Esempio n. 1
0
/*
 * Converts a permutation to a vector.
 */
VECTOR_T* MATLAB_NAMESPACE::to_vector(const gsl_permutation* p) {
	VECTOR_T* v = VECTOR_ID(alloc)(p->size);
	for (int i = 0; i < (int)p->size; i++) {
		VECTOR_ID(set)(v, i, (FP_T)gsl_permutation_get(p, i));
	}
	return v;
}
Esempio n. 2
0
/*
 * Prints a permutation using the given format for each element.  This is only
 * provided for debugging purposes.  In other cases, use
 * gsl_permutation_fprintf.
 */
void BCT_NAMESPACE::printf(const gsl_permutation* p, const std::string& format) {
	for (int i = 0; i < (int)p->size; i++) {
		std::printf(format.c_str(), gsl_permutation_get(p, i));
		std::printf(" ");
	}
	std::printf("\n");
}
Esempio n. 3
0
static long indexof_confidence_level(long npix, double *P, double level, gsl_permutation *pix_perm)
{
    double accum;
    long maxpix;

    for (accum = 0, maxpix = 0; maxpix < npix && accum <= level; maxpix ++)
        accum += P[gsl_permutation_get(pix_perm, maxpix)];

    return maxpix;
}
Esempio n. 4
0
/*
 * Permutes the elements of a vector.
 */
VECTOR_T* MATLAB_NAMESPACE::permute(const gsl_permutation* p, const VECTOR_T* v) {
	if (p->size != v->size) return NULL;
	VECTOR_T* permuted_v = VECTOR_ID(alloc)(v->size);
	for (int i = 0; i < (int)p->size; i++) {
		int index = gsl_permutation_get(p, i);
		FP_T value = VECTOR_ID(get)(v, index);
		VECTOR_ID(set)(permuted_v, i, value);
	}
	return permuted_v;
}
Esempio n. 5
0
/*
 * Permutes the rows of a matrix.
 */
MATRIX_T* MATLAB_NAMESPACE::permute_rows(const gsl_permutation* p, const MATRIX_T* m) {
	if (p->size != m->size1) return NULL;
	MATRIX_T* permuted_m = MATRIX_ID(alloc)(m->size1, m->size2);
	for (int i = 0; i < (int)p->size; i++) {
		int i_row = gsl_permutation_get(p, i);
		VECTOR_ID(const_view) m_row_i_row = MATRIX_ID(const_row)(m, i_row);
		MATRIX_ID(set_row)(permuted_m, i, &m_row_i_row.vector);
	}
	return permuted_m;
}
Esempio n. 6
0
/* to array */
static VALUE rb_gsl_permutation_to_a(VALUE obj)
{
  gsl_permutation *p = NULL;
  size_t i;
  VALUE ary;
  Data_Get_Struct(obj, gsl_permutation, p);
  ary = rb_ary_new2(p->size);
  for (i = 0; i < p->size; i++) {
    rb_ary_store(ary, i, INT2FIX(gsl_permutation_get(p, i)));
  }
  return ary;
}
Esempio n. 7
0
static VALUE rb_gsl_permutation_print(VALUE obj)
{
  gsl_permutation *p = NULL;
  size_t size, i;
  Data_Get_Struct(obj, gsl_permutation, p);
  size = p->size;
  for (i = 0; i < size; i++) {
    printf("%3d ", (int) gsl_permutation_get(p, i));
    if ((i+1)%10 == 0) printf("\n");
  }
  printf("\n");
  return obj;
}
Esempio n. 8
0
/* to vector */
static VALUE rb_gsl_permutation_to_v(VALUE obj)
{
  gsl_permutation *p = NULL;
  gsl_vector *v;
  size_t size;
  size_t i;
  Data_Get_Struct(obj, gsl_permutation, p);
  size = p->size;
  v = gsl_vector_alloc(size);
  for (i = 0; i < size; i++) {
    gsl_vector_set(v, i, gsl_permutation_get(p, i));
  }
  return Data_Wrap_Struct(cgsl_vector, 0, gsl_vector_free, v);
}
Esempio n. 9
0
/* Exponentiate and normalize a log probability sky map. */
static void exp_normalize(long npix, double *P, gsl_permutation *pix_perm)
{
    long i;
    double accum, max_log_p;

    /* Find the value of the greatest log probability. */
    max_log_p = P[gsl_permutation_get(pix_perm, 0)];

    /* Subtract it off. */
    for (i = 0; i < npix; i ++)
        P[i] -= max_log_p;

    /* Exponentiate to convert from log probability to probability. */
    for (i = 0; i < npix; i ++)
        P[i] = exp(P[i]);

    /* Sum entire sky map to find normalization. */
    for (accum = 0, i = 0; i < npix; i ++)
        accum += P[gsl_permutation_get(pix_perm, i)];

    /* Normalize. */
    for (i = 0; i < npix; i ++)
        P[i] /= accum;
}
Esempio n. 10
0
static VALUE rb_gsl_permutation_to_s(VALUE obj)
{
  gsl_permutation *v = NULL;
  char buf[16];
  size_t i;
  VALUE str;
  Data_Get_Struct(obj, gsl_permutation, v);
  str = rb_str_new2("[");
  for (i = 0; i < v->size; i++) {
    sprintf(buf,  " %d", (int) gsl_permutation_get(v, i));
    rb_str_cat(str, buf, strlen(buf));
  }
  sprintf(buf, " ]");
  rb_str_cat(str, buf, strlen(buf));
  return str;
}
void orderMatrix(const gsl_matrix* x, gsl_matrix* y)
{
	int n = x->size1;
	int m = x->size2;
	gsl_vector* x_norms = gsl_vector_alloc(m);
	for	(int i =0;i<m;i++)
	{
		gsl_vector_const_view xcol = gsl_matrix_const_column(x,i);
		gsl_vector_set(x_norms, i, -norm2(&xcol.vector));
	}
	gsl_permutation* p = gsl_permutation_alloc(m);
	gsl_sort_vector_index(p, x_norms);
	for (int i=0; i<n; i++) {
		for (int j=0; j<m; j++) {
			gsl_matrix_set(y, i, j, gsl_matrix_get(x, i, gsl_permutation_get(p, j)));
		}
	}
	gsl_vector_free(x_norms);
	gsl_permutation_free(p);
}
Esempio n. 12
0
void minima(double *array, int size, double *val, int *pos, int NMax)
{
	size_t i=0, j=0, index=0;
	
	gsl_vector *v = gsl_vector_calloc(size);
	gsl_permutation *p = gsl_permutation_calloc(size);
	
		for(i=0; i<size; i++)
			gsl_vector_set(v, i, array[i]);

				gsl_sort_vector_index(p, v);

	for(j=0; j<NMax; j++)
	{
		index = gsl_permutation_get(p, j);
		val[j] = array[index];
		pos[j] = index;
	}

}
Esempio n. 13
0
static void
compute_rptdx (const gsl_matrix * r, const gsl_permutation * p,
               const gsl_vector * dx, gsl_vector * rptdx)
{
  size_t i, j, N = dx->size;

  for (i = 0; i < N; i++)
    {
      double sum = 0;

      for (j = i; j < N; j++)
        {
          size_t pj = gsl_permutation_get (p, j);

          sum += gsl_matrix_get (r, i, j) * gsl_vector_get (dx, pj);
        }

      gsl_vector_set (rptdx, i, sum);
    }
}
Esempio n. 14
0
void maxima(double *array, int size, double *val, int *pos, int NMax)
{
	INFO_MSG("Searching for func maxima...");
	size_t i=0, j=0, index=0;
	
	gsl_vector *v = gsl_vector_calloc(size);
	gsl_permutation *p = gsl_permutation_calloc(size);
	
		for(i=0; i<size; i++)
			gsl_vector_set(v, i, array[i]);

				gsl_sort_vector_index(p, v);

	for(j=0; j<NMax; j++)
	{
		index = gsl_permutation_get(p, size-j-1);
		val[j] = array[index];
		pos[j] = index;
	}

}
Esempio n. 15
0
File: pca.c Progetto: damonge/fg_rm
static void diagonalize_covariance(void)
{
  gsl_vector *vec_dum=gsl_vector_alloc(glob_n_nu);
  gsl_matrix *evec_dum=gsl_matrix_alloc(glob_n_nu,glob_n_nu);
  gsl_vector *eval_dum=gsl_vector_alloc(glob_n_nu);
  eigenvals=gsl_vector_alloc(glob_n_nu);
  eigenvecs=gsl_matrix_alloc(glob_n_nu,glob_n_nu);

  //Diagonalize
  gsl_eigen_symmv_workspace *w=gsl_eigen_symmv_alloc(glob_n_nu);
  gsl_eigen_symmv(covariance,eval_dum,evec_dum,w);
  gsl_eigen_symmv_free(w);

  //Sort eigenvalues
  gsl_permutation *p=gsl_permutation_alloc(glob_n_nu);
  gsl_sort_vector_index(p,eval_dum);
  
  int ii;
  for(ii=0;ii<glob_n_nu;ii++) {
    int inew=gsl_permutation_get(p,ii);
    gsl_vector_set(eigenvals,ii,gsl_vector_get(eval_dum,inew));
    gsl_matrix_get_col(vec_dum,evec_dum,inew);
    gsl_matrix_set_col(eigenvecs,ii,vec_dum);
  }
  gsl_permutation_free(p);
  gsl_vector_free(vec_dum);
  gsl_vector_free(eval_dum);
  gsl_matrix_free(evec_dum);

  FILE *fo;
  char fname[256];
  sprintf(fname,"%s_pca_eigvals.dat",glob_prefix_out);
  fo=my_fopen(fname,"w");
  for(ii=0;ii<glob_n_nu;ii++) {
    double lambda=gsl_vector_get(eigenvals,ii);
    fprintf(fo,"%d %lE\n",ii,lambda);
  }
  fclose(fo);
}
void orderMatrix(const gsl_matrix* x, gsl_matrix* y, const gsl_matrix* M)
{
	int n = x->size1;
	int m = x->size2;
	gsl_matrix* invM = gsl_matrix_alloc(n,n);
	gsl_matrix_memcpy(invM,M);	
	int info=0;
	char lower = 'U';
	int lda = invM->tda;
	dpotrf_(&lower, &n, invM->data, &lda, &info);
	dpotri_(&lower, &n, invM->data, &lda, &info);
	for (int i=0; i<n; i++) {
		for (int j=i+1 ; j<n; j++) {
			gsl_matrix_set(invM,i,j,gsl_matrix_get(invM,j,i)) ;
		}
	}
	gsl_vector* x_ell_norms = gsl_vector_alloc(m);
	gsl_vector* temp = gsl_vector_alloc(n);
	for	(int i =0;i<m;i++)
	{
		gsl_vector_const_view xcol = gsl_matrix_const_column(x,i);
		My_dgemv(CblasNoTrans, 1.0, invM, &xcol.vector, 0.0, temp);
		gsl_vector_set(x_ell_norms, i, -My_ddot(&xcol.vector, temp));
	}
	gsl_permutation* p = gsl_permutation_alloc(m);
	gsl_sort_vector_index(p, x_ell_norms);
	for (int i=0; i<n; i++) {
		for (int j=0; j<m; j++) {
			gsl_matrix_set(y, i, j, gsl_matrix_get(x, i, gsl_permutation_get(p, j)));
		}
	}
	gsl_vector_free(x_ell_norms);
	gsl_vector_free(temp);
	gsl_matrix_free(invM);
	gsl_permutation_free(p);
	
}
Esempio n. 17
0
int
gsl_multifit_covar (const gsl_matrix * J, double epsrel, gsl_matrix * covar)
{
  double tolr;

  size_t i, j, k;
  size_t kmax = 0;

  gsl_matrix * r;
  gsl_vector * tau;
  gsl_vector * norm;
  gsl_permutation * perm;

  size_t m = J->size1, n = J->size2 ;
  
  if (m < n) 
    {
      GSL_ERROR ("Jacobian be rectangular M x N with M >= N", GSL_EBADLEN);
    }

  if (covar->size1 != covar->size2 || covar->size1 != n)
    {
      GSL_ERROR ("covariance matrix must be square and match second dimension of jacobian", GSL_EBADLEN);
    }

  r = gsl_matrix_alloc (m, n);
  tau = gsl_vector_alloc (n);
  perm = gsl_permutation_alloc (n) ;
  norm = gsl_vector_alloc (n) ;
  
  {
    int signum = 0;
    gsl_matrix_memcpy (r, J);
    gsl_linalg_QRPT_decomp (r, tau, perm, &signum, norm);
  }
  
  
  /* Form the inverse of R in the full upper triangle of R */

  tolr = epsrel * fabs(gsl_matrix_get(r, 0, 0));

  for (k = 0 ; k < n ; k++)
    {
      double rkk = gsl_matrix_get(r, k, k);

      if (fabs(rkk) <= tolr)
        {
          break;
        }

      gsl_matrix_set(r, k, k, 1.0/rkk);

      for (j = 0; j < k ; j++)
        {
          double t = gsl_matrix_get(r, j, k) / rkk;
          gsl_matrix_set (r, j, k, 0.0);

          for (i = 0; i <= j; i++)
            {
              double rik = gsl_matrix_get (r, i, k);
              double rij = gsl_matrix_get (r, i, j);
              
              gsl_matrix_set (r, i, k, rik - t * rij);
            }
        }
      kmax = k;
    }

  /* Form the full upper triangle of the inverse of R^T R in the full
     upper triangle of R */

  for (k = 0; k <= kmax ; k++)
    {
      for (j = 0; j < k; j++)
        {
          double rjk = gsl_matrix_get (r, j, k);

          for (i = 0; i <= j ; i++)
            {
              double rij = gsl_matrix_get (r, i, j);
              double rik = gsl_matrix_get (r, i, k);

              gsl_matrix_set (r, i, j, rij + rjk * rik);
            }
        }
      
      {
        double t = gsl_matrix_get (r, k, k);

        for (i = 0; i <= k; i++)
          {
            double rik = gsl_matrix_get (r, i, k);

            gsl_matrix_set (r, i, k, t * rik);
          };
      }
    }

  /* Form the full lower triangle of the covariance matrix in the
     strict lower triangle of R and in w */

  for (j = 0 ; j < n ; j++)
    {
      size_t pj = gsl_permutation_get (perm, j);
      
      for (i = 0; i <= j; i++)
        {
          size_t pi = gsl_permutation_get (perm, i);

          double rij;

          if (j > kmax)
            {
              gsl_matrix_set (r, i, j, 0.0);
              rij = 0.0 ;
            }
          else 
            {
              rij = gsl_matrix_get (r, i, j);
            }

          if (pi > pj)
            {
              gsl_matrix_set (r, pi, pj, rij); 
            } 
          else if (pi < pj)
            {
              gsl_matrix_set (r, pj, pi, rij);
            }

        }
      
      { 
        double rjj = gsl_matrix_get (r, j, j);
        gsl_matrix_set (covar, pj, pj, rjj);
      }
    }

     
  /* symmetrize the covariance matrix */

  for (j = 0 ; j < n ; j++)
    {
      for (i = 0; i < j ; i++)
        {
          double rji = gsl_matrix_get (r, j, i);

          gsl_matrix_set (covar, j, i, rji);
          gsl_matrix_set (covar, i, j, rji);
        }
    }

  gsl_matrix_free (r);
  gsl_permutation_free (perm);
  gsl_vector_free (tau);
  gsl_vector_free (norm);

  return GSL_SUCCESS;
}
Esempio n. 18
0
bool CEES_Node::Initialize(CStorageHead &storage, const gsl_rng *r)
{
	// random permutation of 0, 1, ..., K-1
	gsl_permutation *p = gsl_permutation_alloc(K); 
	gsl_permutation_init(p); 
	gsl_ran_shuffle(r, p->data, K, sizeof(int)); 
	
	int binOffset; 
	if (next_level == NULL)
		binOffset = this->BinID(0); 
	else 
		binOffset = next_level->BinID(0); 
	int index=0, bin_id;  
	while (index <K )
	{
		bin_id = binOffset+gsl_permutation_get(p, index); 
		if (storage.DrawSample(bin_id, r, x_current))
		{
			x_current.log_prob = -(x_current.GetWeight() > GetEnergy() ? x_current.GetWeight() : GetEnergy())/GetTemperature();
			ring_index_current = GetRingIndex(x_current.GetWeight());
                        UpdateMinMaxEnergy(x_current.GetWeight());
			gsl_permutation_free(p); 
			return true; 
		}
		index ++; 
	}

	gsl_permutation_free(p); 	
	return false; 
	// Initialize using samples from the next level; 
	/*if (next_level == NULL)
	{
		for (int try_id = id; try_id >=0; try_id --)
		{
			int bin_id = this->BinID(try_id); 
			if (storage.DrawSample(bin_id, r, x_current))
			{
				x_current.log_prob = -(x_current.GetWeight() > GetEnergy() ? x_current.GetWeight() : GetEnergy())/GetTemperature();
                        	ring_index_current = GetRingIndex(x_current.GetWeight());
                        	UpdateMinMaxEnergy(x_current.GetWeight());
                        	return true;
			}
		}
		for (int try_id = id+1; try_id <K; try_id ++)
		{
			int bin_id = this->BinID(try_id);
                        if (storage.DrawSample(bin_id, r, x_current))
                        {
                                x_current.log_prob = -(x_current.GetWeight() > GetEnergy() ? x_current.GetWeight() : GetEnergy())/GetTemperature();
                                ring_index_current = GetRingIndex(x_current.GetWeight());
                                UpdateMinMaxEnergy(x_current.GetWeight());
                                return true;
                        }

		}
	}
	else 
	{       
		// Try next levels' bins with the same or lower energies
		for (int try_id = id; try_id >= 0; try_id --)
		{
			int bin_id_next_level = next_level->BinID(try_id); 
        		if (storage.DrawSample(bin_id_next_level, r, x_current))
			{
			// x_current.weight will remain the same 
			// x_current.log_prob needs to be updated according to 
			// current level's H and T
				x_current.log_prob = -(x_current.GetWeight() > GetEnergy() ? x_current.GetWeight() : GetEnergy())/GetTemperature(); 
				ring_index_current = GetRingIndex(x_current.GetWeight());  
				UpdateMinMaxEnergy(x_current.GetWeight()); 
				return true;
			}
		}
		// If not successful, then try next level's bins with higher energies
		for (int try_id = id+1; try_id <K; try_id ++)
		{
			int bin_id_next_level = next_level->BinID(try_id);
                	if (storage.DrawSample(bin_id_next_level, r, x_current))
                	{
			// x_current.weight will remain the same 
			// x_current.log_prob needs to be updated according to
			// current level's H and  T
				x_current.log_prob = -(x_current.GetWeight() > GetEnergy() ? x_current.GetWeight() : GetEnergy())/GetTemperature(); 
                        	ring_index_current = GetRingIndex(x_current.GetWeight());
				UpdateMinMaxEnergy(x_current.GetWeight()); 
                        	return true;
                	}
		}
	}
	return false; */
} 
Esempio n. 19
0
void gsl_matrix_hungarian(gsl_matrix* gm_C,gsl_matrix* gm_P,gsl_vector* gv_col_inc, gsl_permutation* gp_sol, int _bprev_init, gsl_matrix *gm_C_denied, bool bgreedy)
{
//  mexPrintf("VV\n");  
  long dim, startdim, enddim, n1,n2;
  double *C;
  int i,j;
  int **m;
  double *z;
  hungarian_problem_t p, *q;
  int matrix_size;
  double C_min=gsl_matrix_min(gm_C)-1;
  n1 = gm_C->size1;    /* first dimension of the cost matrix */
  n2 = gm_C->size2;    /* second dimension of the cost matrix */
  C = gm_C->data; 


   //greedy solution
   if (bgreedy)
   {
	int ind,ind1,ind2;
	size_t *C_ind=new size_t[n1*n2];
	gsl_heapsort_index(C_ind,C,n1*n2,sizeof(double),compare_doubles);
        bool* bperm_fix_1=new bool[n1]; bool* bperm_fix_2=new bool[n2]; int inummatch=0;
	for (i=0;i<n1;i++) {bperm_fix_1[i]=false;bperm_fix_2[i]=false;};
	gsl_matrix_set_zero(gm_P);
	for (long l=0;l<n1*n2;l++)
	{
		ind=C_ind[l];
		ind1=floor(ind/n1);
		ind2=ind%n2;
		
		if (!bperm_fix_1[ind1] and !bperm_fix_2[ind2])
		{
			bperm_fix_1[ind1]=true; bperm_fix_2[ind2]=true;
			gm_P->data[ind]=1;inummatch++;
		};
		if (inummatch==n1) break;
	};
	delete[] bperm_fix_1;delete[] bperm_fix_2;
	//because C is a transpose matrix
	gsl_matrix_transpose(gm_P);
	return;	
   };
  double C_max=((gsl_matrix_max(gm_C)-C_min>1)?(gsl_matrix_max(gm_C)-C_min):1)*(n1>n2?n1:n2);
  m = (int**)calloc(n1,sizeof(int*)); 
//			mexPrintf("C[2] = %f \n",C[2]);
  for (i=0;i<n1;i++)
        {
        	m[i] = (int*)calloc(n2,sizeof(int));  
        	for (j=0;j<n2;j++)
            		m[i][j] = (int) (C[i+n1*j] - C_min);
//			mexPrintf("m[%d][%d] = %f  %f\n",i,j,m[i][j],C[i+n1*j] - C_min);
		if (gm_C_denied!=NULL)
		for (j=0;j<n2;j++){
			if (j==30)
				int dbg=1;
			bool bden=(gm_C_denied->data[n2*i+j]<1e-10);
            		if (bden) m[i][j] =C_max;
			else 
				int dbg=1;
			};
 	};
    //normalization: rows and columns
//			mexPrintf("C[2] = %f \n",C[2]);
    double dmin;
    for (i=0;i<n1;i++)
        {
        	dmin=m[i][0];
        	for (j=1;j<n2;j++)
            		dmin= (m[i][j]<dmin)? m[i][j]:dmin;
        	for (j=0;j<n2;j++)
            		m[i][j]-=dmin;
 	};
    for (j=0;j<n2;j++)
        {
        	dmin=m[0][j];
        	for (i=1;i<n1;i++)
            		dmin= (m[i][j]<dmin)? m[i][j]:dmin;
        	for (i=0;i<n1;i++)
            		m[i][j]-=dmin;
 	};
   if ((_bprev_init) &&(gv_col_inc !=NULL))
	{
	//dual solution v substraction
		for (j=0;j<n2;j++)
        		for (i=0;i<n1;i++)
				m[i][j]-=gv_col_inc->data[j];
	//permutation of m columns
		int *mt = new int[n2];
		for (i=0;i<n1;i++)
		{
			for (j=0;j<n2;j++) mt[j]=m[i][j];
			for (j=0;j<n2;j++) m[i][j]=mt[gsl_permutation_get(gp_sol,j)];
		};
		delete[] mt;
		
	};

   
  /* initialize the hungarian_problem using the cost matrix*/
   matrix_size = hungarian_init(&p, m , n1,n2, HUNGARIAN_MODE_MINIMIZE_COST) ;
  /* solve the assignement problem */
  hungarian_solve(&p);
  q = &p;
  //gsl_matrix* gm_P=gsl_matrix_alloc(n1,n2);
  gsl_permutation* gp_sol_inv=gsl_permutation_alloc(n2);
  if (gp_sol!=NULL)
  	gsl_permutation_inverse(gp_sol_inv,gp_sol);
  else
	gsl_permutation_init(gp_sol_inv);
  for (i=0;i<n1;i++)
         for (j=0;j<n2;j++)
              gsl_matrix_set(gm_P,i,j,q->assignment[i][gp_sol_inv->data[j]]);
  //initialization by the previous solution
  if ((_bprev_init) &&(gv_col_inc !=NULL))
        for (j=0;j<n2;j++)
		gv_col_inc->data[j]=q->col_inc[gp_sol_inv->data[j]];
  if ((_bprev_init) && (gp_sol!=NULL))
  {
  for (i=0;i<n1;i++)
         for (j=0;j<n2;j++)
  		if (gsl_matrix_get(gm_P,i,j)==HUNGARIAN_ASSIGNED)
			gp_sol->data[i]=j;
  };
  /* free used memory */
  gsl_permutation_free(gp_sol_inv);
  hungarian_free(&p);
  for (i=0;i<n1;i++)
        free(m[i]);
  free(m);

/*  for (int i=0;i<gm_C->size1;i++)
        {
        	for (int j=0;j<gm_C->size1;j++)
		{
			mexPrintf("G[%d][%d] = %f  %f \n",i,j,gsl_matrix_get(gm_P,i,j),gsl_matrix_get(gm_C,i,j));
		}
	}*/



//  mexPrintf("AAA");
  //return gm_P;
}
Esempio n. 20
0
int
gsl_linalg_PTLQ_update (gsl_matrix * Q, gsl_matrix * L,
                        const gsl_permutation * p,
                        const gsl_vector * v, gsl_vector * w)
{
  if (Q->size1 != Q->size2 || L->size1 != L->size2)
    {
      return GSL_ENOTSQR;
    }
  else if (L->size1 != Q->size2 || v->size != Q->size2 || w->size != Q->size2)
    {
      return GSL_EBADLEN;
    }
  else
    {
      size_t j, k;
      const size_t N = Q->size1;
      const size_t M = Q->size2;
      double w0;

      /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0) 

         J_1^T .... J_(n-1)^T w = +/- |w| e_1

         simultaneously applied to L,  H = J_1^T ... J^T_(n-1) L
         so that H is upper Hessenberg.  (12.5.2) */

      for (k = M - 1; k > 0; k--)
        {
          double c, s;
          double wk = gsl_vector_get (w, k);
          double wkm1 = gsl_vector_get (w, k - 1);

          create_givens (wkm1, wk, &c, &s);
          apply_givens_vec (w, k - 1, k, c, s);
          apply_givens_lq (M, N, Q, L, k - 1, k, c, s);
        }

      w0 = gsl_vector_get (w, 0);

      /* Add in v w^T  (Equation 12.5.3) */

      for (j = 0; j < N; j++)
        {
          double lj0 = gsl_matrix_get (L, j, 0);
          size_t p_j = gsl_permutation_get (p, j);
          double vj = gsl_vector_get (v, p_j);
          gsl_matrix_set (L, j, 0, lj0 + w0 * vj);
        }

      /* Apply Givens transformations L' = G_(n-1)^T ... G_1^T H  
         Equation 12.5.4 */

      for (k = 1; k < N; k++)
        {
          double c, s;
          double diag = gsl_matrix_get (L, k - 1, k - 1);
          double offdiag = gsl_matrix_get (L, k - 1, k );

          create_givens (diag, offdiag, &c, &s);
          apply_givens_lq (M, N, Q, L, k - 1, k, c, s);
        }

      return GSL_SUCCESS;
    }
}
Esempio n. 21
0
int infogap( struct opt_data *op )
{
	FILE *fl, *outfl;
	double *opt_params, of, maxof;
	char buf[255], filename[255];
	int i, j, k, n, npar, nrow, ncol, *nPreds, col;
	gsl_matrix *ig_mat; //! info gap matrix for sorting
	gsl_permutation *p;
	nPreds = &op->preds->nTObs; // Set pointer to nObs for convenience
	if( op->cd->infile[0] == 0 ) { tprintf( "\nInfile must be specified for infogap run\n" ); return( 0 );}
	nrow = count_lines( op->cd->infile ); nrow--; // Determine number of parameter sets in file
	npar = count_cols( op->cd->infile, 2 ); npar = npar - 2; // Determine number of parameter sets in file
	if( npar != op->pd->nOptParam ) { tprintf( "Number of optimization parameters in %s does not match input file\n", op->cd->infile ); return( 0 ); } // Make sure MADS input file and PSSA file agree
	tprintf( "\n%s contains %d parameters and %d parameter sets\n", op->cd->infile, npar, nrow );
	ncol = npar + *nPreds + 1; // Number of columns for ig_mat = #pars + #preds + #ofs
	ig_mat = gsl_matrix_alloc( nrow, ncol );
	p = gsl_permutation_alloc( nrow );
	fl = fopen( op->cd->infile, "r" );
	if( fl == NULL ) { tprintf( "\nError opening %s\n", op->cd->infile ); return( 0 ); }
	tprintf( "Computing predictions for %s...", op->cd->infile );
	if( ( opt_params = ( double * ) malloc( npar * sizeof( double ) ) ) == NULL )
	{ tprintf( "Not enough memory!\n" ); return( 0 ); }
	fgets( buf, sizeof buf, fl ); // Skip header
	// Fill in ig_mat
	for( i = 0; i < nrow; i++ )
	{
		fscanf( fl, "%d %lf", &n, &of );
		gsl_matrix_set( ig_mat, i, *nPreds, of ); // Place of after predictions
		for( j = 0; j < npar; j++ )
		{
			fscanf( fl, "%lf", &opt_params[j] );
			col = *nPreds + 1 + j;
			gsl_matrix_set( ig_mat, i, col, opt_params[j] ); // Place after of
		}
		fscanf( fl, " \n" );
		func_global( opt_params, op, op->preds->res, NULL );
		for( j = 0; j < *nPreds; j++ )
		{
			gsl_matrix_set( ig_mat, i, j, op->preds->obs_current[j] ); // Place in first columns
		}
	}
	fclose( fl );
	for( k = 0; k < *nPreds; k++ )
	{
		gsl_vector_view column = gsl_matrix_column( ig_mat, k );
		gsl_sort_vector_index( p, &column.vector );
		// Print out ig_mat with headers
		sprintf( filename, "%s-pred%d.igap", op->root, k );
		outfl = fopen( filename , "w" );
		if( outfl == NULL ) { tprintf( "\nError opening %s\n", filename ); return( 0 ); }
		fprintf( outfl, " %-12s", op->preds->obs_id[k] );
		fprintf( outfl, " OFmax OF" );
		for( i = 0; i < npar; i++ )
			fprintf( outfl, " (%-12s)", op->pd->var_name[i] );
		fprintf( outfl, "\n" );
		maxof = gsl_matrix_get( ig_mat, gsl_permutation_get( p, 0 ), *nPreds );
		for( i = 0; i < nrow; i++ )
		{
			if( maxof < gsl_matrix_get( ig_mat, gsl_permutation_get( p, i ), *nPreds ) )
				maxof = gsl_matrix_get( ig_mat, gsl_permutation_get( p, i ), *nPreds );
			fprintf( outfl, "%-12g", gsl_matrix_get( ig_mat, gsl_permutation_get( p, i ), k ) );
			fprintf( outfl, "%-12g", maxof );
			fprintf( outfl, "%-12g", gsl_matrix_get( ig_mat, gsl_permutation_get( p, i ), *nPreds ) );
			for( j = *nPreds + 1; j < ncol; j++ )
				fprintf( outfl, "%-12g", gsl_matrix_get( ig_mat, gsl_permutation_get( p, i ), j ) );
			fprintf( outfl, "\n" );
		}
		fclose( outfl );
		tprintf( "Done\n" );
		tprintf( "Results written to %s\n\n", filename );
	}
	gsl_matrix_free( ig_mat );
	return( 1 );
}
Esempio n. 22
0
static int
qrsolv (gsl_matrix * r, const gsl_permutation * p, const double lambda, 
        const gsl_vector * diag, const gsl_vector * qtb, 
        gsl_vector * x, gsl_vector * sdiag, gsl_vector * wa)
{
  size_t n = r->size2;

  size_t i, j, k, nsing;

  /* Copy r and qtb to preserve input and initialise s. In particular,
     save the diagonal elements of r in x */

  for (j = 0; j < n; j++)
    {
      double rjj = gsl_matrix_get (r, j, j);
      double qtbj = gsl_vector_get (qtb, j);

      for (i = j + 1; i < n; i++)
        {
          double rji = gsl_matrix_get (r, j, i);
          gsl_matrix_set (r, i, j, rji);
        }

      gsl_vector_set (x, j, rjj);
      gsl_vector_set (wa, j, qtbj);
    }

  /* Eliminate the diagonal matrix d using a Givens rotation */

  for (j = 0; j < n; j++)
    {
      double qtbpj;

      size_t pj = gsl_permutation_get (p, j);

      double diagpj = lambda * gsl_vector_get (diag, pj);

      if (diagpj == 0)
        {
          continue;
        }

      gsl_vector_set (sdiag, j, diagpj);

      for (k = j + 1; k < n; k++)
        {
          gsl_vector_set (sdiag, k, 0.0);
        }

      /* The transformations to eliminate the row of d modify only a
         single element of qtb beyond the first n, which is initially
         zero */

      qtbpj = 0;

      for (k = j; k < n; k++)
        {
          /* Determine a Givens rotation which eliminates the
             appropriate element in the current row of d */

          double sine, cosine;

          double wak = gsl_vector_get (wa, k);
          double rkk = gsl_matrix_get (r, k, k);
          double sdiagk = gsl_vector_get (sdiag, k);

          if (sdiagk == 0)
            {
              continue;
            }

          if (fabs (rkk) < fabs (sdiagk))
            {
              double cotangent = rkk / sdiagk;
              sine = 0.5 / sqrt (0.25 + 0.25 * cotangent * cotangent);
              cosine = sine * cotangent;
            }
          else
            {
              double tangent = sdiagk / rkk;
              cosine = 0.5 / sqrt (0.25 + 0.25 * tangent * tangent);
              sine = cosine * tangent;
            }

          /* Compute the modified diagonal element of r and the
             modified element of [qtb,0] */

          {
            double new_rkk = cosine * rkk + sine * sdiagk;
            double new_wak = cosine * wak + sine * qtbpj;
            
            qtbpj = -sine * wak + cosine * qtbpj;

            gsl_matrix_set(r, k, k, new_rkk);
            gsl_vector_set(wa, k, new_wak);
          }

          /* Accumulate the transformation in the row of s */

          for (i = k + 1; i < n; i++)
            {
              double rik = gsl_matrix_get (r, i, k);
              double sdiagi = gsl_vector_get (sdiag, i);
              
              double new_rik = cosine * rik + sine * sdiagi;
              double new_sdiagi = -sine * rik + cosine * sdiagi;
              
              gsl_matrix_set(r, i, k, new_rik);
              gsl_vector_set(sdiag, i, new_sdiagi);
            }
        }

      /* Store the corresponding diagonal element of s and restore the
         corresponding diagonal element of r */

      {
        double rjj = gsl_matrix_get (r, j, j);
        double xj = gsl_vector_get(x, j);
        
        gsl_vector_set (sdiag, j, rjj);
        gsl_matrix_set (r, j, j, xj);
      }

    }

  /* Solve the triangular system for z. If the system is singular then
     obtain a least squares solution */

  nsing = n;

  for (j = 0; j < n; j++)
    {
      double sdiagj = gsl_vector_get (sdiag, j);

      if (sdiagj == 0)
        {
          nsing = j;
          break;
        }
    }

  for (j = nsing; j < n; j++)
    {
      gsl_vector_set (wa, j, 0.0);
    }

  for (k = 0; k < nsing; k++)
    {
      double sum = 0;

      j = (nsing - 1) - k;

      for (i = j + 1; i < nsing; i++)
        {
          sum += gsl_matrix_get(r, i, j) * gsl_vector_get(wa, i);
        }

      {
        double waj = gsl_vector_get (wa, j);
        double sdiagj = gsl_vector_get (sdiag, j);

        gsl_vector_set (wa, j, (waj - sum) / sdiagj);
      }
    }

  /* Permute the components of z back to the components of x */

  for (j = 0; j < n; j++)
    {
      size_t pj = gsl_permutation_get (p, j);
      double waj = gsl_vector_get (wa, j);

      gsl_vector_set (x, pj, waj);
    }

  return GSL_SUCCESS;
}
Esempio n. 23
0
int CalcRanksForReHo(float *IND, int idx, THD_3dim_dataset *T, int *NTIE,
							int TDIM)
{
  int m,mm;
  int ISTIE = -1;
  int LENTIE = 0;
  float TIERANK;
  int *toP=NULL; // to reset permuts
  int *sorted=NULL; // hold sorted time course, assume has been turned into int
  int val;

  // GSL stuff
  gsl_vector *Y = gsl_vector_calloc(TDIM); // will hold time points
  gsl_permutation *P = gsl_permutation_calloc(TDIM); // will hold ranks


  toP = (int *)calloc(TDIM,sizeof(int)); 
  sorted = (int *)calloc(TDIM,sizeof(int)); 

  if( (toP ==NULL) || (sorted ==NULL) ) { 
    fprintf(stderr, "\n\n MemAlloc failure.\n\n");
    exit(122);
    }

  // define time series as gsl vector
  for( m=0 ; m<TDIM ; m++)
    gsl_vector_set(Y,m, THD_get_voxel(T,idx,m));
					
  // perform permutation
  val = gsl_sort_vector_index (P,Y);
  // apply permut to get sorted array values
  for( m=0 ; m<TDIM ; m++) {
    sorted[m] = THD_get_voxel(T,idx,
                              gsl_permutation_get(P,m));
    // information of where it was
    toP[m]= (int) gsl_permutation_get(P,m); 
    // default: just convert perm ind to rank ind:
    // series of rank vals
    IND[gsl_permutation_get(P,m)]=m+1;
  }
					
  // ******** start tie rank adjustment *******
  // find ties in sorted, record how many per time 
  //  series, and fix in IND
  for( m=1 ; m<TDIM ; m++)
    if( (sorted[m]==sorted[m-1]) && LENTIE==0 ) {
      ISTIE = m-1; //record where it starts
      LENTIE = 2;
    }
    else if( (sorted[m]==sorted[m-1]) && LENTIE>0 ) {
      LENTIE+= 1 ;
    }
    else if( (sorted[m]!=sorted[m-1]) && LENTIE>0 ) {
      // end of tie: calc mean index
      TIERANK = 1.0*ISTIE; // where tie started
      TIERANK+= 0.5*(LENTIE-1); // make average rank
      NTIE[idx]+= LENTIE*(LENTIE*LENTIE-1); // record
      // record ave permut ind as rank ind
      for( mm=0 ; mm<LENTIE ; mm++) {
        IND[toP[ISTIE+mm]] = TIERANK+1;
      }
      ISTIE = -1; // reset, prob unnec
      LENTIE = 0; // reset
    } // ******* end of tie rank adjustment ***********
  
  // FREE
  gsl_vector_free(Y);
  gsl_permutation_free(P);
  free(toP);
  free(sorted);
  
  RETURN(1);
}
Esempio n. 24
0
double *bayestar_sky_map_toa_snr(
    long *npix, /* Input: number of HEALPix pixels. */
    double gmst, /* Greenwich mean sidereal time in radians. */
    int nifos, /* Input: number of detectors. */
    const float (**responses)[3], /* Pointers to detector responses. */
    const double **locations, /* Pointers to locations of detectors in Cartesian geographic coordinates. */
    const double *toas, /* Input: array of times of arrival with arbitrary relative offset. (Make toas[0] == 0.) */
    const double *snrs, /* Input: array of SNRs. */
    const double *w_toas, /* Input: sum-of-squares weights, (1/TOA variance)^2. */
    const double *horizons, /* Distances at which a source would produce an SNR of 1 in each detector. */
    double min_distance,
    double max_distance,
    int prior_distance_power) /* Use a prior of (distance)^(prior_distance_power) */
{
    long nside;
    long maxpix;
    long i;
    double d1[nifos];
    double *P;
    gsl_permutation *pix_perm;

    /* Hold GSL return values for any thread that fails. */
    int gsl_errno = GSL_SUCCESS;

    /* Storage for old GSL error handler. */
    gsl_error_handler_t *old_handler;

    /* Maximum number of subdivisions for adaptive integration. */
    static const size_t subdivision_limit = 64;

    /* Subdivide radial integral where likelihood is this fraction of the maximum,
     * will be used in solving the quadratic to find the breakpoints */
    static const double eta = 0.01;

    /* Use this many integration steps in 2*psi  */
    static const int ntwopsi = 16;

    /* Number of integration steps in cos(inclination) */
    static const int nu = 16;

    /* Rescale distances so that furthest horizon distance is 1. */
    {
        double d1max;
        memcpy(d1, horizons, sizeof(d1));
        for (d1max = d1[0], i = 1; i < nifos; i ++)
            if (d1[i] > d1max)
                d1max = d1[i];
        for (i = 0; i < nifos; i ++)
            d1[i] /= d1max;
        min_distance /= d1max;
        max_distance /= d1max;
    }

    /* Evaluate posterior term only first. */
    P = bayestar_sky_map_toa_adapt_resolution(&pix_perm, &maxpix, npix, gmst, nifos, locations, toas, w_toas, autoresolution_count_pix_toa_snr);
    if (!P)
        return NULL;

    /* Determine the lateral HEALPix resolution. */
    nside = npix2nside(*npix);

    /* Zero pixels that didn't meet the TDOA cut. */
    for (i = 0; i < maxpix; i ++)
    {
        long ipix = gsl_permutation_get(pix_perm, i);
        P[ipix] = log(P[ipix]);
    }
    for (; i < *npix; i ++)
    {
        long ipix = gsl_permutation_get(pix_perm, i);
        P[ipix] = -INFINITY;
    }

    /* Use our own error handler while in parallel section to avoid concurrent
     * calls to the GSL error handler, which if provided by the user may not
     * be threadsafe. */
    old_handler = gsl_set_error_handler(my_gsl_error);

    /* Compute posterior factor for amplitude consistency. */
    #pragma omp parallel for firstprivate(gsl_errno) lastprivate(gsl_errno)
    for (i = 0; i < maxpix; i ++)
    {
        /* Cancel further computation if a GSL error condition has occurred.
         *
         * Note: if one thread sets gsl_errno, not necessarily all thread will
         * get the updated value. That's OK, because most failure modes will
         * cause GSL error conditions on all threads. If we cared to have any
         * failure on any thread terminate all of the other threads as quickly
         * as possible, then we would want to insert the following pragma here:
         *
         *     #pragma omp flush(gsl_errno)
         *
         * and likewise before any point where we set gsl_errno.
         */

        if (gsl_errno != GSL_SUCCESS)
            goto skip;

        {
            long ipix = gsl_permutation_get(pix_perm, i);
            double F[nifos][2];
            double theta, phi;
            int itwopsi, iu, iifo;
            double accum = -INFINITY;

            /* Prepare workspace for adaptive integrator. */
            gsl_integration_workspace *workspace = gsl_integration_workspace_alloc(subdivision_limit);

            /* If the workspace could not be allocated, then record the GSL
             * error value for later reporting when we leave the parallel
             * section. Then, skip to the next loop iteration. */
            if (!workspace)
            {
                gsl_errno = GSL_ENOMEM;
                goto skip;
            }

            /* Look up polar coordinates of this pixel */
            pix2ang_ring(nside, ipix, &theta, &phi);

            /* Look up antenna factors */
            for (iifo = 0; iifo < nifos; iifo ++)
            {
                XLALComputeDetAMResponse(&F[iifo][0], &F[iifo][1], responses[iifo], phi, M_PI_2 - theta, 0, gmst);
                F[iifo][0] *= d1[iifo];
                F[iifo][1] *= d1[iifo];
            }

            /* Integrate over 2*psi */
            for (itwopsi = 0; itwopsi < ntwopsi; itwopsi++)
            {
                const double twopsi = (2 * M_PI / ntwopsi) * itwopsi;
                const double costwopsi = cos(twopsi);
                const double sintwopsi = sin(twopsi);

                /* Integrate over u; since integrand only depends on u^2 we only
                 * have to go from u=0 to u=1. We want to include u=1, so the upper
                 * limit has to be <= */
                for (iu = 0; iu <= nu; iu++)
                {
                    const double u = (double)iu / nu;
                    const double u2 = gsl_pow_2(u);
                    const double u4 = gsl_pow_2(u2);

                    double A = 0, B = 0;
                    double breakpoints[5];
                    int num_breakpoints = 0;
                    double log_offset = -INFINITY;

                    /* The log-likelihood is quadratic in the estimated and true
                     * values of the SNR, and in 1/r. It is of the form A/r^2 + B/r,
                     * where A depends only on the true values of the SNR and is
                     * strictly negative and B depends on both the true values and
                     * the estimates and is strictly positive.
                     *
                     * The middle breakpoint is at the maximum of the log-likelihood,
                     * occurring at 1/r=-B/2A. The lower and upper breakpoints occur
                     * when the likelihood becomes eta times its maximum value. This
                     * occurs when
                     *
                     *   A/r^2 + B/r = log(eta) - B^2/4A.
                     *
                     */

                    /* Loop over detectors */
                    for (iifo = 0; iifo < nifos; iifo++)
                    {
                        const double Fp = F[iifo][0]; /* `plus' antenna factor times r */
                        const double Fx = F[iifo][1]; /* `cross' antenna factor times r */
                        const double FpFx = Fp * Fx;
                        const double FpFp = gsl_pow_2(Fp);
                        const double FxFx = gsl_pow_2(Fx);
                        const double rhotimesr2 = 0.125 * ((FpFp + FxFx) * (1 + 6*u2 + u4) - gsl_pow_2(1 - u2) * ((FpFp - FxFx) * costwopsi + 2 * FpFx * sintwopsi));
                        const double rhotimesr = sqrt(rhotimesr2);

                        /* FIXME: due to roundoff, rhotimesr2 can be very small and
                         * negative rather than simply zero. If this happens, don't
                         accumulate the log-likelihood terms for this detector. */
                        if (rhotimesr2 > 0)
                        {
                            A += rhotimesr2;
                            B += rhotimesr * snrs[iifo];
                        }
                    }
                    A *= -0.5;

                    {
                        const double middle_breakpoint = -2 * A / B;
                        const double lower_breakpoint = 1 / (1 / middle_breakpoint + sqrt(log(eta) / A));
                        const double upper_breakpoint = 1 / (1 / middle_breakpoint - sqrt(log(eta) / A));
                        breakpoints[num_breakpoints++] = min_distance;
                        if(lower_breakpoint > breakpoints[num_breakpoints-1] && lower_breakpoint < max_distance)
                            breakpoints[num_breakpoints++] = lower_breakpoint;
                        if(middle_breakpoint > breakpoints[num_breakpoints-1] && middle_breakpoint < max_distance)
                            breakpoints[num_breakpoints++] = middle_breakpoint;
                        if(upper_breakpoint > breakpoints[num_breakpoints-1] && upper_breakpoint < max_distance)
                            breakpoints[num_breakpoints++] = upper_breakpoint;
                        breakpoints[num_breakpoints++] = max_distance;
                    }

                    {
                        /*
                         * Set log_offset to the maximum of the logarithm of the
                         * radial integrand evaluated at all of the breakpoints. */
                        int ibreakpoint;
                        for (ibreakpoint = 0; ibreakpoint < num_breakpoints; ibreakpoint++)
                        {
                            const double new_log_offset = log_radial_integrand(
                                breakpoints[ibreakpoint], A, B, prior_distance_power);
                            if (new_log_offset < INFINITY && new_log_offset > log_offset)
                                log_offset = new_log_offset;
                        }
                    }

                    {
                        /* Perform adaptive integration. Stop when a relative
                         * accuracy of 0.05 has been reached. */
                        inner_integrand_params integrand_params = {A, B, log_offset, prior_distance_power};
                        const gsl_function func = {radial_integrand, &integrand_params};
                        double result, abserr;
                        int ret = gsl_integration_qagp(&func, &breakpoints[0], num_breakpoints, DBL_MIN, 0.05, subdivision_limit, workspace, &result, &abserr);

                        /* If the integrator failed, then record the GSL error
                         * value for later reporting when we leave the parallel
                         * section. Then, break out of the loop. */
                        if (ret != GSL_SUCCESS)
                        {
                            gsl_errno = ret;
                            gsl_integration_workspace_free(workspace);
                            goto skip;
                        }

                        /* Take the logarithm and put the log-normalization back in. */
                        result = log(result) + integrand_params.log_offset;

                        /* Accumulate result. */
                        accum = logaddexp(accum, result);
                    }
                }
            }
            /* Discard workspace for adaptive integrator. */
            gsl_integration_workspace_free(workspace);

            /* Accumulate (log) posterior terms for SNR and TDOA. */
            P[ipix] += accum;
        }

        skip: /* this statement intentionally left blank */;
    }

    /* Restore old error handler. */
    gsl_set_error_handler(old_handler);

    /* Free permutation. */
    gsl_permutation_free(pix_perm);

    /* Check if there was an error in any thread evaluating any pixel. If there
     * was, raise the error and return. */
    if (gsl_errno != GSL_SUCCESS)
    {
        free(P);
        GSL_ERROR_NULL(gsl_strerror(gsl_errno), gsl_errno);
    }

    /* Exponentiate and normalize posterior. */
    pix_perm = get_pixel_ranks(*npix, P);
    if (!pix_perm)
    {
        free(P);
        return NULL;
    }
    exp_normalize(*npix, P, pix_perm);
    gsl_permutation_free(pix_perm);

    return P;
}
Esempio n. 25
0
int main(int argc, char **argv) {

  const int MAX_ITER  = 20;
  const double TOL = 1e-12;
  
  int rank;
  int size;
  int P = 8; // number of blocks to update P <= size

  /* -----------------------------------
     mode controls the selection schemes, 
       mode =0, fixed P
       mode =1, dynamic update P
     ----------------------------------*/
  int mode=1; // number of processors used to update each time
  double lambda = 0.1;
  srand (time(NULL));
  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &rank); // Determine current running process
  MPI_Comm_size(MPI_COMM_WORLD, &size); // Total number of processes
  
  // data directory (you need to change the path to your own data directory)
  char* dataCenterDir = "../Data/Gaussian";
  char* big_dir;
  if(argc==2)
    big_dir = argv[1];
  else
    big_dir = "big1";

  /* Read in local data */
  
  FILE *f, *test;
  int m, n, j;
  int row, col;
  double entry, startTime, endTime;
  double total_start_time, total_end_time;
  /*
   * Subsystem n will look for files called An.dat and bn.dat
   * in the current directory; these are its local data and do not need to be
   * visible to any other processes. Note that
   * m and n here refer to the dimensions of the *local* coefficient matrix.
   */
  
  /* ------------
     Read in A 
     ------------*/
  if(rank ==0){
    printf("=============================\n");
    printf("|    Start to load data!     |\n");
    printf("=============================\n");
  }
  char s[100];
  sprintf(s, "%s/%s/A%d.dat",dataCenterDir,big_dir, rank + 1);
  printf("[%d] reading %s\n", rank, s);
  f = fopen(s, "r");
  if (f == NULL) {
    printf("[%d] ERROR: %s does not exist, exiting.\n", rank, s);
    exit(EXIT_FAILURE);
  }
  mm_read_mtx_array_size(f, &m, &n);
  gsl_matrix *A = gsl_matrix_calloc(m, n);
  for (int i = 0; i < m*n; i++) {
    row = i % m;
    col = floor(i/m);
    fscanf(f, "%lf", &entry);
    gsl_matrix_set(A, row, col, entry);
  }
  fclose(f);
  
  /* ------------
      Read in b 
     -------------*/
  sprintf(s, "%s/%s/b.dat", dataCenterDir, big_dir);
  printf("[%d] reading %s\n", rank, s);
  f = fopen(s, "r");
  if (f == NULL) {
    printf("[%d] ERROR: %s does not exist, exiting.\n", rank, s);
    exit(EXIT_FAILURE);
  }
  mm_read_mtx_array_size(f, &m, &n);
  gsl_vector *b = gsl_vector_calloc(m);
  for (int i = 0; i < m; i++) {
    fscanf(f, "%lf", &entry);
    gsl_vector_set(b, i, entry);
  }
  fclose(f);
  
  /* ------------
     Read in xs 
     ------------*/
  sprintf(s, "%s/%s/xs%d.dat", dataCenterDir, big_dir, rank + 1);
  printf("[%d] reading %s\n", rank, s);
  f = fopen(s, "r");
  if (f == NULL) {
    printf("[%d] ERROR: %s does not exist, exiting.\n", rank, s);
    exit(EXIT_FAILURE);
  }
  mm_read_mtx_array_size(f, &m, &n);
  gsl_vector *xs = gsl_vector_calloc(m);
  
  for (int i = 0; i < m; i++) {
    fscanf(f, "%lf", &entry);
    gsl_vector_set(xs, i, entry);
  }
  fclose(f);
  
  m = A->size1;
  n = A->size2;
  MPI_Barrier(MPI_COMM_WORLD);
  
  /*----------------------------------------
   * These are all variables related to GRock
   ----------------------------------------*/
  
  struct value table[size];
  gsl_vector *x        = gsl_vector_calloc(n);
  gsl_vector *As       = gsl_vector_calloc(n);
  gsl_vector *invAs    = gsl_vector_calloc(n);
  gsl_vector *local_b  = gsl_vector_calloc(m);
  gsl_vector *beta     = gsl_vector_calloc(n);
  gsl_vector *tmp      = gsl_vector_calloc(n);
  gsl_vector *d        = gsl_vector_calloc(n);
  gsl_vector *absd     = gsl_vector_calloc(n);
  gsl_vector *oldx     = gsl_vector_calloc(n);
  gsl_vector *tmpx     = gsl_vector_calloc(n);
  gsl_vector *z        = gsl_vector_calloc(m);
  gsl_vector *tmpz     = gsl_vector_calloc(m);
  gsl_vector *Ax       = gsl_vector_calloc(m);
  gsl_vector *Atmpx    = gsl_vector_calloc(m);
  gsl_vector *xdiff    = gsl_vector_calloc(n);
  gsl_permutation *idx = gsl_permutation_calloc(n);
  double send[1]; 
  double recv[1]; 
  double err;

  int num_upd = (int)(n*0.08);
  double sigma = 0.01;

  double xs_local_nrm[1], xs_nrm[1];
  double local_old_obj, global_old_obj, local_new_obj, global_new_obj;
  //calculate the 2 norm of xs
  xs_local_nrm[0] = gsl_blas_dnrm2(xs);
  xs_local_nrm[0] *=xs_local_nrm[0];
  MPI_Allreduce(xs_local_nrm, xs_nrm, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
  xs_nrm[0] = sqrt(xs_nrm[0]);
  
  // evaluate the two norm of the columns of A
  for(j=0;j<n;j++){
    gsl_vector_view column = gsl_matrix_column(A, j);
    double d;
    d = gsl_blas_dnrm2(&column.vector);
    gsl_vector_set(As, j, d*d);
    gsl_vector_set(invAs, j, 1./(d*d));
  }
  
  if (rank == 0) {
    printf("=============================\n");
    printf("|GRock start to solve Lasso!|\n");
    printf("|---------------------------|\n");
    printf("|lambda=%1.2f, m=%d, n=%d  |\n", lambda, m, n*size);
    if(mode==1) printf("| Mode: dynamic update P.   |\n");
    else  printf("|   Mode: fixed update P    |\n");
    printf("=============================\n");
    printf("%3s %8s %8s %5s\n", "iter", "rel_err", "obj", "P");
    startTime = MPI_Wtime();
    sprintf(s, "results/test%d.m", size);
    test = fopen(s, "w");
    fprintf(test,"res = [ \n");
  }
  
  /* Main BCD loop */
  total_start_time = MPI_Wtime();
  int iter = 0;
  while (iter < MAX_ITER) {
    startTime = MPI_Wtime();

    /*---------- restore the old x ------------*/
    gsl_vector_memcpy(oldx, x);
    
    /*------- calculate local_b = b - sum_{j \neq i} Aj*xj--------- */ 
    gsl_blas_dgemv(CblasNoTrans, 1, A, x, 0, Ax); // Ax = A * x
    MPI_Allreduce(Ax->data, z->data,  m, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
    gsl_vector_sub(z, b); // z = Ax - b
    gsl_vector_memcpy(local_b, Ax);
    gsl_vector_sub(local_b, z);
    
    /* -------calculate beta ------------------*/
    gsl_blas_dgemv(CblasTrans, -1, A, z, 0, beta); // beta = A'(b - Ax) + ||A.s||^2 * xs
    gsl_vector_memcpy(tmp, As);    
    pointwise(tmp, x, n);
    gsl_vector_add(beta, tmp);
    shrink(beta, lambda);
    // x = 1/|xs|^2 * shrink(beta, lambda)
    gsl_vector_memcpy(x, beta);
    pointwise(x, invAs, n); 
  
    /* ------calcuate proposed decrease -------- */
    gsl_vector_memcpy(d,x);
    gsl_vector_sub(d, oldx);
    if(mode ==1){
      gsl_vector_memcpy(absd, d);
      abs_vector(absd, n);
      // sort the local array d
      gsl_vector_scale(absd, -1.0);
      gsl_sort_vector_index(idx, absd);

      //    printf("|d(0)| = %lf, |d(1)| = %lf \n", gsl_vector_get(absd,0), gsl_vector_get(absd, 3));
      // calculate current objective value;
      local_old_obj = objective(oldx, lambda, z, size);
      MPI_Allreduce(&local_old_obj, &global_old_obj, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
      num_upd = fmin(num_upd+1, (int)(0.1*n));    
      gsl_vector_memcpy(tmpx, oldx);
      int upd_idx;
      double local_delta = 0, delta=0.0;
      for(int i=0; i<num_upd; i++){
	upd_idx = gsl_permutation_get(idx, i);
	//      printf("%d\n", upd_idx);
	gsl_vector_set(tmpx, upd_idx, gsl_vector_get(x, upd_idx));
	local_delta += gsl_vector_get(d, upd_idx) * gsl_vector_get(d, upd_idx);
      }
      MPI_Allreduce(&local_delta, &delta,  1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);    
      gsl_blas_dgemv(CblasNoTrans, 1, A, tmpx, 0, Atmpx); // Ax = A * x
      MPI_Allreduce(Atmpx->data, tmpz->data,  m, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
      gsl_vector_sub(tmpz, b); // z = Ax - b
    
      local_new_obj = objective(tmpx, lambda, tmpz, size);
      MPI_Allreduce(&local_new_obj, &global_new_obj, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

      while(global_new_obj - global_old_obj> -sigma * delta){
	num_upd = fmax(num_upd-1, 1);
	for(int i=0; i<num_upd; i++){
	  upd_idx = gsl_permutation_get(idx, i);
	  gsl_vector_set(tmpx, upd_idx, gsl_vector_get(x, upd_idx));
	  local_delta += gsl_vector_get(d, upd_idx) * gsl_vector_get(d, upd_idx);
	}
	MPI_Allreduce(&delta, &local_delta,  1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);    
	gsl_blas_dgemv(CblasNoTrans, 1, A, tmpx, 0, Atmpx); // Ax = A * x
	MPI_Allreduce(Atmpx->data, tmpz->data,  m, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
	gsl_vector_sub(tmpz, b); // z = Ax - b
	
	local_new_obj = objective(tmpx, lambda, tmpz, size);
	MPI_Allreduce(&local_new_obj, &global_new_obj, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
	
	if(num_upd==1)
	  break;
      }

      gsl_vector_memcpy(x, tmpx);
    }  

    if(mode==0){
      CBLAS_INDEX_t id = gsl_blas_idamax(d);
      double *store = (double*)calloc(size, sizeof(double));
      double foo[1];
      foo[0] = gsl_vector_get(d,id);
      MPI_Allgather(foo, 1, MPI_DOUBLE, store, 1, MPI_DOUBLE, MPI_COMM_WORLD);
      for(int i=0;i<size;i++){
	table[i].ID   = i;
	table[i].data = fabs(store[i]);
      }
      // quick sort to decide which block to update
      qsort((void *) & table, size, sizeof(struct value), (compfn)compare );
      gsl_vector_memcpy(x, oldx);
      
      if(size>P){
	for(int i=0;i<P;i++){
	  if(rank == table[i].ID)
	    gsl_vector_set(x, id, gsl_vector_get(oldx, id) + gsl_vector_get(d, id));
	}
      }else
	gsl_vector_set(x, id, gsl_vector_get(oldx, id) + gsl_vector_get(d, id));
      local_new_obj = objective(x, lambda, z, size);
      MPI_Allreduce(&local_new_obj, &global_new_obj, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
    }
    
    /*------------------------------
      calculate the relative error
      ------------------------------*/
    gsl_vector_memcpy(xdiff,xs);
    gsl_vector_sub(xdiff, x);
    err = gsl_blas_dnrm2(xdiff);
    send[0] = err*err;
    MPI_Allreduce(send, recv, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
    recv[0] = sqrt(recv[0])/xs_nrm[0];
 
    endTime = MPI_Wtime();
    if(mode==1) P = num_upd*size;
    if (rank == 0) {
      if(iter%5 == 0)
	printf("%3d %10.2e %10.4f %3d\n", iter,
	       recv[0],  global_new_obj, P);
      fprintf(test, "%e \n",recv[0]);
    }

    /* termination check */
    if(recv[0] < TOL){
      break;
    }
    iter++;
  }
  total_end_time = MPI_Wtime();  
  /* Have the master write out the results to disk */
  if (rank == 0) {
    printf("=============================\n");
    printf("|    GRock solved Lasso!    |\n");
    printf("|---------------------------|\n");
    printf("|Summary:                   |\n");
    printf("|   # of iteration: %d      |\n", iter);
    printf("|   relative error: %4.2e|\n", recv[0]);
    printf("|  objective value: %4.2f    |\n", global_new_obj);
    printf("|             time: %4.1es|\n", total_end_time - total_start_time);
    printf("=============================\n");
    
    fprintf(test,"] \n");
    fprintf(test,"semilogy(1:length(res),res); \n");
    fprintf(test,"xlabel('# of iteration'); ylabel('||x - xs||');\n");
    fclose(test);
    f = fopen("results/solution.dat", "w");
    fprintf(f,"x = [ \n");
    gsl_vector_fprintf(f, x, "%lf");
    fprintf(f,"] \n");
    fclose(f);
    endTime = MPI_Wtime();
  }
  
  MPI_Finalize(); /* Shut down the MPI execution environment */
  
  /* Clear memory */
  gsl_matrix_free(A);
  gsl_vector_free(b);
  gsl_vector_free(x);
  gsl_vector_free(z);
  gsl_vector_free(xdiff);
  gsl_vector_free(Ax);
  gsl_vector_free(As);
  gsl_vector_free(invAs);
  gsl_vector_free(tmpx);
  gsl_vector_free(oldx);
  gsl_vector_free(local_b);
  gsl_vector_free(beta);
  gsl_vector_free(tmpz);
  gsl_vector_free(absd);
  gsl_vector_free(Atmpx);
  gsl_permutation_free(idx);

  return 0;
}
Esempio n. 26
0
double *bayestar_sky_map_toa_phoa_snr(
    long *npix, /* Input: number of HEALPix pixels. */
    double gmst, /* Greenwich mean sidereal time in radians. */
    int nifos, /* Input: number of detectors. */
    const float (**responses)[3], /* Pointers to detector responses. */
    const double **locations, /* Pointers to locations of detectors in Cartesian geographic coordinates. */
    const double *toas, /* Input: array of times of arrival with arbitrary relative offset. (Make toas[0] == 0.) */
    const double *phoas, /* Input: array of phases of arrival with arbitrary relative offset. (Make phoas[0] == 0.) */
    const double *snrs, /* Input: array of SNRs. */
    const double *w_toas, /* Input: sum-of-squares weights, (1/TOA variance)^2. */
    const double *w1s, /* Input: first moments of angular frequency. */
    const double *w2s, /* Input: second moments of angular frequency. */
    const double *horizons, /* Distances at which a source would produce an SNR of 1 in each detector. */
    double min_distance,
    double max_distance,
    int prior_distance_power) /* Use a prior of (distance)^(prior_distance_power) */
{
    long nside;
    long maxpix;
    long i;
    double d1[nifos];
    double *P;
    gsl_permutation *pix_perm;
    double complex exp_i_phoas[nifos];

    /* Hold GSL return values for any thread that fails. */
    int gsl_errno = GSL_SUCCESS;

    /* Storage for old GSL error handler. */
    gsl_error_handler_t *old_handler;

    /* Maximum number of subdivisions for adaptive integration. */
    static const size_t subdivision_limit = 64;

    /* Subdivide radial integral where likelihood is this fraction of the maximum,
     * will be used in solving the quadratic to find the breakpoints */
    static const double eta = 0.01;

    /* Use this many integration steps in 2*psi  */
    static const int ntwopsi = 16;

    /* Number of integration steps in cos(inclination) */
    static const int nu = 16;

    /* Number of integration steps in arrival time */
    static const int nt = 16;

    /* Rescale distances so that furthest horizon distance is 1. */
    {
        double d1max;
        memcpy(d1, horizons, sizeof(d1));
        for (d1max = d1[0], i = 1; i < nifos; i ++)
            if (d1[i] > d1max)
                d1max = d1[i];
        for (i = 0; i < nifos; i ++)
            d1[i] /= d1max;
        min_distance /= d1max;
        max_distance /= d1max;
    }

    (void)w2s; /* FIXME: remove unused parameter */

    for (i = 0; i < nifos; i ++)
        exp_i_phoas[i] = exp_i(phoas[i]);

    /* Evaluate posterior term only first. */
    P = bayestar_sky_map_toa_adapt_resolution(&pix_perm, &maxpix, npix, gmst, nifos, locations, toas, w_toas, autoresolution_count_pix_toa_phoa_snr);
    if (!P)
        return NULL;

    /* Determine the lateral HEALPix resolution. */
    nside = npix2nside(*npix);

    /* Zero all pixels that didn't meet the TDOA cut. */
    for (i = maxpix; i < *npix; i ++)
    {
        long ipix = gsl_permutation_get(pix_perm, i);
        P[ipix] = -INFINITY;
    }

    /* Use our own error handler while in parallel section to avoid concurrent
     * calls to the GSL error handler, which if provided by the user may not
     * be threadsafe. */
    old_handler = gsl_set_error_handler(my_gsl_error);

    /* Compute posterior factor for amplitude consistency. */
    #pragma omp parallel for firstprivate(gsl_errno) lastprivate(gsl_errno)
    for (i = 0; i < maxpix; i ++)
    {
       /* Cancel further computation if a GSL error condition has occurred.
        *
        * Note: if one thread sets gsl_errno, not necessarily all thread will
        * get the updated value. That's OK, because most failure modes will
        * cause GSL error conditions on all threads. If we cared to have any
        * failure on any thread terminate all of the other threads as quickly
        * as possible, then we would want to insert the following pragma here:
        *
        *     #pragma omp flush(gsl_errno)
        *
        * and likewise before any point where we set gsl_errno.
        */

        if (gsl_errno != GSL_SUCCESS)
            goto skip;

        {
            long ipix = gsl_permutation_get(pix_perm, i);
            double complex F[nifos];
            double theta, phi;
            int itwopsi, iu, it, iifo;
            double accum = -INFINITY;
            double complex exp_i_toaphoa[nifos];
            double dtau[nifos], mean_dtau;

            /* Prepare workspace for adaptive integrator. */
            gsl_integration_workspace *workspace = gsl_integration_workspace_alloc(subdivision_limit);

            /* If the workspace could not be allocated, then record the GSL
             * error value for later reporting when we leave the parallel
             * section. Then, skip to the next loop iteration. */
            if (!workspace)
            {
               gsl_errno = GSL_ENOMEM;
               goto skip;
            }

            /* Look up polar coordinates of this pixel */
            pix2ang_ring(nside, ipix, &theta, &phi);

            toa_errors(dtau, theta, phi, gmst, nifos, locations, toas);
            for (iifo = 0; iifo < nifos; iifo ++)
                exp_i_toaphoa[iifo] = exp_i_phoas[iifo] * exp_i(w1s[iifo] * dtau[iifo]);

            /* Find mean arrival time error */
            mean_dtau = gsl_stats_wmean(w_toas, 1, dtau, 1, nifos);

            /* Look up antenna factors */
            for (iifo = 0; iifo < nifos; iifo++)
            {
                XLALComputeDetAMResponse(
                    (double *)&F[iifo],     /* Type-punned real part */
                    1 + (double *)&F[iifo], /* Type-punned imag part */
                    responses[iifo], phi, M_PI_2 - theta, 0, gmst);
                F[iifo] *= d1[iifo];
            }

            /* Integrate over 2*psi */
            for (itwopsi = 0; itwopsi < ntwopsi; itwopsi++)
            {
                const double twopsi = (2 * M_PI / ntwopsi) * itwopsi;
                const double complex exp_i_twopsi = exp_i(twopsi);

                /* Integrate over u from u=-1 to u=1. */
                for (iu = -nu; iu <= nu; iu++)
                {
                    const double u = (double)iu / nu;
                    const double u2 = gsl_pow_2(u);

                    double A = 0, B = 0;
                    double breakpoints[5];
                    int num_breakpoints = 0;
                    double log_offset = -INFINITY;

                    /* The log-likelihood is quadratic in the estimated and true
                     * values of the SNR, and in 1/r. It is of the form A/r^2 + B/r,
                     * where A depends only on the true values of the SNR and is
                     * strictly negative and B depends on both the true values and
                     * the estimates and is strictly positive.
                     *
                     * The middle breakpoint is at the maximum of the log-likelihood,
                     * occurring at 1/r=-B/2A. The lower and upper breakpoints occur
                     * when the likelihood becomes eta times its maximum value. This
                     * occurs when
                     *
                     *   A/r^2 + B/r = log(eta) - B^2/4A.
                     *
                     */

                    /* Perform arrival time integral */
                    double accum1 = -INFINITY;
                    for (it = -nt/2; it <= nt/2; it++)
                    {
                        const double t = mean_dtau + LAL_REARTH_SI / LAL_C_SI * it / nt;
                        double complex i0arg_complex = 0;
                        for (iifo = 0; iifo < nifos; iifo++)
                        {
                            const double complex tmp = F[iifo] * exp_i_twopsi;
                            /* FIXME: could use - sign here to avoid conj below, but
                             * this probably just sets our sign convention relative to
                             * detection pipeline */
                            double complex phase_rhotimesr = 0.5 * (1 + u2) * creal(tmp) + I * u * cimag(tmp);
                            const double abs_rhotimesr_2 = cabs2(phase_rhotimesr);
                            const double abs_rhotimesr = sqrt(abs_rhotimesr_2);
                            phase_rhotimesr /= abs_rhotimesr;
                            i0arg_complex += exp_i_toaphoa[iifo] * exp_i(-w1s[iifo] * t) * phase_rhotimesr * gsl_pow_2(snrs[iifo]);
                        }
                        const double i0arg = cabs(i0arg_complex);
                        accum1 = logaddexp(accum1, log(gsl_sf_bessel_I0_scaled(i0arg)) + i0arg - 0.5 * gsl_stats_wtss_m(w_toas, 1, dtau, 1, nifos, t));
                    }

                    /* Loop over detectors */
                    for (iifo = 0; iifo < nifos; iifo++)
                    {
                        const double complex tmp = F[iifo] * exp_i_twopsi;
                        /* FIXME: could use - sign here to avoid conj below, but
                         * this probably just sets our sign convention relative to
                         * detection pipeline */
                        double complex phase_rhotimesr = 0.5 * (1 + u2) * creal(tmp) + I * u * cimag(tmp);
                        const double abs_rhotimesr_2 = cabs2(phase_rhotimesr);
                        const double abs_rhotimesr = sqrt(abs_rhotimesr_2);

                        A += abs_rhotimesr_2;
                        B += abs_rhotimesr * snrs[iifo];
                    }
                    A *= -0.5;

                    {
                        const double middle_breakpoint = -2 * A / B;
                        const double lower_breakpoint = 1 / (1 / middle_breakpoint + sqrt(log(eta) / A));
                        const double upper_breakpoint = 1 / (1 / middle_breakpoint - sqrt(log(eta) / A));
                        breakpoints[num_breakpoints++] = min_distance;
                        if(lower_breakpoint > breakpoints[num_breakpoints-1] && lower_breakpoint < max_distance)
                            breakpoints[num_breakpoints++] = lower_breakpoint;
                        if(middle_breakpoint > breakpoints[num_breakpoints-1] && middle_breakpoint < max_distance)
                            breakpoints[num_breakpoints++] = middle_breakpoint;
                        if(upper_breakpoint > breakpoints[num_breakpoints-1] && upper_breakpoint < max_distance)
                            breakpoints[num_breakpoints++] = upper_breakpoint;
                        breakpoints[num_breakpoints++] = max_distance;
                    }

                    {
                        /*
                         * Set log_offset to the maximum of the logarithm of the
                         * radial integrand evaluated at all of the breakpoints. */
                        int ibreakpoint;
                        for (ibreakpoint = 0; ibreakpoint < num_breakpoints; ibreakpoint++)
                        {
                            const double new_log_offset = log_radial_integrand(
                                breakpoints[ibreakpoint], A, B, prior_distance_power);
                            if (new_log_offset < INFINITY && new_log_offset > log_offset)
                                log_offset = new_log_offset;
                        }
                    }

                    {
                        /* Perform adaptive integration. Stop when a relative
                         * accuracy of 0.05 has been reached. */
                        inner_integrand_params integrand_params = {A, B, log_offset, prior_distance_power};
                        const gsl_function func = {radial_integrand, &integrand_params};
                        double result, abserr;
                        int ret = gsl_integration_qagp(&func, &breakpoints[0], num_breakpoints, DBL_MIN, 0.05, subdivision_limit, workspace, &result, &abserr);

                        /* If the integrator failed, then record the GSL error
                         * value for later reporting when we leave the parallel
                         * section. Then, break out of the loop. */
                        if (ret != GSL_SUCCESS)
                        {
                            gsl_errno = ret;
                            gsl_integration_workspace_free(workspace);
                            goto skip;
                        }

                        /* Take the logarithm and put the log-normalization back in. */
                        result = log(result) + integrand_params.log_offset + accum1;

                        /* Accumulate result. */
                        accum = logaddexp(accum, result);
                    }
                }
            }
            /* Discard workspace for adaptive integrator. */
            gsl_integration_workspace_free(workspace);

            /* Store log posterior. */
            P[ipix] = accum;
        }

        skip: /* this statement intentionally left blank */;
    }

    /* Restore old error handler. */
    gsl_set_error_handler(old_handler);

    /* Free permutation. */
    gsl_permutation_free(pix_perm);

    /* Check if there was an error in any thread evaluating any pixel. If there
     * was, raise the error and return. */
    if (gsl_errno != GSL_SUCCESS)
    {
        free(P);
        GSL_ERROR_NULL(gsl_strerror(gsl_errno), gsl_errno);
    }

    /* Exponentiate and normalize posterior. */
    pix_perm = get_pixel_ranks(*npix, P);
    if (!pix_perm)
    {
        free(P);
        return NULL;
    }
    exp_normalize(*npix, P, pix_perm);
    gsl_permutation_free(pix_perm);

    return P;
}
Esempio n. 27
0
int
gsl_linalg_QRPT_update (gsl_matrix * Q, gsl_matrix * R,
                        const gsl_permutation * p,
                        gsl_vector * w, const gsl_vector * v)
{
  const size_t M = R->size1;
  const size_t N = R->size2;

  if (Q->size1 != M || Q->size2 != M)
    {
      GSL_ERROR ("Q matrix must be M x M if R is M x N", GSL_ENOTSQR);
    }
  else if (w->size != M)
    {
      GSL_ERROR ("w must be length M if R is M x N", GSL_EBADLEN);
    }
  else if (v->size != N)
    {
      GSL_ERROR ("v must be length N if R is M x N", GSL_EBADLEN);
    }
  else
    {
      size_t j, k;
      double w0;

      /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0) 

         J_1^T .... J_(n-1)^T w = +/- |w| e_1

         simultaneously applied to R,  H = J_1^T ... J^T_(n-1) R
         so that H is upper Hessenberg.  (12.5.2) */

      for (k = M - 1; k > 0; k--)
        {
          double c, s;
          double wk = gsl_vector_get (w, k);
          double wkm1 = gsl_vector_get (w, k - 1);

          create_givens (wkm1, wk, &c, &s);
          apply_givens_vec (w, k - 1, k, c, s);
          apply_givens_qr (M, N, Q, R, k - 1, k, c, s);
        }

      w0 = gsl_vector_get (w, 0);

      /* Add in w v^T  (Equation 12.5.3) */

      for (j = 0; j < N; j++)
        {
          double r0j = gsl_matrix_get (R, 0, j);
          size_t p_j = gsl_permutation_get (p, j);
          double vj = gsl_vector_get (v, p_j);
          gsl_matrix_set (R, 0, j, r0j + w0 * vj);
        }

      /* Apply Givens transformations R' = G_(n-1)^T ... G_1^T H  
         Equation 12.5.4 */

     for (k = 1; k < GSL_MIN(M,N+1); k++)
        {
          double c, s;
          double diag = gsl_matrix_get (R, k - 1, k - 1);
          double offdiag = gsl_matrix_get (R, k, k - 1);

          create_givens (diag, offdiag, &c, &s);
          apply_givens_qr (M, N, Q, R, k - 1, k, c, s);

          gsl_matrix_set (R, k, k - 1, 0.0);    /* exact zero of G^T */
        }

      return GSL_SUCCESS;
    }
}
Esempio n. 28
0
static int
covar_QRPT (gsl_matrix * r, gsl_permutation * perm,
            const double epsrel, gsl_matrix * covar)
{
  /* Form the inverse of R in the full upper triangle of R */

  double tolr = epsrel * fabs(gsl_matrix_get(r, 0, 0));
  const size_t n = r->size2;
  size_t i, j, k;
  size_t kmax = 0;

  for (k = 0 ; k < n ; k++)
    {
      double rkk = gsl_matrix_get(r, k, k);

      if (fabs(rkk) <= tolr)
        {
          break;
        }

      gsl_matrix_set(r, k, k, 1.0/rkk);

      for (j = 0; j < k ; j++)
        {
          double t = gsl_matrix_get(r, j, k) / rkk;
          gsl_matrix_set (r, j, k, 0.0);

          for (i = 0; i <= j; i++)
            {
              double rik = gsl_matrix_get (r, i, k);
              double rij = gsl_matrix_get (r, i, j);
              
              gsl_matrix_set (r, i, k, rik - t * rij);
            }
        }
      kmax = k;
    }

  /* Form the full upper triangle of the inverse of R^T R in the full
     upper triangle of R */

  for (k = 0; k <= kmax ; k++)
    {
      for (j = 0; j < k; j++)
        {
          double rjk = gsl_matrix_get (r, j, k);

          for (i = 0; i <= j ; i++)
            {
              double rij = gsl_matrix_get (r, i, j);
              double rik = gsl_matrix_get (r, i, k);

              gsl_matrix_set (r, i, j, rij + rjk * rik);
            }
        }
      
      {
        double t = gsl_matrix_get (r, k, k);

        for (i = 0; i <= k; i++)
          {
            double rik = gsl_matrix_get (r, i, k);

            gsl_matrix_set (r, i, k, t * rik);
          };
      }
    }

  /* Form the full lower triangle of the covariance matrix in the
     strict lower triangle of R and in w */

  for (j = 0 ; j < n ; j++)
    {
      size_t pj = gsl_permutation_get (perm, j);
      
      for (i = 0; i <= j; i++)
        {
          size_t pi = gsl_permutation_get (perm, i);

          double rij;

          if (j > kmax)
            {
              gsl_matrix_set (r, i, j, 0.0);
              rij = 0.0 ;
            }
          else 
            {
              rij = gsl_matrix_get (r, i, j);
            }

          if (pi > pj)
            {
              gsl_matrix_set (r, pi, pj, rij); 
            } 
          else if (pi < pj)
            {
              gsl_matrix_set (r, pj, pi, rij);
            }

        }
      
      { 
        double rjj = gsl_matrix_get (r, j, j);
        gsl_matrix_set (covar, pj, pj, rjj);
      }
    }

     
  /* symmetrize the covariance matrix */

  for (j = 0 ; j < n ; j++)
    {
      for (i = 0; i < j ; i++)
        {
          double rji = gsl_matrix_get (r, j, i);

          gsl_matrix_set (covar, j, i, rji);
          gsl_matrix_set (covar, i, j, rji);
        }
    }

  return GSL_SUCCESS;
}
Esempio n. 29
0
/* read the configuration file and the graph */
chaincolln chaincolln_readdata(void) {
  FILE *fileptr, *initzsfile;
  int i, j, k, ndom, nreln, d, r, nitem, dim, maxclass, initclass, relcl, ndim, 
	domlabel, clusterflag, itemind, nchains, cind, zind;
  int *domlabels, *participants, participant;
  double val;
  double nig[DISTSIZE];
  domain *doms;
  relation rn;
  int *initclasses, ***edgecounts, *relsizes;
  char prefix[MAXSTRING];

  chaincolln cc;
  chain c, c0;
#ifdef GSL
  gsl_rng *rng;
  const gsl_rng_type *T;
  gsl_permutation *perm ;
  size_t N;

  gsl_rng_env_setup();
  T = gsl_rng_default;
  rng = gsl_rng_alloc(T);
#endif 

  fprintf(stdout,"A\n");
  nchains = ps.nchains+1;
  nig[0] = ps.m; nig[1] = ps.v; nig[2] = ps.a; nig[3] = ps.b; 
  
  fileptr = fopen(ps.configfile,"r");
  if (fileptr == NULL) {
    fprintf(stderr, "couldn't read config file\n"); exit(1); 
  }

  /* initial read of ps.configfile to get ps.maxdim, ps.maxrel, ps.maxitem, 
     ps.maxclass */
  fscanf(fileptr, "%s", prefix);
  fscanf(fileptr, "%d %d", &ndom, &nreln);
  relsizes=  (int *) my_malloc(nreln*sizeof(int));
  ps.maxrel = nreln;
  ps.maxitem = 0; ps.maxclass = 0;
  for (d = 0; d < ndom; d++) {
    fscanf(fileptr, "%d %d %d %d", &nitem, &maxclass, &initclass, &clusterflag);
    if (nitem > ps.maxitem) {
      ps.maxitem = nitem;
    }
    if (maxclass > ps.maxclass) {
      ps.maxclass= maxclass;
    }
  }
  fprintf(stdout,"B\n");
  ps.maxdim = 0;
  for (r = 0; r < nreln; r++) {
    fscanf(fileptr, "%d", &ndim);
    relsizes[r] = ndim;
    if (ndim > ps.maxdim) {
      ps.maxdim = ndim;
    }
    for (dim=0; dim < ndim; dim++) {
      fscanf(fileptr, "%d", &domlabel);
    }
  }
  fclose(fileptr);

  fprintf(stdout,"C\n");
  domlabels=	 (int *) my_malloc(ps.maxdim*sizeof(int));
  participants=  (int *) my_malloc(ps.maxdim*sizeof(int));
  initclasses =  (int *) my_malloc(ps.maxitem*sizeof(int));

  fprintf(stdout,"D \n");
  /* initial read of ps.graphname to get ps.maxobjtuples */
  edgecounts =  (int ***) my_malloc(ps.maxrel*sizeof(int **));
  for (i = 0; i < ps.maxrel; i++) {
    edgecounts[i] =  (int **) my_malloc(ps.maxdim*sizeof(int *));
    for (j = 0; j < ps.maxdim; j++) {
      edgecounts[i][j] =  (int *) my_malloc(ps.maxitem*sizeof(int));
      for (k = 0; k < ps.maxitem; k++) {
        edgecounts[i][j][k] = 0;
      }
    }
  }
  ps.maxobjtuples = 0;

  fprintf(stdout,"D2 \n");
  fileptr = fopen(ps.graphname,"r");
  if (fileptr == NULL) {
    fprintf(stderr, "couldn't read graph\n"); exit(1); 
  }
  while( fscanf( fileptr, " %d", &r)!=EOF ) {
    fprintf(stdout,"%s %d %d\n",__FILE__,__LINE__,r);
    ndim = relsizes[r];
    fprintf(stdout,"%s %d %d\n",__FILE__,__LINE__,ndim);
    for (dim = 0; dim < ndim; dim++) {
      fscanf(fileptr, "%d", &participant);
      participants[dim] = participant;
    }
    fscanf(fileptr, "%lf", &val); 

    for (dim = 0; dim < ndim; dim++) {
      fprintf(stdout,"D2 %d %d %d \n",r,dim,participants[dim]);
        edgecounts[r][dim][participants[dim]]++;
      fprintf(stdout,"D2 %d %d %d \n",r,dim,participants[dim]);
    }
  }
  fprintf(stdout,"E\n");
  fclose(fileptr);
  for (i = 0; i < ps.maxrel; i++) {
    for (j = 0; j < ps.maxdim; j++) {
      for (k = 0; k < ps.maxitem; k++) {
        if (edgecounts[i][j][k] > ps.maxobjtuples) {
          ps.maxobjtuples = edgecounts[i][j][k];
        }
        edgecounts[i][j][k]= 0;
      }
    }
  }

  fprintf(stdout,"F\n");
  free(relsizes); 
  for (i = 0; i < ps.maxrel; i++) {
    for (j = 0; j < ps.maxdim; j++) {
      free(edgecounts[i][j]);
    }
    free(edgecounts[i]);
  }
  free(edgecounts);


  fprintf(stdout,"G\n");
  /* second read of ps.configfile where we set up datastructures */

  fileptr = fopen(ps.configfile,"r");
  if (ps.outsideinit) {
    initzsfile= fopen(ps.initfile,"r");
    if (initzsfile == NULL) {
      fprintf(stderr, "couldn't read initzsfile\n"); exit(1); 
    }
  } else {
    initzsfile = NULL;
  }

  fprintf(stdout,"H\n");
  fscanf(fileptr, "%s", prefix);
  fscanf(fileptr, "%d %d", &ndom, &nreln);

  cc = chaincolln_create(nchains, ndom, nreln, prefix);
  c0 = chaincolln_getchain(cc, 0);

  fprintf(stdout,"I\n");
  /* read domains */
  /* input file: nitem maxclass initclass clusterflag*/
  for (d = 0; d < ndom; d++) {
    fscanf(fileptr, "%d %d %d %d", &nitem, &maxclass, &initclass, &clusterflag);
#ifdef GSL
    N = nitem; 
#endif
    if (ps.outsideinit) {
      for (zind = 0; zind < nitem; zind++) {
        fscanf(initzsfile, "%d", &initclasses[zind]);
      }
    }
  fprintf(stdout,"J\n");

    /* add domains and items to chains */
    for (cind = 0; cind < nchains; cind++) {
      c = chaincolln_getchain(cc, cind);
      chain_adddomain(c, d, nitem, maxclass, clusterflag, ps.alpha,
		      ps.alphahyp, initclasses);
#ifdef GSL
      perm =  gsl_permutation_alloc(N);
      gsl_permutation_init(perm);
      gsl_ran_shuffle(rng, perm->data, N, sizeof(size_t)); 
#endif
      /* assign items to classes */
      relcl = 0;
      for (i = 0; i < nitem; i++) {
        if (ps.outsideinit) {
	  chain_additemtoclass(c, d, i, initclasses[i]);
	} else { 
          if (relcl == initclass) relcl = 0; 

	  /* without the GNUSL, each chain gets initialized the same way. This
	   * is suboptimal */
	  itemind = i;
#ifdef GSL
          itemind = gsl_permutation_get(perm, i);
#endif
          chain_additemtoclass(c, d, itemind, relcl);
          relcl++;
        }
      }
#ifdef GSL
      gsl_permutation_free(perm);
#endif
    }
  }
#ifdef GSL
  gsl_rng_free(rng);
#endif
  
  fprintf(stdout,"K\n");
  /* read relations*/
  /* input file: ndim d0 ... dn */

  for (r = 0; r < nreln; r++) {
    fscanf(fileptr, "%d", &ndim);
    for (dim=0; dim < ndim; dim++) {
      fscanf(fileptr, "%d", &domlabel);
      domlabels[dim] = domlabel;
    }
    for (cind = 0; cind < nchains; cind++) {
      c = chaincolln_getchain(cc, cind);
      chain_addrelation(c, r, ndim, ps.betaprop, ps.betamag, nig, domlabels);
    }
  }
  if (ps.outsideinit) {
    fclose(initzsfile);    
  }

  fprintf(stdout,"L\n");
  fclose(fileptr);
  /* second read of ps.graphname: store edges*/
  fileptr = fopen(ps.graphname,"r");
  /* input file: relind p0 p1 p2 .. pn val */
  while( fscanf( fileptr, " %d", &r)!= EOF ) {
    ndim = relation_getdim( chain_getrelation(c0, r) );
    doms = relation_getdoms( chain_getrelation(c0, r) ); 
    for (dim = 0; dim < ndim; dim++) {
      fscanf(fileptr, "%d", &participant);
      fprintf(stdout,"M %d %d\n",dim,participant);
      participants[dim] = participant;
      domlabels[dim] = domain_getlabel(doms[dim]); 
    }
    
    for (i = 0; i < ndim; i++) {
      for (j = 0; j < i; j++) {
        if (participants[i] == participants[j] && 
	    domlabels[i] == domlabels[j]) {
	  fprintf(stderr, "Self links not allowed.\n"); exit(1);  
	}
      } 
    } 

    fscanf(fileptr, "%lf", &val);
      fprintf(stderr,"%d\n",nchains);
    for (cind = 0; cind < nchains; cind++) {
      c = chaincolln_getchain(cc, cind);
      chain_addedge(c, r, val, participants); 
      
      rn = chain_getrelation(c, r);
      
      if (doubleeq(val, 0)) {
	relation_setmissing(rn, 1);	
      }
      
      if (val > 1.5 && relation_getdtype(rn) != CONT) {
	relation_setdtype(rn, FREQ);	
      }
      
      if (!doubleeq(val, (int) val)) {
	relation_setdtype(rn, CONT);	
	relation_setmissing(rn, 1); /* XXX: no sparse continuous matrices */	
      }	
      
    }
  }

  fprintf(stderr,"N\n");
  fclose(fileptr);

  for (cind = 0; cind < nchains; cind++) {
    c = chaincolln_getchain(cc, cind);
    for (i = 0; i < chain_getndomains(c); i++) {
      chain_updatedomprobs(c, i);
    }
  }

  fprintf(stderr,"O\n");
  free(domlabels); free(participants); free(initclasses);

  return cc;
}
Esempio n. 30
0
void generate_kmeans_centres(const double * X,const int dim_x,const int dim_n,const int dim_b,double * centres){
    int i,N, iter,k,num_ix,num_empty_clusters;
    int* ind_,*empty_clusters,*minDi,*ix;
    size_t *sDi;
    double * M, * D,*minDv,*X_ix,*X_ix_m,*X_ink,*sDv;
    double dist_old, dist_new;
    dist_old = 10000;
    gsl_permutation *ind;
    const gsl_rng_type *T;
    gsl_rng * r;
    // finish declaration
    N = dim_n;
    gsl_rng_env_setup();

    T = gsl_rng_default;
    r = gsl_rng_alloc(T);
    gsl_rng_set(r,3);
    ind = gsl_permutation_alloc(N);
    gsl_permutation_init(ind);
    gsl_ran_shuffle(r,ind->data,N,sizeof(size_t));
    //    gsl_permutation_fprintf(stdout,ind,"%u");
    ind_ = malloc(dim_b*sizeof(int));
    for (i=0;i<dim_b;i++){
        ind_[i] = (int)(gsl_permutation_get(ind,i));
    }
    M = malloc(dim_x*dim_b*sizeof(double));
    D = malloc(dim_b*dim_n*sizeof(double));
    minDv = malloc(dim_n*sizeof(double));
    minDi = malloc(dim_n*sizeof(int));
    sDv   = malloc(dim_n*sizeof(double));
    sDi   = malloc(dim_n*sizeof(int));
    ix    = malloc(dim_n*sizeof(int));
    X_ix_m= malloc(dim_x*1*sizeof(double));
    X_ink = malloc(dim_x*sizeof(double));

    ccl_get_sub_mat_cols(X,dim_x,dim_n,ind_,dim_b,M);
    empty_clusters = malloc(dim_b*sizeof(int));
    num_empty_clusters = 0;
    for (iter=0;iter<1001;iter++){
        num_empty_clusters = 0;
        ccl_mat_distance(M,dim_x,dim_b,X,dim_x,dim_n,D);
        ccl_mat_min(D,dim_b,dim_n,1,minDv,minDi);

        memcpy(sDv,minDv,dim_n*sizeof(double));
        memset(empty_clusters,0,dim_b*sizeof(int));
        for (k=0;k<dim_b;k++){
            memset(ix,0,dim_n*sizeof(int));
            num_ix = ccl_find_index_int(minDi,dim_n,1,k,ix);
            //           print_mat_i(ix,1,dim_n);
            X_ix  = malloc(dim_x*num_ix*sizeof(double));
            if(num_ix!=0){// not empty
                ccl_get_sub_mat_cols(X,dim_x,dim_n,ix,num_ix,X_ix);
                ccl_mat_mean(X_ix,dim_x,num_ix,0,X_ix_m);
                ccl_mat_set_col(M,dim_x,dim_b,k,X_ix_m);
            }
            else{
                empty_clusters[num_empty_clusters] = k;
                num_empty_clusters ++;
            }
            free(X_ix);
        }
        dist_new = ccl_vec_sum(minDv,dim_n);
        if (num_empty_clusters == 0){
            if(fabs(dist_old-dist_new)<1E-10) {
                memcpy(centres,M,dim_x*dim_b*sizeof(double));
                return;
            }
        }
        else{
            //           print_mat_i(empty_clusters,1,num_empty_clusters);
            gsl_sort_index(sDi,sDv,1,dim_n);
            gsl_sort(sDv,1,dim_n);
            for (k=0;k<num_empty_clusters;k++){
                int ii = (int) sDi[dim_n-k-1];
                //print_mat_d(X,dim_x,dim_n);
                ccl_get_sub_mat_cols(X,dim_x,dim_n,&ii,1,X_ink);
                ccl_mat_set_col(M,dim_x,dim_b,empty_clusters[k],X_ink);
            }
        }
        dist_old = dist_new;
    }
    memcpy(centres,M,dim_x*dim_b*sizeof(double));
    gsl_permutation_free(ind);
    gsl_rng_free(r);
    free(ind_);
    free(empty_clusters);
    free(minDi);
    free(M);
    free(minDv);
    free(X_ink);
    free(ix);
    free(sDi);
    free(sDv);
    free(X_ix_m);
    free(D);
}