int main(int argc, char *argv[]) { char txtfile[255], bmpfile[255]; if (argc < 2) { usage(argv[0]); } else if (argc == 2) { char basename[255]; strcpy(bmpfile, argv[1]); getbasename(basename, argv[1]); sprintf(txtfile, "%s.txt", basename); } else if (argc == 3) { strcpy(bmpfile, argv[1]); strcpy(txtfile, argv[2]); } else { usage(argv[0]); } dumpprocess(bmpfile, txtfile); return 0; }
static void merge_list_set_val(struct obj_list_data *d, GtkTreeIter *iter, int row) { int cx; unsigned int i = 0; char *file, *bfile; for (i = 0; i < MERG_WIN_COL_NUM; i++) { switch (i) { case MERG_WIN_COL_FILE: getobj(d->obj, "file", row, 0, NULL, &file); bfile = getbasename(file); if (bfile) { list_store_set_string(GTK_WIDGET(d->text), iter, i, CHK_STR(bfile)); g_free(bfile); } else { list_store_set_string(GTK_WIDGET(d->text), iter, i, "...................."); } break; case MERG_WIN_COL_HIDDEN: getobj(d->obj, Mlist[i].name, row, 0, NULL, &cx); cx = ! cx; list_store_set_val(GTK_WIDGET(d->text), iter, i, Mlist[i].type, &cx); break; default: if (Mlist[i].type == G_TYPE_DOUBLE) { getobj(d->obj, Mlist[i].name, row, 0, NULL, &cx); list_store_set_double(GTK_WIDGET(d->text), iter, i, cx / 100.0); } else { getobj(d->obj, Mlist[i].name, row, 0, NULL, &cx); list_store_set_val(GTK_WIDGET(d->text), iter, i, Mlist[i].type, &cx); } } } }
int createdir_recursive( char* path) { int res; char *dirs, *base; /*printf(" called mkdir %s\n", path);*/ getbasename(path, &dirs, &base); if ( dirs != NULL) { if ( !is_dir(dirs) ) { /*printf(" dirs=%s base=%s\n", dirs, base);*/ res = createdir_recursive(dirs); } else res = 0; free(dirs); if (res) return res; } if (file_exists(path)) res = 0; else res = mkdir(path, S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH); if (res) { if (errno == EEXIST) { print("Concurrency error: createdir %s failed: %s\n", path, strerror(errno)); print("Some other process created this dir already during this function call\n"); res = 0; } else { print("createdir %s failed: %s\n", path, strerror(errno)); } } //else // print("createdir %s succeeded\n", path); free(base); return (res); }
char*ambixtest_getfname(char*inbuf, size_t length, const char*path_, const char*basename_, const char*ext_) { static unsigned int count=0; const char*ext=(ext_)?ext_:".caf"; const char*path=(path_)?path_:""; const char*basename=getbasename(basename_); snprintf(inbuf, length, "%s%s-%d.%d%s", path, basename, ambixtest_uniquenumber(), count, ext); count++; return inbuf; }
bool readfields(void* object, const bsreq* fields) { while(*p && !islinefeed()) { const bsreq* req = 0; if(readidentifier()) req = fields->find(buffer); if(!req) warning(ErrorNotFoundMember1pInBase2p, buffer, getbasename(fields)); readreq(object, req, 0); } return true; }
bool eval(int mode, int n, int argc, char **argv) { if(n >= argc) disphelp(getbasename(argv[0])); if(mode == -1) { if(!strcmp(argv[n], "info-nwn")) return eval(0, 2, argc, argv); else if(!strcmp(argv[n], "info-erf")) return eval(1, 2, argc, argv); else if(!strcmp(argv[n], "info-2da")) return eval(2, 2, argc, argv); else if(!strcmp(argv[n], "info-key")) return eval(3, 2, argc, argv); else if(!strcmp(argv[n], "info-bif")) return eval(4, 2, argc, argv); else if(!strcmp(argv[n], "info-gff")) return eval(5, 2, argc, argv); else if(!strcmp(argv[n], "extract-erf")) return eval(6, 2, argc, argv); else if(!strcmp(argv[n], "explode-gff")) return eval(7, 2, argc, argv); else if(!strcmp(argv[n], "assemble-gff")) return eval(8, 2, argc, argv); else if(!strcmp(argv[n], "explode-erf")) return eval(9, 2, argc, argv); else if(!strcmp(argv[n], "assemble-erf")) return eval(10, 2, argc, argv); else if(!strcmp(argv[n], "explode-bif")) return eval(11, 2, argc, argv); else if(!strcmp(argv[n], "explode-key")) return eval(12, 2, argc, argv); else if(!strcmp(argv[n], "assemble-key")) return eval(13, 2, argc, argv); else if(!strcmp(argv[n], "assemble-bif")) return eval(14, 2, argc, argv); else if(!strcmp(argv[n], "info-ssf")) return eval(15, 2, argc, argv); else if(!strcmp(argv[n], "explode-ssf")) return eval(16, 2, argc, argv); else if(!strcmp(argv[n], "assemble-ssf")) return eval(17, 2, argc, argv); else if(!strcmp(argv[n], "explode-keybif")) return eval(18, 2, argc, argv); else if(!strcmp(argv[n], "assemble-keybif")) return eval(19, 2, argc, argv); else if(!strcmp(argv[n], "info-tlk")) return eval(20, 2, argc, argv); else if(!strcmp(argv[n], "explode-tlk")) return eval(21, 2, argc, argv); else if(!strcmp(argv[n], "assemble-tlk")) return eval(22, 2, argc, argv); else disphelp(getbasename(argv[0])); } for(int i=n;i<argc;i++) if(!strcmp(argv[i], "--basedir")) { if(i >= (argc-1)) disphelp(getbasename(argv[0])); else basedir = argv[++i]; if(basedir[basedir.length()-1] != '/') basedir += "/"; } else if(!modefuncs[mode](argv[i])) return false; return true; }
static void file_dialog_set_current_neme(GtkWidget *dlg, const char *full_name) { char *name; if (dlg == NULL || full_name == NULL) return; name = getbasename(full_name); if (name) { gtk_file_chooser_set_current_name(GTK_FILE_CHOOSER(dlg), name); g_free(name); } }
int test_relative_file(void) { errorf("\n"); /* prints the function name */ File *file = newfile(".", "../tmp/foo"); assert(strcmp(getname(file), "../tmp/foo") == 0); assert(strcmp(getpath(file), "./../tmp/foo") == 0); char *dir = getdirname(file); assert(strcmp(dir, "./../tmp") == 0); free(dir); char *base = getbasename(file); assert(strcmp(base, "foo") == 0); free(base); free(file); return 0; }
int test_bare_file(void) { errorf("\n"); /* prints the function name */ File *file = newfile(".", "buf.c"); assert(strcmp(getname(file), "buf.c") == 0); assert(strcmp(getpath(file), "./buf.c") == 0); char *dir = getdirname(file); assert(strcmp(dir, ".") == 0); free(dir); char *base = getbasename(file); assert(strcmp(base, "buf.c") == 0); free(base); free(file); return 0; }
int main (int argc, char ** argv) { //For varriable definitions: //gbounds = global bounds string, lbounds = local bounds string, offs = offset string, tstring = temp string to hold temperary stuff char gbounds[1007], lbounds[1007], offs[1007],tstring[100]; //size = number of cores, gidx = adios group index int rank, size, gidx, i, j, k, ii; //data = pointer to read-in data void * data = NULL; uint64_t s[] = {0,0,0,0,0,0,0,0,0,0}; //starting offset uint64_t c[] = {1,1,1,1,1,1,1,1,1,1}; //chunk block array uint64_t bytes_read = 0; int element_size; int64_t new_adios_group, m_adios_file; uint64_t var_size; //portion_bound, uint64_t adios_groupsize, adios_totalsize; int read_buffer; //possible maximum size you the user would like for each chunk in MB int write_buffer = 1536; //actual buffer size you use in MB int itime; int WRITEME=1; uint64_t chunk_size; //chunk size in # of elements char *var_path, *var_name; // full path cut into dir path and name MPI_Init(&argc,&argv); MPI_Comm_rank(comm,&rank); MPI_Comm_size(comm,&size); // timing numbers // we will time: // 0: adios_open, adios_group_size // 1: the total time to read in the data // 2: times around each write (will only work if we do NOT buffer.... // 3: the time in the close // 4: fopen, fclose // 5: total time // timers: the total I/O time int timers = 6; double start_time[timers], end_time[timers], total_time[timers]; if (TIMING==100) { for (itime=0;itime<timers;itime++) { start_time[itime] = 0; end_time[itime] = 0; total_time[itime]=0; } //MPI_Barrier(MPI_COMM_WORLD); start_time[5] = MPI_Wtime(); } if(rank==0) printf("converting...\n"); if (argc < 5) { if (rank==0) printf("Usage: %s <BP-file> <ADIOS-file> read_buffer(MB) write_buffer(MB) METHOD (LUSTRE_strip_count) (LUSTRE_strip_size) (LUSTRE_block_size)\n", argv[0]); return 1; } if(TIMING==100) start_time[4] = MPI_Wtime(); ADIOS_FILE * f = adios_fopen (argv[1], MPI_COMM_SELF); if(TIMING==100){ end_time[4] = MPI_Wtime(); total_time[4] = end_time[4]-start_time[4]; } adios_init_noxml(comm); // no xml will be used to write the new adios file read_buffer = atoi(argv[3]); write_buffer = atoi(argv[4]); adios_allocate_buffer (ADIOS_BUFFER_ALLOC_NOW, write_buffer); // allocate MB buffer if (f == NULL) { printf("rank=%d, file cant be opened\n", rank); if (DEBUG) printf ("%s\n", adios_errmsg()); return -1; } for (gidx = 0; gidx < f->groups_count; gidx++) { //group part adios_groupsize = 0; ADIOS_GROUP * g = adios_gopen (f, f->group_namelist[gidx]); if (g == NULL) { if (DEBUG) printf ("%s\n", adios_errmsg()); printf("rank %d: group cannot be opened.\n", rank); return -1; } /* First create all of the groups */ // now I need to create this group in the file that will be written adios_declare_group(&new_adios_group,f->group_namelist[gidx],"",adios_flag_yes); if(strcmp(argv[5],"MPI_LUSTRE")!=0) //see whether or not the user uses MPI_LUSTRE method adios_select_method (new_adios_group, argv[5], "", ""); //non-MPI_LUSTRE methods... like MPI, POSIX.... else{ char lustre_pars[1000]; strcpy(lustre_pars, ""); strcat(lustre_pars, "stripe_count="); sprintf(tstring, "%d", atoi(argv[6])); strcat(lustre_pars, tstring); strcat(lustre_pars, ",stripe_size="); sprintf(tstring, "%d", atoi(argv[7])); strcat(lustre_pars, tstring); strcat(lustre_pars, ",block_size="); sprintf(tstring, "%d", atoi(argv[8])); strcat(lustre_pars, tstring); if(rank==0) printf("lustre_pars=%s\n", lustre_pars); adios_select_method (new_adios_group, argv[5], lustre_pars, ""); //Use MPI Lustre method } // variable definition part for (i = 0; i < g->vars_count; i++) { ADIOS_VARINFO * v = adios_inq_var_byid (g, i); getbasename (g->var_namelist[i], &var_path, &var_name); if (v->ndim == 0) { // scalars: every process does them the same. adios_define_var(new_adios_group,var_name,var_path,v->type,0,0,0); getTypeInfo( v->type, &element_size); //element_size is size per element based on its type if (v->type == adios_string) { //special case when the scalar is string. adios_groupsize += strlen(v->value); } else { adios_groupsize += element_size; } } else { // vector variables getTypeInfo( v->type, &element_size); var_size=1; for (ii=0;ii<v->ndim;ii++) { var_size*=v->dims[ii]; } uint64_t total_size = var_size; //total_size tells you the total number of elements in the current vector variable var_size*=element_size; //var_size tells you the size of the current vector variable in bytess //re-initialize the s and c variables for(j=0; j<v->ndim; j++){ s[j] = 0; c[j] = 1; } //find the approximate chunk_size you would like to use. chunk_size = calcChunkSize(total_size, read_buffer*1024*1024/element_size, size); //set the chunk block array with the total size as close to chunk_size as possible calcC(chunk_size, v, c); strcpy(lbounds,""); for(j=0; j<v->ndim; j++){ sprintf(tstring, "%" PRId64 ",", c[j]); strcat(lbounds, tstring); } printf("rank=%d, name=%s, chunk_size1=%" PRId64 " c[]=%s\n",rank,g->var_namelist[i],chunk_size,lbounds); chunk_size = 1; for(ii=0; ii<v->ndim; ii++) //reset chunk_size based on the created c. Now the chunk_size is exact. chunk_size *= c[ii]; //current step points to where the process is in processing the vector. First sets with respect to rank. uint64_t current_step = rank*chunk_size; //First advance the starting point s by current_step. Of course, you don't do it if the current_step exceeds total_size. if(current_step<total_size) rS(v, s, current_step, rank); uint64_t elements_defined = 0; //First, the number of elements you have defined is 0. //You (the process) process your part of the vector when your current_step is smaller than the total_size while(current_step < total_size) { //ts, temporary s, is introduced for the sake of the inner do while loop below. Copy s to ts. uint64_t ts[] = {0,0,0,0,0,0,0,0,0,0}; arrCopy(s, ts); //for every outer while iteration, you always have the whole chunk_size remained to process. uint64_t remain_chunk = chunk_size; if(current_step+chunk_size>total_size) //except when you are nearing the end of the vector.... remain_chunk = total_size-current_step; //tc, temporary c, is introduced for the sake of the inner do while loop below. Copy s to tc. uint64_t tc[] = {1,1,1,1,1,1,1,1,1,1}; arrCopy(c, tc); do{ //how much of the remain chunk you wanna process? initially you think you can do all of it.... uint64_t used_chunk = remain_chunk; //you feel like you should process the vector with tc block size, but given ts, you might go over bound. uint64_t uc[] = {1,1,1,1,1,1,1,1,1,1}; //so you verify it by setting a new legit chunck block uc, and getting a new remain_chunk. remain_chunk = checkBound(v, ts, tc, uc, remain_chunk); //you check whether or not ts+uc goes over the bound. This is just checking to make sure there's no error. //Thereotically, there should be no problem at all. checkOverflow(0, v, ts, uc); //the below code fragment simply calculates gbounds, and sets place holders for lbounds and offs. strcpy(gbounds,""); strcpy(lbounds,""); strcpy(offs,""); for(j=0; j<v->ndim-1; j++){ sprintf(tstring, "%d,", (int)v->dims[j]); strcat(gbounds, tstring); //sprintf(tstring, "ldim%d_%s,", j, var_name); sprintf(tstring, "ldim%d,", j); strcat(lbounds, tstring); //sprintf(tstring, "offs%d_%s,", j, var_name); sprintf(tstring, "offs%d,", j); strcat(offs, tstring); } sprintf(tstring, "%d", (int)v->dims[v->ndim-1]); strcat(gbounds, tstring); //sprintf(tstring, "ldim%d_%s", v->ndim-1, var_name); sprintf(tstring, "ldim%d", v->ndim-1); strcat(lbounds, tstring); //sprintf(tstring, "offs%d_%s", v->ndim-1, var_name); sprintf(tstring, "offs%d", v->ndim-1); strcat(offs, tstring); //sprintf(tstring, "%d", v->ndim); for(j=0; j<v->ndim; j++){ //sprintf(tstring, "ldim%d_%s", j, var_name); sprintf(tstring, "ldim%d", j); adios_define_var(new_adios_group, tstring, "bp2bp", adios_unsigned_long, 0, 0, 0); //sprintf(tstring, "offs%d_%s", j, var_name); sprintf(tstring, "offs%d", j); adios_define_var(new_adios_group, tstring, "bp2bp", adios_unsigned_long, 0, 0, 0); } adios_define_var(new_adios_group,var_name,var_path,v->type,lbounds,gbounds,offs); if (DEBUG){ strcpy(lbounds,""); strcpy(offs,""); for(j=0; j<v->ndim; j++){ sprintf(tstring, "%" PRId64 ",", ts[j]); strcat(offs, tstring); sprintf(tstring, "%" PRId64 ",", uc[j]); strcat(lbounds, tstring); } printf("rank=%d, name=%s, gbounds=%s: lbounds=%s: offs=%s \n",rank,g->var_namelist[i],gbounds, lbounds, offs); } used_chunk -= remain_chunk; //you get the actual used_chunk here. elements_defined += used_chunk; if(remain_chunk!=0){ rS(v, ts, used_chunk, rank); //advance ts by used_chunk. for(k=0; k<10; k++) tc[k] = 1; calcC(remain_chunk, v, tc); //based on the remain_chunk, calculate new tc chunk block remained to process. } adios_groupsize+= used_chunk*element_size+2*v->ndim*8; }while(remain_chunk!=0); current_step += size*chunk_size; //once a whole chunk_size is processed, advance the current_step in roll-robin manner. if(current_step<total_size){ //advance s in the same way. rS(v, s, size*chunk_size, rank); } } //beside checkOverflow above, here you check whether or not the total number of elements processed across processes matches //the total number of elements in the original vector. if(DEBUG){ uint64_t* sb = (uint64_t *) malloc(sizeof(uint64_t)); uint64_t* rb = (uint64_t *) malloc(sizeof(uint64_t)); sb[0] = elements_defined; MPI_Reduce(sb,rb,1,MPI_UNSIGNED_LONG_LONG,MPI_SUM,0, comm); if(rank==0 && rb[0]!=total_size) printf("some array define mismatch. please use debug mode\n"); free(sb); free(rb); } } free (var_name); free (var_path); } // finished declaring all of the variables // Now we can define the attributes.... for (i = 0; i < g->attrs_count; i++) { enum ADIOS_DATATYPES atype; int asize; void *adata; adios_get_attr_byid (g, i, &atype, &asize, &adata); // if (DEBUG) printf("attribute name=%s\n",g->attr_namelist[i]); adios_define_attribute(new_adios_group,g->attr_namelist[i],"",atype,adata,0); } /*------------------------------ NOW WE WRITE -------------------------------------------- */ // Now we have everything declared... now we need to write them out!!!!!! if (WRITEME==1) { // open up the file for writing.... if (DEBUG) printf("rank=%d, opening file = %s, with group %s, size=%" PRId64 "\n",rank,argv[2],f->group_namelist[gidx],adios_groupsize); if(TIMING==100) start_time[0] = MPI_Wtime(); adios_open(&m_adios_file, f->group_namelist[gidx],argv[2],"w",comm); adios_group_size( m_adios_file, adios_groupsize, &adios_totalsize); //get both the total adios_totalsize and total adios_groupsize summed across processes. uint64_t* sb = (uint64_t *) malloc(sizeof(uint64_t));; uint64_t* rb = (uint64_t *) malloc(sizeof(uint64_t)); sb[0] = adios_groupsize; MPI_Reduce(sb,rb,1,MPI_UNSIGNED_LONG_LONG,MPI_SUM,0, comm); uint64_t* sb2 = (uint64_t *) malloc(sizeof(uint64_t));; uint64_t* rb2 = (uint64_t *) malloc(sizeof(uint64_t)); sb2[0] = adios_totalsize; MPI_Reduce(sb2,rb2,1,MPI_UNSIGNED_LONG_LONG,MPI_SUM,0, comm); if(rank==0){ printf("total adios_totalsize = %" PRId64 "\n", *rb2); printf("total adios_groupsize = %" PRId64 "\n", *rb); } free(sb); free(rb); free(sb2); free(rb2); if (TIMING==100) { end_time[0] = MPI_Wtime(); total_time[0]+=end_time[0] - start_time[0]; //variable definition time taken } // now we have to write out the variables.... since they are all declared now // This will be the place we actually write out the data!!!!!!!! for (i = 0; i < g->vars_count; i++) { ADIOS_VARINFO * v = adios_inq_var_byid (g, i); getbasename (g->var_namelist[i], &var_path, &var_name); if (v->ndim == 0) { if (DEBUG) { printf ("ADIOS WRITE SCALAR: rank=%d, name=%s value=", rank,g->var_namelist[i]); print_data (v->value, 0, v->type); printf ("\n"); } if (TIMING==100) { start_time[2] = MPI_Wtime(); } adios_write(m_adios_file,g->var_namelist[i],v->value); if (TIMING==100) { end_time[2] = MPI_Wtime(); total_time[2]+=end_time[2] - start_time[2]; //IO write time... } } else { for(j=0; j<v->ndim; j++){ s[j] = 0; c[j] = 1; } getTypeInfo( v->type, &element_size); uint64_t total_size = 1; for (ii=0;ii<v->ndim;ii++) total_size*=v->dims[ii]; chunk_size = calcChunkSize(total_size, read_buffer*1024*1024/element_size, size); calcC(chunk_size, v, c); chunk_size = 1; for(ii=0; ii<v->ndim; ii++) chunk_size *= c[ii]; uint64_t current_step = rank*chunk_size; if(current_step<total_size) rS(v, s, current_step, rank); uint64_t elements_written = 0; while(current_step < total_size) { uint64_t ts[] = {0,0,0,0,0,0,0,0,0,0}; arrCopy(s, ts); uint64_t remain_chunk = chunk_size; if(current_step+chunk_size>total_size) remain_chunk = total_size-current_step; uint64_t tc[] = {1,1,1,1,1,1,1,1,1,1}; arrCopy(c, tc); do{ uint64_t uc[] = {1,1,1,1,1,1,1,1,1,1}; uint64_t used_chunk = remain_chunk; remain_chunk = checkBound(v, ts, tc, uc, remain_chunk); checkOverflow(1, v, ts, uc); used_chunk -= remain_chunk; elements_written += used_chunk; //allocated space for data read-in data = (void *) malloc(used_chunk*element_size); if (TIMING==100) { start_time[1] = MPI_Wtime(); } if(PERFORMANCE_CHECK) printf("rank=%d, read start\n",rank); bytes_read = adios_read_var_byid(g,v->varid,ts,uc,data); if(PERFORMANCE_CHECK) printf("rank=%d, read end\n",rank); if (TIMING==100) { end_time[1] = MPI_Wtime(); total_time[1]+=end_time[1] -start_time[1]; //IO read time } if (DEBUG) printf ("ADIOS WRITE: rank=%d, name=%s datasize=%" PRId64 "\n",rank,g->var_namelist[i],bytes_read); if (TIMING==100) { start_time[2] = MPI_Wtime(); } if (DEBUG){ printf("rank=%d, write ts=",rank); int k; for(k=0; k<v->ndim; k++) printf("%" PRId64 ",", ts[k]); printf(" uc="); for(k=0; k<v->ndim; k++) printf("%" PRId64 ",", uc[k]); printf("\n"); } //local bounds and offets placeholders are not written out with actual values. if(PERFORMANCE_CHECK) printf("rank=%d, adios write start\n", rank); for(k=0; k<v->ndim; k++){ //sprintf(tstring, "ldim%d_%s", k, var_name); sprintf(tstring, "ldim%d", k); if (DEBUG) { printf ("ADIOS WRITE DIMENSION: rank=%d, name=%s value=", rank,tstring); print_data (&uc[k], 0, adios_unsigned_long); printf ("\n"); } adios_write(m_adios_file, tstring, &uc[k]); //sprintf(tstring, "offs%d_%s", k, var_name); sprintf(tstring, "offs%d", k); if (DEBUG) { printf ("ADIOS WRITE OFFSET: rank=%d, name=%s value=", rank,tstring); print_data (&ts[k], 0, adios_unsigned_long); printf ("\n"); } adios_write(m_adios_file, tstring, &ts[k]); } adios_write(m_adios_file,g->var_namelist[i],data); if(PERFORMANCE_CHECK) printf("rank=%d, adios write end\n", rank); if (TIMING==100) { end_time[2] = MPI_Wtime(); total_time[2]+=end_time[2] - start_time[2]; //IO write time } free(data); if(remain_chunk!=0){ rS(v, ts, used_chunk, rank); for(k=0; k<10; k++) tc[k] = 1; calcC(remain_chunk, v, tc); } }while(remain_chunk!=0); current_step += size*chunk_size; if(current_step<total_size) rS(v, s, size*chunk_size,rank); } if(DEBUG){ uint64_t* sb = (uint64_t *) malloc(sizeof(uint64_t));; uint64_t* rb = (uint64_t *) malloc(sizeof(uint64_t)); sb[0] = elements_written; MPI_Reduce(sb,rb,1,MPI_UNSIGNED_LONG_LONG,MPI_SUM,0, comm); if(rank==0 && rb[0]!=total_size) printf("some array read mismatch. please use debug mode\n"); free(sb); free(rb); } } free (var_name); free (var_path); }// end of the writing of the variable.. if (TIMING==100) { start_time[3] = MPI_Wtime(); } if(PERFORMANCE_CHECK) printf("rank=%d, adios_close start\n", rank); adios_close(m_adios_file); if(PERFORMANCE_CHECK) printf("rank=%d, adios_close end\n", rank); if (TIMING==100) { end_time[3] = MPI_Wtime(); total_time[3]+=end_time[3] - start_time[3]; } adios_gclose(g); } //end of WRITEME } // end of all of the groups if(rank==0) printf("conversion done!\n"); if(TIMING==100) start_time[4] = MPI_Wtime(); adios_fclose(f); if(TIMING==100){ end_time[4] = MPI_Wtime(); total_time[4] = total_time[4]+end_time[4]-start_time[4]; } adios_finalize(rank); // now, we write out the timing data, for each category, we give max, min, avg, std, all in seconds, across all processes. if(TIMING==100){ // 0: adios_open, adios_group_size // 1: the total time to read in the data // 2: times around each write (will only work if we do NOT buffer.... // 3: the time in the close // 4: fopen, fclose // 5: total time end_time[5] = MPI_Wtime(); total_time[5] = end_time[5] - start_time[5]; double sb[7]; sb[0] = total_time[1]; sb[1] = total_time[4]; //read_var, fopen+fclose sb[2] = sb[0]+sb[1]; sb[3] = total_time[0]; sb[4] = total_time[2]+total_time[3]; //adios_open+adios_group_size, write+close sb[5] = sb[3]+sb[4]; sb[6] = total_time[5]; //total double * rb = NULL; if(rank==0) rb = (double *)malloc(size*7*sizeof(double)); //MPI_Barrier(comm); MPI_Gather(sb, 7, MPI_DOUBLE, rb, 7, MPI_DOUBLE, 0, comm); if(rank==0){ double read_avg1 = 0; double read_avg2 = 0; double tread_avg = 0; double write_avg1 = 0; double write_avg2 = 0; double twrite_avg = 0; double total_avg = 0; for(j=0; j<size; j++){ read_avg1 += rb[7*j]; read_avg2 += rb[7*j+1]; tread_avg += rb[7*j+2]; write_avg1 += rb[7*j+3]; write_avg2 += rb[7*j+4]; twrite_avg += rb[7*j+5]; total_avg += rb[7*j+6]; } read_avg1 /= size; read_avg2 /= size; tread_avg /= size; write_avg1 /= size; write_avg2 /= size; twrite_avg /= size; total_avg /= size; double read1_max = rb[0]; double read1_min = rb[0]; double read1_std = rb[0]-read_avg1; read1_std *= read1_std; double read2_max = rb[1]; double read2_min = rb[1]; double read2_std = rb[1]-read_avg2; read2_std *= read2_std; double tread_max = rb[2]; double tread_min = rb[2]; double tread_std = rb[2]-tread_avg; tread_std *= tread_std; double write1_max = rb[3]; double write1_min = rb[3]; double write1_std = rb[3]-write_avg1; write1_std *= write1_std; double write2_max = rb[4]; double write2_min = rb[4]; double write2_std = rb[4]-write_avg2; write2_std *= write2_std; double twrite_max = rb[5]; double twrite_min = rb[5]; double twrite_std = rb[5]-twrite_avg; twrite_std *= twrite_std; double total_max = rb[6]; double total_min = rb[6]; double total_std = rb[6]-total_avg; total_std *= total_std; for(j=1; j<size; j++){ if(rb[7*j]>read1_max) read1_max = rb[7*j]; else if(rb[7*j]<read1_min) read1_min = rb[7*j]; double std = rb[7*j]-read_avg1; std *= std; read1_std += std; if(rb[7*j+1]>read2_max) read2_max = rb[7*j+1]; else if(rb[7*j+1]<read2_min) read2_min = rb[7*j+1]; std = rb[7*j+1]-read_avg2; std *= std; read2_std += std; if(rb[7*j+2]>tread_max) tread_max = rb[7*j+2]; else if(rb[7*j+2]<tread_min) tread_min = rb[7*j+2]; std = rb[7*j+2]-tread_avg; std *= std; tread_std += std; if(rb[7*j+3]>write1_max) write1_max = rb[7*j+3]; else if(rb[7*j+3]<write1_min) write1_min = rb[7*j+3]; std = rb[7*j+3]-write_avg1; std *= std; write1_std += std; if(rb[7*j+4]>write2_max) write2_max = rb[7*j+4]; else if(rb[7*j+4]<write2_min) write2_min = rb[7*j+4]; std = rb[7*j+4]-write_avg2; std *= std; write2_std += std; if(rb[7*j+5]>twrite_max) twrite_max = rb[7*j+5]; else if(rb[7*j+5]<twrite_min) twrite_min = rb[7*j+5]; std = rb[7*j+5]-twrite_avg; std *= std; twrite_std += std; if(rb[7*j+6]>total_max) total_max = rb[7*j+6]; else if(rb[7*j+6]<total_min) total_min = rb[7*j+6]; std = rb[7*j+6]-total_avg; std *= std; total_std += std; } read1_std /= size; read1_std = sqrt(read1_std); read2_std /= size; read2_std = sqrt(read2_std); tread_std /= size; tread_std = sqrt(tread_std); write1_std /= size; write1_std = sqrt(write1_std); write2_std /= size; write2_std = sqrt(write2_std); twrite_std /= size; twrite_std = sqrt(twrite_std); total_std /= size; total_std = sqrt(total_std); printf("---type--- max\tmin\tavg\tstd\n"); printf("---read_var--- %lf\t%lf\t%lf\t%lf\n", read1_max, read1_min, read_avg1, read1_std); printf("---fopen+fclose--- %lf\t%lf\t%lf\t%lf\n", read2_max, read2_min, read_avg2, read2_std); printf("---total_read--- %lf\t%lf\t%lf\t%lf\n", tread_max, tread_min, tread_avg, tread_std); printf("---adios_open+adios_groupsize--- %lf\t%lf\t%lf\t%lf\n", write1_max, write1_min, write_avg1, write1_std); printf("---write+close--- %lf\t%lf\t%lf\t%lf\n", write2_max, write2_min, write_avg2, write2_std); printf("---total_write--- %lf\t%lf\t%lf\t%lf\n", twrite_max, twrite_min, twrite_avg, twrite_std); printf("---total--- %lf\t%lf\t%lf\t%lf\n", total_max, total_min, total_avg, total_std); free(rb); } } // if (TIMING==100 && rank==0) { // printf("------------------------------------------------------------------\n"); // printf("Define variables = %lf\n",total_time[0]); // printf("Read variables = %lf\n",total_time[1]); // printf("Write variables = %lf\n",total_time[2]); // printf("Close File for write = %lf\n",total_time[3]); // printf("Total write time = %lf\n",total_time[2] + total_time[3]); // for (itime=0;itime<timers-1;itime++) // total_time[timers-1]+=total_time[itime]; // printf("Total I/O time = %lf\n",total_time[timers-1]); // } MPI_Finalize(); return(0); }
static int run_amz_file(clamz_downloader *dl, const clamz_config *cfg, FILE *amzfile, const char *fname) { char *inbuf; unsigned char *xml; size_t sz; clamz_playlist *pl; int i; int status, rv = 0; char *logname; FILE *logfile; sz = 0; inbuf = NULL; while (!feof(amzfile) && !ferror(amzfile)) { if (inbuf) inbuf = realloc(inbuf, (sz + 1024) * sizeof(char)); else inbuf = malloc((sz + 1024) * sizeof(char)); sz += fread(&inbuf[sz], 1, 1024, amzfile); } if (amzfile != stdin) fclose(amzfile); if (cfg->printonly && cfg->printasxml) { xml = decrypt_amz_file(inbuf, sz, fname); if (!xml) { free(inbuf); return 2; } printf("%s", xml); free(xml); free(inbuf); return 0; } else { if (!cfg->printonly) { if (write_backup_file(inbuf, sz, getbasename(fname))) { free(inbuf); return 3; } } pl = new_playlist(); if (read_amz_file(pl, inbuf, sz, fname)) { free(inbuf); free_playlist(pl); return 2; } if (!cfg->printonly) { logname = get_config_file_name("logs", getbasename(fname), ".log"); if (!logname) { free(inbuf); return 1; } logfile = fopen(logname, "w"); if (!logfile) { perror(logname); free(logname); free(inbuf); return 3; } free(logname); set_download_log_file(dl, logfile); } else { logfile = NULL; } if (cfg->printonly || cfg->verbose) print_pl_info(pl, fname); for (i = 0; i < pl->num_tracks; i++) { if (cfg->printonly || cfg->verbose) print_tr_info(pl->tracks[i], i + 1); status = download_track(dl, pl->tracks[i]); if (!rv) rv = status; fputc('\n', stderr); } set_download_log_file(dl, NULL); free(inbuf); free_playlist(pl); if (logfile) fclose(logfile); return rv; } }
int main(void) { int ch; char comm[256]; struct stat st; printf("RECV -- 99/4A ROM dump receiver by Edward Swartz.\n\n" "Companion to TRANS on the 99/4A.\n\n"); if (stat("MODULES",&st) || stat("ROMS",&st) || stat("MODULES.INF",&st)) { printf("This program needs to be run from the directory where V9t9.EXE,\n" "MODULES.INF, etc., are located. (Use RECV.BAT from that directory.)\n"); exit(1); } printf("In order to use this program, TRANS must be running on a\n" "99/4A system connected to this PC by a serial cable.\n" "It's best to start the 99/4A TRANS before running this program.\n\n" "Press <Enter> to continue, or <Esc> to exit RECV:"); do ch=getch(); while (ch!=13 && ch!=27); if (ch==27) exit(1); do { printf("\n\n\nEnter the DOS serial port you are using to connect\n" "to the 99/4A. Valid values are 1-4.\n\n: "); comm[0]=2; port=atoi(cgets(comm)); } while (port<1 || port>4); do { printf("\n\n\nEnter the IRQ of COM%d. Typical value is %d.\n\n: ", port, ((port==1 || port==3) ? 4 : 3)); comm[0]=2; irq=atoi(cgets(comm)); } while (irq<0 || irq>7); port--; // fix port to 0-3 do { printf("\n\n\nEnter the baud rate you used to initialize the RS232\n" "in TRANS. Valid baud rates are\n" "\t110 300 600 1200 2400 4800 9600.\n\n: "); comm[0]=5; baudrate=atoi(cgets(comm)); } while (baudrate<110 || baudrate>9600); com_init(port,baudrate,irq); printf("\n\nRECV is ready to go.\n\n" "Press a key at any time to abort.\n\n"); while (!kbhit()) { // ch=bioscom(_COM_RECEIVE,0,port); buf_init(); if (!gs(comm)) switch(comm[0]) { case 'S': ps("G"); if (dump()) Err(); break; case 'M': getbasename(); ps("N"); break; case 'N': closemodule(); ps("M"); break; default: Err(); break; } else Err(); } com_off(); return 0; }
int process_metadata(int step) { int retval = 0; int i, j; char gdims[256], ldims[256], offs[256]; uint64_t sum_count; ADIOS_VARINFO *v; // shortcut pointer if (step > 1) { // right now, nothing to prepare in later steps print("Step %d. return immediately\n",step); return 0; } /* First step processing */ // get groupname of stream, then declare for output adios_get_grouplist(f, &group_namelist); print0("Group name is %s\n", group_namelist[0]); adios_declare_group(&gh,group_namelist[0],"",adios_flag_yes); varinfo = (VarInfo *) malloc (sizeof(VarInfo) * f->nvars); if (!varinfo) { print("ERROR: rank %d cannot allocate %lu bytes\n", rank, sizeof(VarInfo)*f->nvars); return 1; } write_total = 0; largest_block = 0; // Decompose each variable and calculate output buffer size for (i=0; i<f->nvars; i++) { print0 ("Get info on variable %d: %s\n", i, f->var_namelist[i]); varinfo[i].v = adios_inq_var_byid (f, i); v = varinfo[i].v; // just a shortcut if (v == NULL) { print ("rank %d: ERROR: Variable %s inquiry failed: %s\n", rank, f->var_namelist[i], adios_errmsg()); return 1; } // print variable type and dimensions print0(" %-9s %s", adios_type_to_string(v->type), f->var_namelist[i]); if (v->ndim > 0) { print0("[%llu", v->dims[0]); for (j = 1; j < v->ndim; j++) print0(", %llu", v->dims[j]); print0("] :\n"); } else { print0("\tscalar\n"); } // determine subset we will write decompose (numproc, rank, v->ndim, v->dims, decomp_values, varinfo[i].count, varinfo[i].start, &sum_count); varinfo[i].writesize = sum_count * adios_type_size(v->type, v->value); if (varinfo[i].writesize != 0) { write_total += varinfo[i].writesize; if (largest_block < varinfo[i].writesize) largest_block = varinfo[i].writesize; } } // determine output buffer size and allocate it uint64_t bufsize = write_total + f->nvars*128 + f->nattrs*32 + 1024; if (bufsize > max_write_buffer_size) { print ("ERROR: rank %d: write buffer size needs to hold about %llu bytes, " "but max is set to %d\n", rank, bufsize, max_write_buffer_size); return 1; } print0 ("Rank %d: allocate %llu MB for output buffer\n", rank, bufsize/1048576+1); adios_allocate_buffer (ADIOS_BUFFER_ALLOC_NOW, bufsize/1048576+1); // allocate read buffer bufsize = largest_block + 128; if (bufsize > max_read_buffer_size) { print ("ERROR: rank %d: read buffer size needs to hold at least %llu bytes, " "but max is set to %d\n", rank, bufsize, max_read_buffer_size); return 1; } print0 ("Rank %d: allocate %g MB for input buffer\n", rank, (double)bufsize/1048576.0); readbuf = (char *) malloc ((size_t)bufsize); if (!readbuf) { print ("ERROR: rank %d: cannot allocate %llu bytes for read buffer\n", rank, bufsize); return 1; } // Select output method adios_select_method (gh, wmethodname, wmethodparams, ""); // Define variables for output based on decomposition char *vpath, *vname; for (i=0; i<f->nvars; i++) { v = varinfo[i].v; if (varinfo[i].writesize != 0) { // define variable for ADIOS writes getbasename (f->var_namelist[i], &vpath, &vname); if (v->ndim > 0) { int64s_to_str (v->ndim, v->dims, gdims); int64s_to_str (v->ndim, varinfo[i].count, ldims); int64s_to_str (v->ndim, varinfo[i].start, offs); print ("rank %d: Define variable path=\"%s\" name=\"%s\" " "gdims=%s ldims=%s offs=%s\n", rank, vpath, vname, gdims, ldims, offs); adios_define_var (gh, vname, vpath, v->type, ldims, gdims, offs); } else { print ("rank %d: Define scalar path=\"%s\" name=\"%s\"\n", rank, vpath, vname); adios_define_var (gh, vname, vpath, v->type, "", "", ""); } free(vpath); free(vname); } } if (rank == 0) { // get and define attributes enum ADIOS_DATATYPES attr_type; void * attr_value; char * attr_value_str; int attr_size; for (i=0; i<f->nattrs; i++) { adios_get_attr_byid (f, i, &attr_type, &attr_size, &attr_value); attr_value_str = (char *)value_to_string (attr_type, attr_value, 0); getbasename (f->attr_namelist[i], &vpath, &vname); if (vpath && !strcmp(vpath,"/__adios__")) { // skip on /__adios/... attributes print ("rank %d: Ignore this attribute path=\"%s\" name=\"%s\" value=\"%s\"\n", rank, vpath, vname, attr_value_str); } else { adios_define_attribute (gh, vname, vpath, attr_type, attr_value_str, ""); print ("rank %d: Define attribute path=\"%s\" name=\"%s\" value=\"%s\"\n", rank, vpath, vname, attr_value_str); free (attr_value); } } } return retval; }
int main(int argc, char **argv) { if(argc < 3) disphelp(getbasename(argv[0])); return eval(-1, 1, argc, argv)-1; }
bool assemblekeybif(char *fname, uint8 **mem, uint32 *size) { int pr; std::string bfname, rfname, resref; std::vector<uint8 *> datas; uint16 drives=0; uint32 asize; uint64 tmp; NWNFileType restype=NWN_FILE_UNDEFINED; bool newbif=true, withCd=false, exploded=false; XMLFile xml; KEYFile key; BIFFile bif; if(xml.open(fname)) { std::cerr << "Error opening file \"" << fname << "\": "; std::cerr << xml.getStrError() << "\n"; return false; } while((pr = xml.parse()) >= 0) { switch(pr) { case 0: if(!mem && (xml.section == ".key.filename")) key.filename = xml.value; else if(xml.section == ".key.filetype") { if((key.type = key.getFileResTypeByExt(xml.value)) == -1) return printxmlerr(xml, "Unknown filetype"); if(!key.typeIsCorrect()) return printxmlerr(xml, "No KEY type"); } else if(xml.section == ".key.buildyear") { sscanf(xml.value.c_str(), S_UINT64, &tmp); key.buildyear = (uint32) (tmp - 1900); } else if(xml.section == ".key.buildday") { sscanf(xml.value.c_str(), S_UINT64, &tmp); key.buildday = (uint32) tmp; } else if(xml.section == ".key.bif.filename") bfname = xml.value; else if(xml.section == ".key.bif.drives") { sscanf(xml.value.c_str(), S_UINT64, &tmp); drives = (uint16) tmp; } else if(xml.section == ".key.bif.variable.resource.resref") resref = xml.value; else if(xml.section == ".key.bif.variable.resource.filename") rfname = xml.value; else if(xml.section == ".key.bif.variable.resource.restype") { if((restype = key.getFileResTypeByExt(xml.value)) == -1) return printxmlerr(xml, "Unknown filetype"); } else if(xml.section == ".key.bif.variable.resource.withCd") { sscanf(xml.value.c_str(), S_UINT64, &tmp); withCd = (bool) tmp; } else if(xml.section == ".key.bif.variable.resource.exploded") { sscanf(xml.value.c_str(), S_UINT64, &tmp); exploded = (bool) tmp; } break; case 1: if(xml.section == ".bif.fixed") return printxmlerr(xml, "Fixed resources aren't supported"); else if((xml.section != ".?xml") && (xml.section != ".key") && (getpos(validkeybiftags, KEYBIFTAGS, xml.section) == -1)) return printxmlerr(xml, "Invalid tag"); break; case 2: if(xml.value == ".key.bif") { bfname = bif.filename; if(bif.endwrite()) return printxmlerr(xml, bif.getStrError()); if(bif.open(bfname)) return printxmlerr(xml, bif.getStrError()); key.fsizes[key.bifcount-1] = bif.getFileSize(); bif.deInit(); newbif = true; bfname.clear(); drives = 0; } else if(xml.value == ".key.bif.variable.resource") { if(newbif) { if(bfname.empty()) return printxmlerr(xml, "Missing filename"); if(key.addBif(bfname, drives, 0)) return printxmlerr(xml, key.getStrError()); if(bif.beginWrite(getbasename((char*)bfname.c_str()))) return printxmlerr(xml, bif.getStrError()); bif.type = NWN_FILE_BIF; newbif = false; } if(resref.empty()) return printxmlerr(xml, "Missing resref"); if(rfname.empty()) return printxmlerr(xml, "Missing filename"); if(restype == NWN_FILE_UNDEFINED) return printxmlerr(xml, "Missing restype"); if(exploded) { datas.resize((tmp=datas.size())+1); if(!(datas[tmp] = expd(xml, bif.getBaseType(restype), rfname, asize))) return false; if(bif.writeData(restype, withCd, true, datas[tmp], asize, false)) return printxmlerr(xml, bif.getStrError()); } else if(bif.writeData(restype, withCd, true, rfname)) return printxmlerr(xml, bif.getStrError()); if(key.addResource(key.bifcount-1, resref, restype, bif.vrescount-1)) return printxmlerr(xml, key.getStrError()); resref.clear(); rfname.clear(); restype = NWN_FILE_UNDEFINED; withCd = exploded = false; } break; } } if(pr != -6) return printxmlerr(xml, xml.getStrError()); xml.close(); if(!mem) { if(key.filename.empty()) return printxmlerr(xml, "Missing filename"); else if(key.write(key.filename)) return printnwnerr(key); } else if(key.write(mem, size)) return printnwnerr(key); for(uint32 i=0;i<datas.size();i++) free(datas[i]); return true; }