();
    }

    /* Init CPU internal devices */
    cpu_mips_irq_init_cpu(env);
    cpu_mips_clock_init(env);

    /* ISA bus: IO space at 0x14000000, mem space at 0x10000000 */
    memory_region_init_alias(isa_io, NULL, "isa-io",
                             get_system_io(), 0, 0x00010000);
    memory_region_init(isa_mem, NULL, "isa-mem", 0x01000000);
    memory_region_add_subregion(get_system_memory(), 0x14000000, isa_io);
    memory_region_add_subregion(get_system_memory(), 0x10000000, isa_mem);
    isa_bus = isa_bus_new(NULL, isa_mem, get_system_io());

    /* The PIC is attached to the MIPS CPU INT0 pin */
    i8259 = i8259_init(isa_bus, env->irq[2]);
    isa_bus_irqs(isa_bus, i8259);

    rtc_init(isa_bus, 2000, NULL);

    pit = pit_init(isa_bus, 0x40, 0, NULL);

    serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);

    isa_vga_init(isa_bus);

    if (nd_table[0].used)
        isa_ne2000_init(isa_bus, 0x300, 9, &nd_table[0]);

    ide_drive_get(hd, ARRAY_SIZE(hd));
    for(i = 0; i < MAX_IDE_BUS; i++)
        isa_ide_init(isa_bus, ide_iobase[i], ide_iobase2[i], ide_irq[i],
                     hd[MAX_IDE_DEVS * i],
		     hd[MAX_IDE_DEVS * i + 1]);

    isa_create_simple(isa_bus, "i8042");
}
Esempio n. 21
0
static void z2_init(QEMUMachineInitArgs *args)
{
    const char *cpu_model = args->cpu_model;
    const char *kernel_filename = args->kernel_filename;
    const char *kernel_cmdline = args->kernel_cmdline;
    const char *initrd_filename = args->initrd_filename;
    MemoryRegion *address_space_mem = get_system_memory();
    uint32_t sector_len = 0x10000;
    PXA2xxState *mpu;
    DriveInfo *dinfo;
    int be;
    void *z2_lcd;
    I2CBus *bus;
    DeviceState *wm;

    if (!cpu_model) {
        cpu_model = "pxa270-c5";
    }

    /* Setup CPU & memory */
    mpu = pxa270_init(address_space_mem, z2_binfo.ram_size, cpu_model);

#ifdef TARGET_WORDS_BIGENDIAN
    be = 1;
#else
    be = 0;
#endif
    dinfo = drive_get(IF_PFLASH, 0, 0);
    if (!dinfo && !qtest_enabled()) {
        fprintf(stderr, "Flash image must be given with the "
                "'pflash' parameter\n");
        exit(1);
    }

    if (!pflash_cfi01_register(Z2_FLASH_BASE,
                               NULL, "z2.flash0", Z2_FLASH_SIZE,
                               dinfo ? dinfo->bdrv : NULL, sector_len,
                               Z2_FLASH_SIZE / sector_len, 4, 0, 0, 0, 0,
                               be)) {
        fprintf(stderr, "qemu: Error registering flash memory.\n");
        exit(1);
    }

    /* setup keypad */
    pxa27x_register_keypad(mpu->kp, map, 0x100);

    /* MMC/SD host */
    pxa2xx_mmci_handlers(mpu->mmc,
        NULL,
        qdev_get_gpio_in(mpu->gpio, Z2_GPIO_SD_DETECT));

    type_register_static(&zipit_lcd_info);
    type_register_static(&aer915_info);
    z2_lcd = ssi_create_slave(mpu->ssp[1], "zipit-lcd");
    bus = pxa2xx_i2c_bus(mpu->i2c[0]);
    i2c_create_slave(bus, TYPE_AER915, 0x55);
    wm = i2c_create_slave(bus, "wm8750", 0x1b);
    mpu->i2s->opaque = wm;
    mpu->i2s->codec_out = wm8750_dac_dat;
    mpu->i2s->codec_in = wm8750_adc_dat;
    wm8750_data_req_set(wm, mpu->i2s->data_req, mpu->i2s);

    qdev_connect_gpio_out(mpu->gpio, Z2_GPIO_LCD_CS,
                          qemu_allocate_irq(z2_lcd_cs, z2_lcd, 0));

    z2_binfo.kernel_filename = kernel_filename;
    z2_binfo.kernel_cmdline = kernel_cmdline;
    z2_binfo.initrd_filename = initrd_filename;
    z2_binfo.board_id = 0x6dd;
    arm_load_kernel(mpu->cpu, &z2_binfo);
}
Esempio n. 22
0
void xbox_init_common(MachineState *machine,
                      const uint8_t *eeprom,
                      PCIBus **pci_bus_out,
                      ISABus **isa_bus_out)
{
    PCMachineState *pcms = PC_MACHINE(machine);
    // PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);

    MemoryRegion *system_memory = get_system_memory();
    // MemoryRegion *system_io = get_system_io();

    int i;

    PCIBus *pci_bus;
    ISABus *isa_bus;

    qemu_irq *i8259;
    // qemu_irq smi_irq; // XBOX_TODO: SMM support?

    GSIState *gsi_state;

    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    BusState *idebus[MAX_IDE_BUS];
    ISADevice *rtc_state;
    // ISADevice *pit;

    MemoryRegion *ram_memory;
    MemoryRegion *pci_memory;
    MemoryRegion *rom_memory;

    I2CBus *smbus;
    PCIBus *agp_bus;

    pc_cpus_init(pcms);

    pci_memory = g_new(MemoryRegion, 1);
    memory_region_init(pci_memory, NULL, "pci", UINT64_MAX);
    rom_memory = pci_memory;

    // pc_guest_info_init(pcms);

    /* allocate ram and load rom/bios */
    xbox_memory_init(pcms, system_memory, rom_memory, &ram_memory);

    gsi_state = g_malloc0(sizeof(*gsi_state));
    pcms->gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS);

    xbox_pci_init(pcms->gsi,
                  get_system_memory(), get_system_io(),
                  pci_memory, ram_memory,
                  &pci_bus,
                  &isa_bus,
                  &smbus,
                  &agp_bus);

    pcms->bus = pci_bus;

    isa_bus_irqs(isa_bus, pcms->gsi);

    i8259 = i8259_init(isa_bus, pc_allocate_cpu_irq());

    for (i = 0; i < ISA_NUM_IRQS; i++) {
        gsi_state->i8259_irq[i] = i8259[i];
    }
    g_free(i8259);

    pc_register_ferr_irq(pcms->gsi[13]);

    /* init basic PC hardware */
    pcms->pit = 1; // XBOX_FIXME: What's the right way to do this?
    rtc_state = mc146818_rtc_init(isa_bus, 2000, NULL);

    // qemu_register_boot_set(pc_boot_set, rtc_state);
    ISADevice *pit = i8254_pit_init(isa_bus, 0x40, 0, NULL);

    pcspk_init(isa_bus, pit);

    ide_drive_get(hd, ARRAY_SIZE(hd));
    PCIDevice *ide_dev = pci_piix3_ide_init(pci_bus, hd, PCI_DEVFN(9, 0));
    idebus[0] = qdev_get_child_bus(&ide_dev->qdev, "ide.0");
    idebus[1] = qdev_get_child_bus(&ide_dev->qdev, "ide.1");

    // xbox bios wants this bit pattern set to mark the data as valid
    uint8_t bits = 0x55;
    for (i = 0x10; i < 0x70; i++) {
        rtc_set_memory(rtc_state, i, bits);
        bits = ~bits;
    }
    bits = 0x55;
    for (i = 0x80; i < 0x100; i++) {
        rtc_set_memory(rtc_state, i, bits);
        bits = ~bits;
    }

    /* smbus devices */
    uint8_t *eeprom_buf = g_malloc0(256);
    memcpy(eeprom_buf, eeprom, 256);
    smbus_eeprom_init_one(smbus, 0x54, eeprom_buf);

    smbus_xbox_smc_init(smbus, 0x10);
    smbus_cx25871_init(smbus, 0x45);
    smbus_adm1032_init(smbus, 0x4c);

    /* USB */
    PCIDevice *usb1 = pci_create(pci_bus, PCI_DEVFN(3, 0), "pci-ohci");
    qdev_prop_set_uint32(&usb1->qdev, "num-ports", 4);
    qdev_init_nofail(&usb1->qdev);

    PCIDevice *usb0 = pci_create(pci_bus, PCI_DEVFN(2, 0), "pci-ohci");
    qdev_prop_set_uint32(&usb0->qdev, "num-ports", 4);
    qdev_init_nofail(&usb0->qdev);

    /* Ethernet! */
    PCIDevice *nvnet = pci_create(pci_bus, PCI_DEVFN(4, 0), "nvnet");

    for (i = 0; i < nb_nics; i++) {
        NICInfo *nd = &nd_table[i];
        qemu_check_nic_model(nd, "nvnet");
        qdev_set_nic_properties(&nvnet->qdev, nd);
        qdev_init_nofail(&nvnet->qdev);
    }

    /* APU! */
    mcpx_apu_init(pci_bus, PCI_DEVFN(5, 0), ram_memory);

    /* ACI! */
    pci_create_simple(pci_bus, PCI_DEVFN(6, 0), "mcpx-aci");

    /* GPU! */
    nv2a_init(agp_bus, PCI_DEVFN(0, 0), ram_memory);

    if (pci_bus_out) {
        *pci_bus_out = pci_bus;
    }
    if (isa_bus_out) {
        *isa_bus_out = isa_bus;
    }
}
Esempio n. 23
0
static void integratorcp_init(QEMUMachineInitArgs *args)
{
    ram_addr_t ram_size = args->ram_size;
    const char *cpu_model = args->cpu_model;
    const char *kernel_filename = args->kernel_filename;
    const char *kernel_cmdline = args->kernel_cmdline;
    const char *initrd_filename = args->initrd_filename;
    ARMCPU *cpu;
    MemoryRegion *address_space_mem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
    MemoryRegion *ram_alias = g_new(MemoryRegion, 1);
    qemu_irq pic[32];
    qemu_irq *cpu_pic;
    DeviceState *dev;
    int i;

    if (!cpu_model) {
        cpu_model = "arm926";
    }
    cpu = cpu_arm_init(cpu_model);
    if (!cpu) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }

    memory_region_init_ram(ram, "integrator.ram", ram_size);
    vmstate_register_ram_global(ram);
    /* ??? On a real system the first 1Mb is mapped as SSRAM or boot flash.  */
    /* ??? RAM should repeat to fill physical memory space.  */
    /* SDRAM at address zero*/
    memory_region_add_subregion(address_space_mem, 0, ram);
    /* And again at address 0x80000000 */
    memory_region_init_alias(ram_alias, "ram.alias", ram, 0, ram_size);
    memory_region_add_subregion(address_space_mem, 0x80000000, ram_alias);

    dev = qdev_create(NULL, "integrator_core");
    qdev_prop_set_uint32(dev, "memsz", ram_size >> 20);
    qdev_init_nofail(dev);
    sysbus_mmio_map((SysBusDevice *)dev, 0, 0x10000000);

    cpu_pic = arm_pic_init_cpu(cpu);
    dev = sysbus_create_varargs("integrator_pic", 0x14000000,
                                cpu_pic[ARM_PIC_CPU_IRQ],
                                cpu_pic[ARM_PIC_CPU_FIQ], NULL);
    for (i = 0; i < 32; i++) {
        pic[i] = qdev_get_gpio_in(dev, i);
    }
    sysbus_create_simple("integrator_pic", 0xca000000, pic[26]);
    sysbus_create_varargs("integrator_pit", 0x13000000,
                          pic[5], pic[6], pic[7], NULL);
    sysbus_create_simple("pl031", 0x15000000, pic[8]);
    sysbus_create_simple("pl011", 0x16000000, pic[1]);
    sysbus_create_simple("pl011", 0x17000000, pic[2]);
    icp_control_init(0xcb000000);
    sysbus_create_simple("pl050_keyboard", 0x18000000, pic[3]);
    sysbus_create_simple("pl050_mouse", 0x19000000, pic[4]);
    sysbus_create_varargs("pl181", 0x1c000000, pic[23], pic[24], NULL);
    if (nd_table[0].used)
        smc91c111_init(&nd_table[0], 0xc8000000, pic[27]);

    sysbus_create_simple("pl110", 0xc0000000, pic[22]);

    integrator_binfo.ram_size = ram_size;
    integrator_binfo.kernel_filename = kernel_filename;
    integrator_binfo.kernel_cmdline = kernel_cmdline;
    integrator_binfo.initrd_filename = initrd_filename;
    arm_load_kernel(cpu, &integrator_binfo);
}
Esempio n. 24
0
static void mips_jazz_init(MachineState *machine,
                           enum jazz_model_e jazz_model)
{
    MemoryRegion *address_space = get_system_memory();
    const char *cpu_model = machine->cpu_model;
    char *filename;
    int bios_size, n;
    MIPSCPU *cpu;
    CPUClass *cc;
    CPUMIPSState *env;
    qemu_irq *i8259;
    rc4030_dma *dmas;
    MemoryRegion *rc4030_dma_mr;
    MemoryRegion *isa_mem = g_new(MemoryRegion, 1);
    MemoryRegion *isa_io = g_new(MemoryRegion, 1);
    MemoryRegion *rtc = g_new(MemoryRegion, 1);
    MemoryRegion *i8042 = g_new(MemoryRegion, 1);
    MemoryRegion *dma_dummy = g_new(MemoryRegion, 1);
    NICInfo *nd;
    DeviceState *dev, *rc4030;
    SysBusDevice *sysbus;
    ISABus *isa_bus;
    ISADevice *pit;
    DriveInfo *fds[MAX_FD];
    qemu_irq esp_reset, dma_enable;
    MemoryRegion *ram = g_new(MemoryRegion, 1);
    MemoryRegion *bios = g_new(MemoryRegion, 1);
    MemoryRegion *bios2 = g_new(MemoryRegion, 1);

    /* init CPUs */
    if (cpu_model == NULL) {
        cpu_model = "R4000";
    }
    cpu = cpu_mips_init(cpu_model);
    if (cpu == NULL) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }
    env = &cpu->env;
    qemu_register_reset(main_cpu_reset, cpu);

    /* Chipset returns 0 in invalid reads and do not raise data exceptions.
     * However, we can't simply add a global memory region to catch
     * everything, as memory core directly call unassigned_mem_read/write
     * on some invalid accesses, which call do_unassigned_access on the
     * CPU, which raise an exception.
     * Handle that case by hijacking the do_unassigned_access method on
     * the CPU, and do not raise exceptions for data access. */
    cc = CPU_GET_CLASS(cpu);
    real_do_unassigned_access = cc->do_unassigned_access;
    cc->do_unassigned_access = mips_jazz_do_unassigned_access;

    /* allocate RAM */
    memory_region_allocate_system_memory(ram, NULL, "mips_jazz.ram",
                                         machine->ram_size);
    memory_region_add_subregion(address_space, 0, ram);

    memory_region_init_ram(bios, NULL, "mips_jazz.bios", MAGNUM_BIOS_SIZE,
                           &error_fatal);
    vmstate_register_ram_global(bios);
    memory_region_set_readonly(bios, true);
    memory_region_init_alias(bios2, NULL, "mips_jazz.bios", bios,
                             0, MAGNUM_BIOS_SIZE);
    memory_region_add_subregion(address_space, 0x1fc00000LL, bios);
    memory_region_add_subregion(address_space, 0xfff00000LL, bios2);

    /* load the BIOS image. */
    if (bios_name == NULL)
        bios_name = BIOS_FILENAME;
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
    if (filename) {
        bios_size = load_image_targphys(filename, 0xfff00000LL,
                                        MAGNUM_BIOS_SIZE);
        g_free(filename);
    } else {
        bios_size = -1;
    }
    if ((bios_size < 0 || bios_size > MAGNUM_BIOS_SIZE) && !qtest_enabled()) {
        error_report("Could not load MIPS bios '%s'", bios_name);
        exit(1);
    }

    /* Init CPU internal devices */
    cpu_mips_irq_init_cpu(env);
    cpu_mips_clock_init(env);

    /* Chipset */
    rc4030 = rc4030_init(&dmas, &rc4030_dma_mr);
    sysbus = SYS_BUS_DEVICE(rc4030);
    sysbus_connect_irq(sysbus, 0, env->irq[6]);
    sysbus_connect_irq(sysbus, 1, env->irq[3]);
    memory_region_add_subregion(address_space, 0x80000000,
                                sysbus_mmio_get_region(sysbus, 0));
    memory_region_add_subregion(address_space, 0xf0000000,
                                sysbus_mmio_get_region(sysbus, 1));
    memory_region_init_io(dma_dummy, NULL, &dma_dummy_ops, NULL, "dummy_dma", 0x1000);
    memory_region_add_subregion(address_space, 0x8000d000, dma_dummy);

    /* ISA bus: IO space at 0x90000000, mem space at 0x91000000 */
    memory_region_init(isa_io, NULL, "isa-io", 0x00010000);
    memory_region_init(isa_mem, NULL, "isa-mem", 0x01000000);
    memory_region_add_subregion(address_space, 0x90000000, isa_io);
    memory_region_add_subregion(address_space, 0x91000000, isa_mem);
    isa_bus = isa_bus_new(NULL, isa_mem, isa_io, &error_abort);

    /* ISA devices */
    i8259 = i8259_init(isa_bus, env->irq[4]);
    isa_bus_irqs(isa_bus, i8259);
    DMA_init(0);
    pit = pit_init(isa_bus, 0x40, 0, NULL);
    pcspk_init(isa_bus, pit);

    /* Video card */
    switch (jazz_model) {
    case JAZZ_MAGNUM:
        dev = qdev_create(NULL, "sysbus-g364");
        qdev_init_nofail(dev);
        sysbus = SYS_BUS_DEVICE(dev);
        sysbus_mmio_map(sysbus, 0, 0x60080000);
        sysbus_mmio_map(sysbus, 1, 0x40000000);
        sysbus_connect_irq(sysbus, 0, qdev_get_gpio_in(rc4030, 3));
        {
            /* Simple ROM, so user doesn't have to provide one */
            MemoryRegion *rom_mr = g_new(MemoryRegion, 1);
            memory_region_init_ram(rom_mr, NULL, "g364fb.rom", 0x80000,
                                   &error_fatal);
            vmstate_register_ram_global(rom_mr);
            memory_region_set_readonly(rom_mr, true);
            uint8_t *rom = memory_region_get_ram_ptr(rom_mr);
            memory_region_add_subregion(address_space, 0x60000000, rom_mr);
            rom[0] = 0x10; /* Mips G364 */
        }
        break;
    case JAZZ_PICA61:
        isa_vga_mm_init(0x40000000, 0x60000000, 0, get_system_memory());
        break;
    default:
        break;
    }

    /* Network controller */
    for (n = 0; n < nb_nics; n++) {
        nd = &nd_table[n];
        if (!nd->model)
            nd->model = g_strdup("dp83932");
        if (strcmp(nd->model, "dp83932") == 0) {
            qemu_check_nic_model(nd, "dp83932");

            dev = qdev_create(NULL, "dp8393x");
            qdev_set_nic_properties(dev, nd);
            qdev_prop_set_uint8(dev, "it_shift", 2);
            qdev_prop_set_ptr(dev, "dma_mr", rc4030_dma_mr);
            qdev_init_nofail(dev);
            sysbus = SYS_BUS_DEVICE(dev);
            sysbus_mmio_map(sysbus, 0, 0x80001000);
            sysbus_mmio_map(sysbus, 1, 0x8000b000);
            sysbus_connect_irq(sysbus, 0, qdev_get_gpio_in(rc4030, 4));
            break;
        } else if (is_help_option(nd->model)) {
            fprintf(stderr, "qemu: Supported NICs: dp83932\n");
            exit(1);
        } else {
            fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd->model);
            exit(1);
        }
    }

    /* SCSI adapter */
    esp_init(0x80002000, 0,
             rc4030_dma_read, rc4030_dma_write, dmas[0],
             qdev_get_gpio_in(rc4030, 5), &esp_reset, &dma_enable);

    /* Floppy */
    if (drive_get_max_bus(IF_FLOPPY) >= MAX_FD) {
        fprintf(stderr, "qemu: too many floppy drives\n");
        exit(1);
    }
    for (n = 0; n < MAX_FD; n++) {
        fds[n] = drive_get(IF_FLOPPY, 0, n);
    }
    fdctrl_init_sysbus(qdev_get_gpio_in(rc4030, 1), 0, 0x80003000, fds);

    /* Real time clock */
    rtc_init(isa_bus, 1980, NULL);
    memory_region_init_io(rtc, NULL, &rtc_ops, NULL, "rtc", 0x1000);
    memory_region_add_subregion(address_space, 0x80004000, rtc);

    /* Keyboard (i8042) */
    i8042_mm_init(qdev_get_gpio_in(rc4030, 6), qdev_get_gpio_in(rc4030, 7),
                  i8042, 0x1000, 0x1);
    memory_region_add_subregion(address_space, 0x80005000, i8042);

    /* Serial ports */
    if (serial_hds[0]) {
        serial_mm_init(address_space, 0x80006000, 0,
                       qdev_get_gpio_in(rc4030, 8), 8000000/16,
                       serial_hds[0], DEVICE_NATIVE_ENDIAN);
    }
    if (serial_hds[1]) {
        serial_mm_init(address_space, 0x80007000, 0,
                       qdev_get_gpio_in(rc4030, 9), 8000000/16,
                       serial_hds[1], DEVICE_NATIVE_ENDIAN);
    }

    /* Parallel port */
    if (parallel_hds[0])
        parallel_mm_init(address_space, 0x80008000, 0,
                         qdev_get_gpio_in(rc4030, 0), parallel_hds[0]);

    /* FIXME: missing Jazz sound at 0x8000c000, rc4030[2] */

    /* NVRAM */
    dev = qdev_create(NULL, "ds1225y");
    qdev_init_nofail(dev);
    sysbus = SYS_BUS_DEVICE(dev);
    sysbus_mmio_map(sysbus, 0, 0x80009000);

    /* LED indicator */
    sysbus_create_simple("jazz-led", 0x8000f000, NULL);
}
Esempio n. 25
0
void sysbus_add_memory(SysBusDevice *dev, target_phys_addr_t addr,
                       MemoryRegion *mem)
{
    memory_region_add_subregion(get_system_memory(), addr, mem);
}
Esempio n. 26
0
static void lx_init(const LxBoardDesc *board, MachineState *machine)
{
#ifdef TARGET_WORDS_BIGENDIAN
    int be = 1;
#else
    int be = 0;
#endif
    MemoryRegion *system_memory = get_system_memory();
    XtensaCPU *cpu = NULL;
    CPUXtensaState *env = NULL;
    MemoryRegion *ram, *rom, *system_io;
    DriveInfo *dinfo;
    pflash_t *flash = NULL;
    QemuOpts *machine_opts = qemu_get_machine_opts();
    const char *cpu_model = machine->cpu_model;
    const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
    const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
    const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
    const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
    int n;

    if (!cpu_model) {
        cpu_model = XTENSA_DEFAULT_CPU_MODEL;
    }

    for (n = 0; n < smp_cpus; n++) {
        cpu = cpu_xtensa_init(cpu_model);
        if (cpu == NULL) {
            error_report("unable to find CPU definition '%s'\n",
                         cpu_model);
            exit(EXIT_FAILURE);
        }
        env = &cpu->env;

        env->sregs[PRID] = n;
        qemu_register_reset(lx60_reset, cpu);
        /* Need MMU initialized prior to ELF loading,
         * so that ELF gets loaded into virtual addresses
         */
        cpu_reset(CPU(cpu));
    }

    ram = g_malloc(sizeof(*ram));
    memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size);
    vmstate_register_ram_global(ram);
    memory_region_add_subregion(system_memory, 0, ram);

    system_io = g_malloc(sizeof(*system_io));
    memory_region_init(system_io, NULL, "lx60.io", 224 * 1024 * 1024);
    memory_region_add_subregion(system_memory, 0xf0000000, system_io);
    lx60_fpga_init(system_io, 0x0d020000);
    if (nd_table[0].used) {
        lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
                xtensa_get_extint(env, 1), nd_table);
    }

    if (!serial_hds[0]) {
        serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
    }

    serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
            115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);

    dinfo = drive_get(IF_PFLASH, 0, 0);
    if (dinfo) {
        flash = pflash_cfi01_register(board->flash_base,
                NULL, "lx60.io.flash", board->flash_size,
                dinfo->bdrv, board->flash_sector_size,
                board->flash_size / board->flash_sector_size,
                4, 0x0000, 0x0000, 0x0000, 0x0000, be);
        if (flash == NULL) {
            error_report("unable to mount pflash\n");
            exit(EXIT_FAILURE);
        }
    }

    /* Use presence of kernel file name as 'boot from SRAM' switch. */
    if (kernel_filename) {
        uint32_t entry_point = env->pc;
        size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
        uint32_t tagptr = 0xfe000000 + board->sram_size;
        uint32_t cur_tagptr;
        BpMemInfo memory_location = {
            .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
            .start = tswap32(0),
            .end = tswap32(machine->ram_size),
        };
        uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
            machine->ram_size : 0x08000000;
        uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);

        rom = g_malloc(sizeof(*rom));
        memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size);
        vmstate_register_ram_global(rom);
        memory_region_add_subregion(system_memory, 0xfe000000, rom);

        if (kernel_cmdline) {
            bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
        }
        if (dtb_filename) {
            bp_size += get_tag_size(sizeof(uint32_t));
        }
        if (initrd_filename) {
            bp_size += get_tag_size(sizeof(BpMemInfo));
        }

        /* Put kernel bootparameters to the end of that SRAM */
        tagptr = (tagptr - bp_size) & ~0xff;
        cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
        cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
                             sizeof(memory_location), &memory_location);

        if (kernel_cmdline) {
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
                                 strlen(kernel_cmdline) + 1, kernel_cmdline);
        }
        if (dtb_filename) {
            int fdt_size;
            void *fdt = load_device_tree(dtb_filename, &fdt_size);
            uint32_t dtb_addr = tswap32(cur_lowmem);

            if (!fdt) {
                error_report("could not load DTB '%s'\n", dtb_filename);
                exit(EXIT_FAILURE);
            }

            cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
                                 sizeof(dtb_addr), &dtb_addr);
            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
        }
        if (initrd_filename) {
            BpMemInfo initrd_location = { 0 };
            int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
                                           lowmem_end - cur_lowmem);

            if (initrd_size < 0) {
                initrd_size = load_image_targphys(initrd_filename,
                                                  cur_lowmem,
                                                  lowmem_end - cur_lowmem);
            }
            if (initrd_size < 0) {
                error_report("could not load initrd '%s'\n", initrd_filename);
                exit(EXIT_FAILURE);
            }
            initrd_location.start = tswap32(cur_lowmem);
            initrd_location.end = tswap32(cur_lowmem + initrd_size);
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
                                 sizeof(initrd_location), &initrd_location);
            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
        }
        cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
        env->regs[2] = tagptr;

        uint64_t elf_entry;
        uint64_t elf_lowaddr;
        int success = load_elf(kernel_filename, translate_phys_addr, cpu,
                &elf_entry, &elf_lowaddr, NULL, be, ELF_MACHINE, 0);
        if (success > 0) {
            entry_point = elf_entry;
        } else {
            hwaddr ep;
            int is_linux;
            success = load_uimage(kernel_filename, &ep, NULL, &is_linux);
            if (success > 0 && is_linux) {
                entry_point = ep;
            } else {
                error_report("could not load kernel '%s'\n",
                             kernel_filename);
                exit(EXIT_FAILURE);
            }
        }
        if (entry_point != env->pc) {
            static const uint8_t jx_a0[] = {
#ifdef TARGET_WORDS_BIGENDIAN
                0x0a, 0, 0,
#else
                0xa0, 0, 0,
#endif
            };
            env->regs[0] = entry_point;
            cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
        }
    } else {
        if (flash) {
            MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
            MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));

            memory_region_init_alias(flash_io, NULL, "lx60.flash",
                    flash_mr, board->flash_boot_base,
                    board->flash_size - board->flash_boot_base < 0x02000000 ?
                    board->flash_size - board->flash_boot_base : 0x02000000);
            memory_region_add_subregion(system_memory, 0xfe000000,
                    flash_io);
        }
    }
}
Esempio n. 27
0
void sysbus_del_memory(SysBusDevice *dev, MemoryRegion *mem)
{
    memory_region_del_subregion(get_system_memory(), mem);
}
Esempio n. 28
0
/* PowerPC Mac99 hardware initialisation */
static void ppc_core99_init(MachineState *machine)
{
    ram_addr_t ram_size = machine->ram_size;
    const char *cpu_model = machine->cpu_model;
    const char *kernel_filename = machine->kernel_filename;
    const char *kernel_cmdline = machine->kernel_cmdline;
    const char *initrd_filename = machine->initrd_filename;
    const char *boot_device = machine->boot_order;
    PowerPCCPU *cpu = NULL;
    CPUPPCState *env = NULL;
    char *filename;
    qemu_irq *pic, **openpic_irqs;
    MemoryRegion *isa = g_new(MemoryRegion, 1);
    MemoryRegion *unin_memory = g_new(MemoryRegion, 1);
    MemoryRegion *unin2_memory = g_new(MemoryRegion, 1);
    int linux_boot, i, j, k;
    MemoryRegion *ram = g_new(MemoryRegion, 1), *bios = g_new(MemoryRegion, 1);
    hwaddr kernel_base, initrd_base, cmdline_base = 0;
    long kernel_size, initrd_size;
    PCIBus *pci_bus;
    PCIDevice *macio;
    MACIOIDEState *macio_ide;
    BusState *adb_bus;
    MacIONVRAMState *nvr;
    int bios_size;
    MemoryRegion *pic_mem, *escc_mem;
    MemoryRegion *escc_bar = g_new(MemoryRegion, 1);
    int ppc_boot_device;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    void *fw_cfg;
    int machine_arch;
    SysBusDevice *s;
    DeviceState *dev;
    int *token = g_new(int, 1);

    linux_boot = (kernel_filename != NULL);

    /* init CPUs */
    if (cpu_model == NULL)
#ifdef TARGET_PPC64
        cpu_model = "970fx";
#else
        cpu_model = "G4";
#endif
    for (i = 0; i < smp_cpus; i++) {
        cpu = cpu_ppc_init(cpu_model);
        if (cpu == NULL) {
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
        env = &cpu->env;

        /* Set time-base frequency to 100 Mhz */
        cpu_ppc_tb_init(env, TBFREQ);
        qemu_register_reset(ppc_core99_reset, cpu);
    }

    /* allocate RAM */
    memory_region_allocate_system_memory(ram, NULL, "ppc_core99.ram", ram_size);
    memory_region_add_subregion(get_system_memory(), 0, ram);

    /* allocate and load BIOS */
    memory_region_init_ram(bios, NULL, "ppc_core99.bios", BIOS_SIZE);
    vmstate_register_ram_global(bios);

    if (bios_name == NULL)
        bios_name = PROM_FILENAME;
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
    memory_region_set_readonly(bios, true);
    memory_region_add_subregion(get_system_memory(), PROM_ADDR, bios);

    /* Load OpenBIOS (ELF) */
    if (filename) {
        bios_size = load_elf(filename, NULL, NULL, NULL,
                             NULL, NULL, 1, ELF_MACHINE, 0);

        g_free(filename);
    } else {
        bios_size = -1;
    }
    if (bios_size < 0 || bios_size > BIOS_SIZE) {
        hw_error("qemu: could not load PowerPC bios '%s'\n", bios_name);
        exit(1);
    }

    if (linux_boot) {
        uint64_t lowaddr = 0;
        int bswap_needed;

#ifdef BSWAP_NEEDED
        bswap_needed = 1;
#else
        bswap_needed = 0;
#endif
        kernel_base = KERNEL_LOAD_ADDR;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
        if (kernel_size < 0)
            kernel_size = load_aout(kernel_filename, kernel_base,
                                    ram_size - kernel_base, bswap_needed,
                                    TARGET_PAGE_SIZE);
        if (kernel_size < 0)
            kernel_size = load_image_targphys(kernel_filename,
                                              kernel_base,
                                              ram_size - kernel_base);
        if (kernel_size < 0) {
            hw_error("qemu: could not load kernel '%s'\n", kernel_filename);
            exit(1);
        }
        /* load initrd */
        if (initrd_filename) {
            initrd_base = round_page(kernel_base + kernel_size + KERNEL_GAP);
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
                                              ram_size - initrd_base);
            if (initrd_size < 0) {
                hw_error("qemu: could not load initial ram disk '%s'\n",
                         initrd_filename);
                exit(1);
            }
            cmdline_base = round_page(initrd_base + initrd_size);
        } else {
            initrd_base = 0;
            initrd_size = 0;
            cmdline_base = round_page(kernel_base + kernel_size + KERNEL_GAP);
        }
        ppc_boot_device = 'm';
    } else {
        kernel_base = 0;
        kernel_size = 0;
        initrd_base = 0;
        initrd_size = 0;
        ppc_boot_device = '\0';
        /* We consider that NewWorld PowerMac never have any floppy drive
         * For now, OHW cannot boot from the network.
         */
        for (i = 0; boot_device[i] != '\0'; i++) {
            if (boot_device[i] >= 'c' && boot_device[i] <= 'f') {
                ppc_boot_device = boot_device[i];
                break;
            }
        }
        if (ppc_boot_device == '\0') {
            fprintf(stderr, "No valid boot device for Mac99 machine\n");
            exit(1);
        }
    }

    /* Register 8 MB of ISA IO space */
    memory_region_init_alias(isa, NULL, "isa_mmio",
                             get_system_io(), 0, 0x00800000);
    memory_region_add_subregion(get_system_memory(), 0xf2000000, isa);

    /* UniN init: XXX should be a real device */
    memory_region_init_io(unin_memory, NULL, &unin_ops, token, "unin", 0x1000);
    memory_region_add_subregion(get_system_memory(), 0xf8000000, unin_memory);

    memory_region_init_io(unin2_memory, NULL, &unin_ops, token, "unin", 0x1000);
    memory_region_add_subregion(get_system_memory(), 0xf3000000, unin2_memory);

    openpic_irqs = g_malloc0(smp_cpus * sizeof(qemu_irq *));
    openpic_irqs[0] =
        g_malloc0(smp_cpus * sizeof(qemu_irq) * OPENPIC_OUTPUT_NB);
    for (i = 0; i < smp_cpus; i++) {
        /* Mac99 IRQ connection between OpenPIC outputs pins
         * and PowerPC input pins
         */
        switch (PPC_INPUT(env)) {
        case PPC_FLAGS_INPUT_6xx:
            openpic_irqs[i] = openpic_irqs[0] + (i * OPENPIC_OUTPUT_NB);
            openpic_irqs[i][OPENPIC_OUTPUT_INT] =
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_INT];
            openpic_irqs[i][OPENPIC_OUTPUT_CINT] =
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_INT];
            openpic_irqs[i][OPENPIC_OUTPUT_MCK] =
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_MCP];
            /* Not connected ? */
            openpic_irqs[i][OPENPIC_OUTPUT_DEBUG] = NULL;
            /* Check this */
            openpic_irqs[i][OPENPIC_OUTPUT_RESET] =
                ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_HRESET];
            break;
#if defined(TARGET_PPC64)
        case PPC_FLAGS_INPUT_970:
            openpic_irqs[i] = openpic_irqs[0] + (i * OPENPIC_OUTPUT_NB);
            openpic_irqs[i][OPENPIC_OUTPUT_INT] =
                ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_INT];
            openpic_irqs[i][OPENPIC_OUTPUT_CINT] =
                ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_INT];
            openpic_irqs[i][OPENPIC_OUTPUT_MCK] =
                ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_MCP];
            /* Not connected ? */
            openpic_irqs[i][OPENPIC_OUTPUT_DEBUG] = NULL;
            /* Check this */
            openpic_irqs[i][OPENPIC_OUTPUT_RESET] =
                ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_HRESET];
            break;
#endif /* defined(TARGET_PPC64) */
        default:
            hw_error("Bus model not supported on mac99 machine\n");
            exit(1);
        }
    }

    pic = g_new(qemu_irq, 64);

    dev = qdev_create(NULL, TYPE_OPENPIC);
    qdev_prop_set_uint32(dev, "model", OPENPIC_MODEL_RAVEN);
    qdev_init_nofail(dev);
    s = SYS_BUS_DEVICE(dev);
    pic_mem = s->mmio[0].memory;
    k = 0;
    for (i = 0; i < smp_cpus; i++) {
        for (j = 0; j < OPENPIC_OUTPUT_NB; j++) {
            sysbus_connect_irq(s, k++, openpic_irqs[i][j]);
        }
    }

    for (i = 0; i < 64; i++) {
        pic[i] = qdev_get_gpio_in(dev, i);
    }

    if (PPC_INPUT(env) == PPC_FLAGS_INPUT_970) {
        /* 970 gets a U3 bus */
        pci_bus = pci_pmac_u3_init(pic, get_system_memory(), get_system_io());
        machine_arch = ARCH_MAC99_U3;
    } else {
        pci_bus = pci_pmac_init(pic, get_system_memory(), get_system_io());
        machine_arch = ARCH_MAC99;
    }
    /* init basic PC hardware */
    escc_mem = escc_init(0, pic[0x25], pic[0x24],
                         serial_hds[0], serial_hds[1], ESCC_CLOCK, 4);
    memory_region_init_alias(escc_bar, NULL, "escc-bar",
                             escc_mem, 0, memory_region_size(escc_mem));

    macio = pci_create(pci_bus, -1, TYPE_NEWWORLD_MACIO);
    dev = DEVICE(macio);
    qdev_connect_gpio_out(dev, 0, pic[0x19]); /* CUDA */
    qdev_connect_gpio_out(dev, 1, pic[0x0d]); /* IDE */
    qdev_connect_gpio_out(dev, 2, pic[0x02]); /* IDE DMA */
    qdev_connect_gpio_out(dev, 3, pic[0x0e]); /* IDE */
    qdev_connect_gpio_out(dev, 4, pic[0x03]); /* IDE DMA */
    macio_init(macio, pic_mem, escc_bar);

    /* We only emulate 2 out of 3 IDE controllers for now */
    ide_drive_get(hd, MAX_IDE_BUS);

    macio_ide = MACIO_IDE(object_resolve_path_component(OBJECT(macio),
                                                        "ide[0]"));
    macio_ide_init_drives(macio_ide, hd);

    macio_ide = MACIO_IDE(object_resolve_path_component(OBJECT(macio),
                                                        "ide[1]"));
    macio_ide_init_drives(macio_ide, &hd[MAX_IDE_DEVS]);

    dev = DEVICE(object_resolve_path_component(OBJECT(macio), "cuda"));
    adb_bus = qdev_get_child_bus(dev, "adb.0");
    dev = qdev_create(adb_bus, TYPE_ADB_KEYBOARD);
    qdev_init_nofail(dev);
    dev = qdev_create(adb_bus, TYPE_ADB_MOUSE);
    qdev_init_nofail(dev);

    if (usb_enabled(machine_arch == ARCH_MAC99_U3)) {
        pci_create_simple(pci_bus, -1, "pci-ohci");
        /* U3 needs to use USB for input because Linux doesn't support via-cuda
        on PPC64 */
        if (machine_arch == ARCH_MAC99_U3) {
            usbdevice_create("keyboard");
            usbdevice_create("mouse");
        }
    }

    pci_vga_init(pci_bus);

    if (graphic_depth != 15 && graphic_depth != 32 && graphic_depth != 8) {
        graphic_depth = 15;
    }

    for (i = 0; i < nb_nics; i++) {
        pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL);
    }

    /* The NewWorld NVRAM is not located in the MacIO device */
    dev = qdev_create(NULL, TYPE_MACIO_NVRAM);
    qdev_prop_set_uint32(dev, "size", 0x2000);
    qdev_prop_set_uint32(dev, "it_shift", 1);
    qdev_init_nofail(dev);
    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0xFFF04000);
    nvr = MACIO_NVRAM(dev);
    pmac_format_nvram_partition(nvr, 0x2000);
    /* No PCI init: the BIOS will do it */

    fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, machine_arch);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_base);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
    if (kernel_cmdline) {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, cmdline_base);
        pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE, kernel_cmdline);
    } else {
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
    }
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_base);
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, ppc_boot_device);

    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_WIDTH, graphic_width);
    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_HEIGHT, graphic_height);
    fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_DEPTH, graphic_depth);

    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_IS_KVM, kvm_enabled());
    if (kvm_enabled()) {
#ifdef CONFIG_KVM
        uint8_t *hypercall;

        fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_TBFREQ, kvmppc_get_tbfreq());
        hypercall = g_malloc(16);
        kvmppc_get_hypercall(env, hypercall, 16);
        fw_cfg_add_bytes(fw_cfg, FW_CFG_PPC_KVM_HC, hypercall, 16);
        fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_KVM_PID, getpid());
#endif
    } else {
        fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_TBFREQ, TBFREQ);
    }
    /* Mac OS X requires a "known good" clock-frequency value; pass it one. */
    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_CLOCKFREQ, CLOCKFREQ);
    fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_BUSFREQ, BUSFREQ);

    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
Esempio n. 29
0
static void realview_init(QEMUMachineInitArgs *args,
                          enum realview_board_type board_type)
{
    ARMCPU *cpu = NULL;
    CPUARMState *env;
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram_lo = g_new(MemoryRegion, 1);
    MemoryRegion *ram_hi = g_new(MemoryRegion, 1);
    MemoryRegion *ram_alias = g_new(MemoryRegion, 1);
    MemoryRegion *ram_hack = g_new(MemoryRegion, 1);
    DeviceState *dev, *sysctl, *gpio2, *pl041;
    SysBusDevice *busdev;
    qemu_irq *irqp;
    qemu_irq pic[64];
    qemu_irq mmc_irq[2];
    PCIBus *pci_bus;
    NICInfo *nd;
    i2c_bus *i2c;
    int n;
    int done_nic = 0;
    qemu_irq cpu_irq[4];
    int is_mpcore = 0;
    int is_pb = 0;
    uint32_t proc_id = 0;
    uint32_t sys_id;
    ram_addr_t low_ram_size;
    ram_addr_t ram_size = args->ram_size;

    switch (board_type) {
    case BOARD_EB:
        break;
    case BOARD_EB_MPCORE:
        is_mpcore = 1;
        break;
    case BOARD_PB_A8:
        is_pb = 1;
        break;
    case BOARD_PBX_A9:
        is_mpcore = 1;
        is_pb = 1;
        break;
    }
    for (n = 0; n < smp_cpus; n++) {
        cpu = cpu_arm_init(args->cpu_model);
        if (!cpu) {
            fprintf(stderr, "Unable to find CPU definition\n");
            exit(1);
        }
        irqp = arm_pic_init_cpu(cpu);
        cpu_irq[n] = irqp[ARM_PIC_CPU_IRQ];
    }
    env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_V7)) {
        if (is_mpcore) {
            proc_id = 0x0c000000;
        } else {
            proc_id = 0x0e000000;
        }
    } else if (arm_feature(env, ARM_FEATURE_V6K)) {
        proc_id = 0x06000000;
    } else if (arm_feature(env, ARM_FEATURE_V6)) {
        proc_id = 0x04000000;
    } else {
        proc_id = 0x02000000;
    }

    if (is_pb && ram_size > 0x20000000) {
        /* Core tile RAM.  */
        low_ram_size = ram_size - 0x20000000;
        ram_size = 0x20000000;
        memory_region_init_ram(ram_lo, "realview.lowmem", low_ram_size);
        vmstate_register_ram_global(ram_lo);
        memory_region_add_subregion(sysmem, 0x20000000, ram_lo);
    }

    memory_region_init_ram(ram_hi, "realview.highmem", ram_size);
    vmstate_register_ram_global(ram_hi);
    low_ram_size = ram_size;
    if (low_ram_size > 0x10000000)
      low_ram_size = 0x10000000;
    /* SDRAM at address zero.  */
    memory_region_init_alias(ram_alias, "realview.alias",
                             ram_hi, 0, low_ram_size);
    memory_region_add_subregion(sysmem, 0, ram_alias);
    if (is_pb) {
        /* And again at a high address.  */
        memory_region_add_subregion(sysmem, 0x70000000, ram_hi);
    } else {
        ram_size = low_ram_size;
    }

    sys_id = is_pb ? 0x01780500 : 0xc1400400;
    sysctl = qdev_create(NULL, "realview_sysctl");
    qdev_prop_set_uint32(sysctl, "sys_id", sys_id);
    qdev_prop_set_uint32(sysctl, "proc_id", proc_id);
    qdev_init_nofail(sysctl);
    sysbus_mmio_map(sysbus_from_qdev(sysctl), 0, 0x10000000);

    if (is_mpcore) {
        hwaddr periphbase;
        dev = qdev_create(NULL, is_pb ? "a9mpcore_priv": "realview_mpcore");
        qdev_prop_set_uint32(dev, "num-cpu", smp_cpus);
        qdev_init_nofail(dev);
        busdev = sysbus_from_qdev(dev);
        if (is_pb) {
            periphbase = 0x1f000000;
        } else {
            periphbase = 0x10100000;
        }
        sysbus_mmio_map(busdev, 0, periphbase);
        for (n = 0; n < smp_cpus; n++) {
            sysbus_connect_irq(busdev, n, cpu_irq[n]);
        }
        sysbus_create_varargs("l2x0", periphbase + 0x2000, NULL);
        /* Both A9 and 11MPCore put the GIC CPU i/f at base + 0x100 */
        realview_binfo.gic_cpu_if_addr = periphbase + 0x100;
    } else {
        uint32_t gic_addr = is_pb ? 0x1e000000 : 0x10040000;
        /* For now just create the nIRQ GIC, and ignore the others.  */
        dev = sysbus_create_simple("realview_gic", gic_addr, cpu_irq[0]);
    }
    for (n = 0; n < 64; n++) {
        pic[n] = qdev_get_gpio_in(dev, n);
    }

    pl041 = qdev_create(NULL, "pl041");
    qdev_prop_set_uint32(pl041, "nc_fifo_depth", 512);
    qdev_init_nofail(pl041);
    sysbus_mmio_map(sysbus_from_qdev(pl041), 0, 0x10004000);
    sysbus_connect_irq(sysbus_from_qdev(pl041), 0, pic[19]);

    sysbus_create_simple("pl050_keyboard", 0x10006000, pic[20]);
    sysbus_create_simple("pl050_mouse", 0x10007000, pic[21]);

    sysbus_create_simple("pl011", 0x10009000, pic[12]);
    sysbus_create_simple("pl011", 0x1000a000, pic[13]);
    sysbus_create_simple("pl011", 0x1000b000, pic[14]);
    sysbus_create_simple("pl011", 0x1000c000, pic[15]);

    /* DMA controller is optional, apparently.  */
    sysbus_create_simple("pl081", 0x10030000, pic[24]);

    sysbus_create_simple("sp804", 0x10011000, pic[4]);
    sysbus_create_simple("sp804", 0x10012000, pic[5]);

    sysbus_create_simple("pl061", 0x10013000, pic[6]);
    sysbus_create_simple("pl061", 0x10014000, pic[7]);
    gpio2 = sysbus_create_simple("pl061", 0x10015000, pic[8]);

    sysbus_create_simple("pl111", 0x10020000, pic[23]);

    dev = sysbus_create_varargs("pl181", 0x10005000, pic[17], pic[18], NULL);
    /* Wire up MMC card detect and read-only signals. These have
     * to go to both the PL061 GPIO and the sysctl register.
     * Note that the PL181 orders these lines (readonly,inserted)
     * and the PL061 has them the other way about. Also the card
     * detect line is inverted.
     */
    mmc_irq[0] = qemu_irq_split(
        qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_WPROT),
        qdev_get_gpio_in(gpio2, 1));
    mmc_irq[1] = qemu_irq_split(
        qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_CARDIN),
        qemu_irq_invert(qdev_get_gpio_in(gpio2, 0)));
    qdev_connect_gpio_out(dev, 0, mmc_irq[0]);
    qdev_connect_gpio_out(dev, 1, mmc_irq[1]);

    sysbus_create_simple("pl031", 0x10017000, pic[10]);

    if (!is_pb) {
        dev = qdev_create(NULL, "realview_pci");
        busdev = sysbus_from_qdev(dev);
        qdev_init_nofail(dev);
        sysbus_mmio_map(busdev, 0, 0x61000000); /* PCI self-config */
        sysbus_mmio_map(busdev, 1, 0x62000000); /* PCI config */
        sysbus_mmio_map(busdev, 2, 0x63000000); /* PCI I/O */
        sysbus_connect_irq(busdev, 0, pic[48]);
        sysbus_connect_irq(busdev, 1, pic[49]);
        sysbus_connect_irq(busdev, 2, pic[50]);
        sysbus_connect_irq(busdev, 3, pic[51]);
        pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci");
        if (usb_enabled(false)) {
            pci_create_simple(pci_bus, -1, "pci-ohci");
        }
        n = drive_get_max_bus(IF_SCSI);
        while (n >= 0) {
            pci_create_simple(pci_bus, -1, "lsi53c895a");
            n--;
        }
    }
    for(n = 0; n < nb_nics; n++) {
        nd = &nd_table[n];

        if (!done_nic && (!nd->model ||
                    strcmp(nd->model, is_pb ? "lan9118" : "smc91c111") == 0)) {
            if (is_pb) {
                lan9118_init(nd, 0x4e000000, pic[28]);
            } else {
                smc91c111_init(nd, 0x4e000000, pic[28]);
            }
            done_nic = 1;
        } else {
            pci_nic_init_nofail(nd, "rtl8139", NULL);
        }
    }

    dev = sysbus_create_simple("versatile_i2c", 0x10002000, NULL);
    i2c = (i2c_bus *)qdev_get_child_bus(dev, "i2c");
    i2c_create_slave(i2c, "ds1338", 0x68);

    /* Memory map for RealView Emulation Baseboard:  */
    /* 0x10000000 System registers.  */
    /*  0x10001000 System controller.  */
    /* 0x10002000 Two-Wire Serial Bus.  */
    /* 0x10003000 Reserved.  */
    /*  0x10004000 AACI.  */
    /*  0x10005000 MCI.  */
    /* 0x10006000 KMI0.  */
    /* 0x10007000 KMI1.  */
    /*  0x10008000 Character LCD. (EB) */
    /* 0x10009000 UART0.  */
    /* 0x1000a000 UART1.  */
    /* 0x1000b000 UART2.  */
    /* 0x1000c000 UART3.  */
    /*  0x1000d000 SSPI.  */
    /*  0x1000e000 SCI.  */
    /* 0x1000f000 Reserved.  */
    /*  0x10010000 Watchdog.  */
    /* 0x10011000 Timer 0+1.  */
    /* 0x10012000 Timer 2+3.  */
    /*  0x10013000 GPIO 0.  */
    /*  0x10014000 GPIO 1.  */
    /*  0x10015000 GPIO 2.  */
    /*  0x10002000 Two-Wire Serial Bus - DVI. (PB) */
    /* 0x10017000 RTC.  */
    /*  0x10018000 DMC.  */
    /*  0x10019000 PCI controller config.  */
    /*  0x10020000 CLCD.  */
    /* 0x10030000 DMA Controller.  */
    /* 0x10040000 GIC1. (EB) */
    /*  0x10050000 GIC2. (EB) */
    /*  0x10060000 GIC3. (EB) */
    /*  0x10070000 GIC4. (EB) */
    /*  0x10080000 SMC.  */
    /* 0x1e000000 GIC1. (PB) */
    /*  0x1e001000 GIC2. (PB) */
    /*  0x1e002000 GIC3. (PB) */
    /*  0x1e003000 GIC4. (PB) */
    /*  0x40000000 NOR flash.  */
    /*  0x44000000 DoC flash.  */
    /*  0x48000000 SRAM.  */
    /*  0x4c000000 Configuration flash.  */
    /* 0x4e000000 Ethernet.  */
    /*  0x4f000000 USB.  */
    /*  0x50000000 PISMO.  */
    /*  0x54000000 PISMO.  */
    /*  0x58000000 PISMO.  */
    /*  0x5c000000 PISMO.  */
    /* 0x60000000 PCI.  */
    /* 0x61000000 PCI Self Config.  */
    /* 0x62000000 PCI Config.  */
    /* 0x63000000 PCI IO.  */
    /* 0x64000000 PCI mem 0.  */
    /* 0x68000000 PCI mem 1.  */
    /* 0x6c000000 PCI mem 2.  */

    /* ??? Hack to map an additional page of ram for the secondary CPU
       startup code.  I guess this works on real hardware because the
       BootROM happens to be in ROM/flash or in memory that isn't clobbered
       until after Linux boots the secondary CPUs.  */
    memory_region_init_ram(ram_hack, "realview.hack", 0x1000);
    vmstate_register_ram_global(ram_hack);
    memory_region_add_subregion(sysmem, SMP_BOOT_ADDR, ram_hack);

    realview_binfo.ram_size = ram_size;
    realview_binfo.kernel_filename = args->kernel_filename;
    realview_binfo.kernel_cmdline = args->kernel_cmdline;
    realview_binfo.initrd_filename = args->initrd_filename;
    realview_binfo.nb_cpus = smp_cpus;
    realview_binfo.board_id = realview_board_id[board_type];
    realview_binfo.loader_start = (board_type == BOARD_PB_A8 ? 0x70000000 : 0);
    arm_load_kernel(arm_env_get_cpu(first_cpu), &realview_binfo);
}
Esempio n. 30
0
static void versatile_bbv_board_init(QEMUMachineInitArgs *args)
{
	ARMCPU * cpu;
	MemoryRegion * sysmem;
	MemoryRegion * ram;
	DeviceState * sysctl;
	qemu_irq * cpu_pic;
	DeviceState * dev;
	qemu_irq pic[32];
	qemu_irq sic[32];
	int i;

	/* cpu */

	if (!args->cpu_model) {
		args->cpu_model = "arm926";
	}
	cpu = cpu_arm_init(args->cpu_model);
	if (!cpu) {
		fprintf(stderr, "Unable to find CPU definition\n");
		exit(1);
	}

	/* ram */

	sysmem = get_system_memory();
	ram = g_new(MemoryRegion, 1);
	memory_region_init_ram(ram, "versatile.ram", args->ram_size);
	vmstate_register_ram_global(ram);
	memory_region_add_subregion(sysmem, 0, ram);

	/* sysctrl */

	sysctl = qdev_create(NULL, "realview_sysctl");
	qdev_prop_set_uint32(sysctl, "sys_id", 0x41007004);
	qdev_prop_set_uint32(sysctl, "proc_id", 0x02000000);
	qdev_init_nofail(sysctl);
	sysbus_mmio_map(sysbus_from_qdev(sysctl), 0, 0x10000000);

	/* interrupt control */

	cpu_pic = arm_pic_init_cpu(cpu);
	dev = sysbus_create_varargs("pl190", 0x10140000,
			cpu_pic[ARM_PIC_CPU_IRQ],
			cpu_pic[ARM_PIC_CPU_FIQ], NULL);
	for (i = 0; i < 32; i++) {
		pic[i] = qdev_get_gpio_in(dev, i);
	}

	/* secondary interrupt control */
	/* this is necessary because kernel expects a versatile compatible board, therefore
		the secondary interrupt controller is necessary (PS2 keyboard, PS2 mouse) */

	dev = sysbus_create_simple("versatilepb_sic", 0x10003000, NULL);
	for (i = 0; i < 32; i++) {
		sysbus_connect_irq(sysbus_from_qdev(dev), i, pic[i]);
		sic[i] = qdev_get_gpio_in(dev, i);
	}

	/* timer */

	sysbus_create_simple("sp804", 0x101e2000, pic[4]);
	sysbus_create_simple("sp804", 0x101e3000, pic[5]);

	/* uart */

	sysbus_create_simple("pl011", 0x101f1000, pic[12]);
	sysbus_create_simple("pl011", 0x101f2000, pic[13]);
	sysbus_create_simple("pl011", 0x101f3000, pic[14]);

	/* gpio */

	dev = sysbus_create_simple("pl061bbv_lua", 0x101e4000, pic[6]);
	dev->id = "GPIO-1";

	dev = sysbus_create_simple("pl061bbv_sock", 0x101e5000, pic[7]);
	dev->id = "GPIO-2";

	dev = sysbus_create_simple("pl061bbv_socksrv", 0x101e6000, pic[8]);
	dev->id = "GPIO-3";

	dev = sysbus_create_simple("pl061", 0x101e7000, pic[9]);
	dev->id = "GPIO-4";

	/* rtc */

	sysbus_create_simple("pl031", 0x101e8000, pic[10]);

	/* default input devices */

	sysbus_create_simple("pl050_keyboard", 0x10006000, sic[3]); /* without this, no keyboard on console -> no login */
    sysbus_create_simple("pl050_mouse", 0x10007000, sic[4]);

	/* initialization of the graphical console, without this, there will be no output on framebuffer-console-oriented kernels */

	/* The versatile/PB actually has a modified Color LCD controller
	   that includes hardware cursor support from the PL111.  */
	dev = sysbus_create_simple("pl110_versatile", 0x10120000, pic[16]);
	/* Wire up the mux control signals from the SYS_CLCD register */
	/*qdev_connect_gpio_out(sysctl, 0, qdev_get_gpio_in(dev, 0));*/

	/* load kernel */

	kernel_boot_info.ram_size = args->ram_size;
	kernel_boot_info.kernel_filename = args->kernel_filename;
	kernel_boot_info.kernel_cmdline = args->kernel_cmdline;
	kernel_boot_info.initrd_filename = args->initrd_filename;
	kernel_boot_info.board_id = 0x183; /* stolen from versatilebp */
	kernel_boot_info.nb_cpus = 1;
    kernel_boot_info.loader_start = 0;
	arm_load_kernel(cpu, &kernel_boot_info);
}