Esempio n. 1
0
File: c2txy.c Progetto: tohka/celes
void iauC2txy(double tta, double ttb, double uta, double utb,
              double x, double y, double xp, double yp,
              double rc2t[3][3])
/*
**  - - - - - - - - -
**   i a u C 2 t x y
**  - - - - - - - - -
**
**  Form the celestial to terrestrial matrix given the date, the UT1,
**  the CIP coordinates and the polar motion.  IAU 2000.
**
**  Status:  support function.
**
**  Given:
**     tta,ttb  double         TT as a 2-part Julian Date (Note 1)
**     uta,utb  double         UT1 as a 2-part Julian Date (Note 1)
**     x,y      double         Celestial Intermediate Pole (Note 2)
**     xp,yp    double         coordinates of the pole (radians, Note 3)
**
**  Returned:
**     rc2t     double[3][3]   celestial-to-terrestrial matrix (Note 4)
**
**  Notes:
**
**  1) The TT and UT1 dates tta+ttb and uta+utb are Julian Dates,
**     apportioned in any convenient way between the arguments uta and
**     utb.  For example, JD(UT1)=2450123.7 could be expressed in any o
**     these ways, among others:
**
**             uta            utb
**
**         2450123.7           0.0       (JD method)
**         2451545.0       -1421.3       (J2000 method)
**         2400000.5       50123.2       (MJD method)
**         2450123.5           0.2       (date & time method)
**
**     The JD method is the most natural and convenient to use in
**     cases where the loss of several decimal digits of resolution is
**     acceptable.  The J2000 and MJD methods are good compromises
**     between resolution and convenience.  In the case of uta,utb, the
**     date & time method is best matched to the Earth rotation angle
**     algorithm used:  maximum precision is delivered when the uta
**     argument is for 0hrs UT1 on the day in question and the utb
**     argument lies in the range 0 to 1, or vice versa.
**
**  2) The Celestial Intermediate Pole coordinates are the x,y
**     components of the unit vector in the Geocentric Celestial
**     Reference System.
**
**  3) The arguments xp and yp are the coordinates (in radians) of the
**     Celestial Intermediate Pole with respect to the International
**     Terrestrial Reference System (see IERS Conventions 2003),
**     measured along the meridians to 0 and 90 deg west respectively.
**
**  4) The matrix rc2t transforms from celestial to terrestrial
**     coordinates:
**
**        [TRS] = RPOM * R_3(ERA) * RC2I * [CRS]
**
**              = rc2t * [CRS]
**
**     where [CRS] is a vector in the Geocentric Celestial Reference
**     System and [TRS] is a vector in the International Terrestrial
**     Reference System (see IERS Conventions 2003), ERA is the Earth
**     Rotation Angle and RPOM is the polar motion matrix.
**
**  5) Although its name does not include "00", This function is in fact
**     specific to the IAU 2000 models.
**
**  Called:
**     iauC2ixy     celestial-to-intermediate matrix, given X,Y
**     iauEra00     Earth rotation angle, IAU 2000
**     iauSp00      the TIO locator s', IERS 2000
**     iauPom00     polar motion matrix
**     iauC2tcio    form CIO-based celestial-to-terrestrial matrix
**
** Reference:
**
**     McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
**     IERS Technical Note No. 32, BKG (2004)
**
**  This revision:  2009 April 1
**
**  Original version 2012-03-01
**
**  Copyright (C) 2013 Naoki Arita.  See notes at end.
*/
{
   double rc2i[3][3], era, sp, rpom[3][3];


/* Form the celestial-to-intermediate matrix for this TT. */
   iauC2ixy(tta, ttb, x, y, rc2i);

/* Predict the Earth rotation angle for this UT1. */
   era = iauEra00(uta, utb);

/* Estimate s'. */
   sp = iauSp00(tta, ttb);

/* Form the polar motion matrix. */
   iauPom00(xp, yp, sp, rpom);

/* Combine to form the celestial-to-terrestrial matrix. */
   iauC2tcio(rc2i, era, rpom, rc2t);

   return;

/*----------------------------------------------------------------------
**
**  Celes is a wrapper of the SOFA Library for Ruby.
**
**  This file is redistributed and relicensed in accordance with 
**  the SOFA Software License (http://www.iausofa.org/tandc.html).
**
**  The original library is available from IAU Standards of
**  Fundamental Astronomy (http://www.iausofa.org/).
**
**
**
**
**
**  Copyright (C) 2013, Naoki Arita
**  All rights reserved.
**
**  Redistribution and use in source and binary forms, with or without
**  modification, are permitted provided that the following conditions
**  are met:
**
**  1 Redistributions of source code must retain the above copyright
**    notice, this list of conditions and the following disclaimer.
**
**  2 Redistributions in binary form must reproduce the above copyright
**    notice, this list of conditions and the following disclaimer in
**    the documentation and/or other materials provided with the
**    distribution.
**
**  3 Neither the name of the Standards Of Fundamental Astronomy Board,
**    the International Astronomical Union nor the names of its
**    contributors may be used to endorse or promote products derived
**    from this software without specific prior written permission.
**
**  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
**  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
**  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
**  FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
**  COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
**  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
**  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
**  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
**  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
**  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
**  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
**  POSSIBILITY OF SUCH DAMAGE.
**
**--------------------------------------------------------------------*/
}
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
    size_t numRow,numVec;
    mxArray *retMat;
    double *xVec, *retData;
    double TT1, TT2, UT11, UT12;
    //The if-statements below should properly initialize all of the EOP.
    //The following initializations to zero are to suppress warnings when
    //compiling with -Wconditional-uninitialized.
    double dX=0;
    double dY=0;
    double deltaT=0;
    double LOD=0;
    double GCRS2TIRS[3][3];
    //Polar motion matrix. ITRS=POM*TIRS. We will just be setting it to the
    //identity matrix as polar motion is not taken into account when going
    //to the TIRS.
    double rident[3][3]={{1,0,0},{0,1,0},{0,0,1}};
    double Omega[3];//The rotation vector in the TIRS
    
    if(nrhs<3||nrhs>6){
        mexErrMsgTxt("Wrong number of inputs");
    }
    
    if(nlhs>2) {
        mexErrMsgTxt("Wrong number of outputs.");
    }
    
    checkRealDoubleArray(prhs[0]);
    
    numRow = mxGetM(prhs[0]);
    numVec = mxGetN(prhs[0]);
    
    if(!(numRow==3||numRow==6)) {
        mexErrMsgTxt("The input vector has a bad dimensionality.");
    }
    
    xVec=(double*)mxGetData(prhs[0]);
    TT1=getDoubleFromMatlab(prhs[1]);
    TT2=getDoubleFromMatlab(prhs[2]);
    
    //If some values from the function getEOP will be needed
    if(nrhs<=5||mxIsEmpty(prhs[3])||mxIsEmpty(prhs[4])||mxIsEmpty(prhs[5])) {
        mxArray *retVals[5];
        double *dXdY;
        mxArray *JulUTCMATLAB[2];
        double JulUTC[2];
        int retVal;
        
        //Get the time in UTC to look up the parameters by going to TAI and
        //then UTC.
        retVal=iauTttai(TT1, TT2, &JulUTC[0], &JulUTC[1]);
        if(retVal!=0) {
            mexErrMsgTxt("An error occurred computing TAI.");
        }
        retVal=iauTaiutc(JulUTC[0], JulUTC[1], &JulUTC[0], &JulUTC[1]);
        switch(retVal){
            case 1:
                mexWarnMsgTxt("Dubious Date entered.");
                break;
            case -1:
                mexErrMsgTxt("Unacceptable date entered");
                break;
            default:
                break;
        }
        
        JulUTCMATLAB[0]=doubleMat2Matlab(&JulUTC[0],1,1);
        JulUTCMATLAB[1]=doubleMat2Matlab(&JulUTC[1],1,1);

        //Get the Earth orientation parameters for the given date.
        mexCallMATLAB(5,retVals,2,JulUTCMATLAB,"getEOP");
        mxDestroyArray(JulUTCMATLAB[0]);
        mxDestroyArray(JulUTCMATLAB[1]);
        
        //%We do not need the polar motion coordinates.
        mxDestroyArray(retVals[0]);
        
        checkRealDoubleArray(retVals[1]);
        if(mxGetM(retVals[1])!=2||mxGetN(retVals[1])!=1) {
            mxDestroyArray(retVals[1]);
            mxDestroyArray(retVals[2]);
            mxDestroyArray(retVals[3]);
            mxDestroyArray(retVals[4]);
            mexErrMsgTxt("Error using the getEOP function.");
            return;
        }
        
        dXdY=(double*)mxGetData(retVals[1]);
        dX=dXdY[0];
        dY=dXdY[1];
        
        //This is TT-UT1
        deltaT=getDoubleFromMatlab(retVals[3]);
        LOD=getDoubleFromMatlab(retVals[4]);
        //Free the returned arrays.
        mxDestroyArray(retVals[1]);
        mxDestroyArray(retVals[2]);
        mxDestroyArray(retVals[3]);
        mxDestroyArray(retVals[4]);
    }
    
    //If deltaT=TT-UT1 is given
    if(nrhs>3&&!mxIsEmpty(prhs[3])) {
        deltaT=getDoubleFromMatlab(prhs[3]);
    }
    
    //Obtain UT1 from terestrial time and deltaT.
    iauTtut1(TT1, TT2, deltaT, &UT11, &UT12);
    
    //Get celestial pole offsets, if given.
    if(nrhs>4&&!mxIsEmpty(prhs[4])) {
        size_t dim1, dim2;
        
        checkRealDoubleArray(prhs[4]);
        dim1 = mxGetM(prhs[4]);
        dim2 = mxGetN(prhs[4]);
        
        if((dim1==2&&dim2==1)||(dim1==1&&dim2==2)) {
            double *dXdY=(double*)mxGetData(prhs[4]);
        
            dX=dXdY[0];
            dY=dXdY[1];
        } else {
            mexErrMsgTxt("The celestial pole offsets have the wrong dimensionality.");
            return;
        }
    }
    
    //If LOD is given
    if(nrhs>5&&mxIsEmpty(prhs[5])) {
        LOD=getDoubleFromMatlab(prhs[5]);
    }
    
    //Compute the rotation matrix for going from GCRS to ITRS as well as
    //the instantaneous vector angular momentum due to the Earth's rotation
    //in TIRS coordinates.
    {
    double x, y, s, era;
    double rc2i[3][3];
    double omega;
        
    //Get the X,Y coordinates of the Celestial Intermediate Pole (CIP) and
    //the Celestial Intermediate Origin (CIO) locator s, using the IAU 2006
    //precession and IAU 2000A nutation models.
    iauXys06a(TT1, TT2, &x, &y, &s);
    
    //Add the CIP offsets.
    x += dX;
    y += dY;
    
    //Get the GCRS-to-CIRS matrix
    iauC2ixys(x, y, s, rc2i);
    
    //Find the Earth rotation angle for the given UT1 time. 
    era = iauEra00(UT11, UT12);
    
    //Set the polar motion matrix to the identity matrix so that the
    //conversion stops at the TIRS instead of the ITRS.

    //Combine the GCRS-to-CIRS matrix, the Earth rotation angle, and use
    //the identity matrix instead of the polar motion matrix to get a
    //to get the rotation matrix to go from GCRS to TIRS.
    iauC2tcio(rc2i, era, rident,GCRS2TIRS);
    
    //Next, to be able to transform the velocity, the rotation of the Earth
    //has to be taken into account. 
    
    //The angular velocity vector of the Earth in the TIRS in radians.
    omega=getScalarMatlabClassConst("Constants","IERSMeanEarthRotationRate");
    //Adjust for LOD
    omega=omega*(1-LOD/86400.0);//86400.0 is the number of seconds in a TT
                                //day.
    Omega[0]=0;
    Omega[1]=0;
    Omega[2]=omega;
    }
    
    //Allocate space for the return vectors.
    retMat=mxCreateDoubleMatrix(numRow,numVec,mxREAL);
    retData=(double*)mxGetData(retMat);
    
    {
        size_t curVec;
        for(curVec=0;curVec<numVec;curVec++) {
            //Multiply the position vector with the rotation matrix.
            iauRxp(GCRS2TIRS, xVec+numRow*curVec, retData+numRow*curVec);
            
            //If a velocity vector was given.
            if(numRow>3) {
                double *posGCRS=xVec+numRow*curVec;
                double posTIRS[3];
                double *velGCRS=xVec+numRow*curVec+3;//Velocity in GCRS
                double velTIRS[3];
                double *retDataVel=retData+numRow*curVec+3;
                double rotVel[3];
                //If a velocity was provided with the position, first
                //convert to TIRS coordinates, then account for the
                //rotation of the Earth.
                
                //Convert velocity from GCRS to TIRS.
                iauRxp(GCRS2TIRS, velGCRS, velTIRS);
                //Convert position from GCRS to TIRS
                iauRxp(GCRS2TIRS, posGCRS, posTIRS);
                                
                //Evaluate the cross product for the angular velocity due
                //to the Earth's rotation.
                iauPxp(Omega, posTIRS, rotVel);
                
                //Subtract out the instantaneous velocity due to rotation.
                iauPmp(velTIRS, rotVel, retDataVel);
            }
        }
    }
    plhs[0]=retMat;
    
    //If the rotation matrix is desired on the output.
    if(nlhs>1) {
        double *elPtr;
        size_t i,j;
        
        plhs[1]=mxCreateDoubleMatrix(3,3,mxREAL);
        elPtr=(double*)mxGetData(plhs[1]);
        
        for (i=0;i<3;i++) {
            for(j=0;j<3;j++) {
                elPtr[i+3*j]=GCRS2TIRS[i][j];
            }
        }
    }
}
double iauGmst06(double uta, double utb, double tta, double ttb)
/*
**  - - - - - - - - - -
**   i a u G m s t 0 6
**  - - - - - - - - - -
**
**  Greenwich mean sidereal time (consistent with IAU 2006 precession).
**
**  This function is part of the International Astronomical Union's
**  SOFA (Standards Of Fundamental Astronomy) software collection.
**
**  Status:  canonical model.
**
**  Given:
**     uta,utb    double    UT1 as a 2-part Julian Date (Notes 1,2)
**     tta,ttb    double    TT as a 2-part Julian Date (Notes 1,2)
**
**  Returned (function value):
**                double    Greenwich mean sidereal time (radians)
**
**  Notes:
**
**  1) The UT1 and TT dates uta+utb and tta+ttb respectively, are both
**     Julian Dates, apportioned in any convenient way between the
**     argument pairs.  For example, JD=2450123.7 could be expressed in
**     any of these ways, among others:
**
**            Part A        Part B
**
**         2450123.7           0.0       (JD method)
**         2451545.0       -1421.3       (J2000 method)
**         2400000.5       50123.2       (MJD method)
**         2450123.5           0.2       (date & time method)
**
**     The JD method is the most natural and convenient to use in
**     cases where the loss of several decimal digits of resolution
**     is acceptable (in the case of UT;  the TT is not at all critical
**     in this respect).  The J2000 and MJD methods are good compromises
**     between resolution and convenience.  For UT, the date & time
**     method is best matched to the algorithm that is used by the Earth
**     rotation angle function, called internally:  maximum precision is
**     delivered when the uta argument is for 0hrs UT1 on the day in
**     question and the utb argument lies in the range 0 to 1, or vice
**     versa.
**
**  2) Both UT1 and TT are required, UT1 to predict the Earth rotation
**     and TT to predict the effects of precession.  If UT1 is used for
**     both purposes, errors of order 100 microarcseconds result.
**
**  3) This GMST is compatible with the IAU 2006 precession and must not
**     be used with other precession models.
**
**  4) The result is returned in the range 0 to 2pi.
**
**  Called:
**     iauEra00     Earth rotation angle, IAU 2000
**     iauAnp       normalize angle into range 0 to 2pi
**
**  Reference:
**
**     Capitaine, N., Wallace, P.T. & Chapront, J., 2005,
**     Astron.Astrophys. 432, 355
**
**  This revision:  2013 June 18
**
**  SOFA release 2016-05-03
**
**  Copyright (C) 2016 IAU SOFA Board.  See notes at end.
*/
{
   double t, gmst;


/* TT Julian centuries since J2000.0. */
   t = ((tta - DJ00) + ttb) / DJC;

/* Greenwich mean sidereal time, IAU 2006. */
   gmst = iauAnp(iauEra00(uta, utb) +
                  (    0.014506     +
                  (  4612.156534    +
                  (     1.3915817   +
                  (    -0.00000044  +
                  (    -0.000029956 +
                  (    -0.0000000368 )
          * t) * t) * t) * t) * t) * DAS2R);

   return gmst;

/*----------------------------------------------------------------------
**
**  Copyright (C) 2016
**  Standards Of Fundamental Astronomy Board
**  of the International Astronomical Union.
**
**  =====================
**  SOFA Software License
**  =====================
**
**  NOTICE TO USER:
**
**  BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND
**  CONDITIONS WHICH APPLY TO ITS USE.
**
**  1. The Software is owned by the IAU SOFA Board ("SOFA").
**
**  2. Permission is granted to anyone to use the SOFA software for any
**     purpose, including commercial applications, free of charge and
**     without payment of royalties, subject to the conditions and
**     restrictions listed below.
**
**  3. You (the user) may copy and distribute SOFA source code to others,
**     and use and adapt its code and algorithms in your own software,
**     on a world-wide, royalty-free basis.  That portion of your
**     distribution that does not consist of intact and unchanged copies
**     of SOFA source code files is a "derived work" that must comply
**     with the following requirements:
**
**     a) Your work shall be marked or carry a statement that it
**        (i) uses routines and computations derived by you from
**        software provided by SOFA under license to you; and
**        (ii) does not itself constitute software provided by and/or
**        endorsed by SOFA.
**
**     b) The source code of your derived work must contain descriptions
**        of how the derived work is based upon, contains and/or differs
**        from the original SOFA software.
**
**     c) The names of all routines in your derived work shall not
**        include the prefix "iau" or "sofa" or trivial modifications
**        thereof such as changes of case.
**
**     d) The origin of the SOFA components of your derived work must
**        not be misrepresented;  you must not claim that you wrote the
**        original software, nor file a patent application for SOFA
**        software or algorithms embedded in the SOFA software.
**
**     e) These requirements must be reproduced intact in any source
**        distribution and shall apply to anyone to whom you have
**        granted a further right to modify the source code of your
**        derived work.
**
**     Note that, as originally distributed, the SOFA software is
**     intended to be a definitive implementation of the IAU standards,
**     and consequently third-party modifications are discouraged.  All
**     variations, no matter how minor, must be explicitly marked as
**     such, as explained above.
**
**  4. You shall not cause the SOFA software to be brought into
**     disrepute, either by misuse, or use for inappropriate tasks, or
**     by inappropriate modification.
**
**  5. The SOFA software is provided "as is" and SOFA makes no warranty
**     as to its use or performance.   SOFA does not and cannot warrant
**     the performance or results which the user may obtain by using the
**     SOFA software.  SOFA makes no warranties, express or implied, as
**     to non-infringement of third party rights, merchantability, or
**     fitness for any particular purpose.  In no event will SOFA be
**     liable to the user for any consequential, incidental, or special
**     damages, including any lost profits or lost savings, even if a
**     SOFA representative has been advised of such damages, or for any
**     claim by any third party.
**
**  6. The provision of any version of the SOFA software under the terms
**     and conditions specified herein does not imply that future
**     versions will also be made available under the same terms and
**     conditions.
*
**  In any published work or commercial product which uses the SOFA
**  software directly, acknowledgement (see www.iausofa.org) is
**  appreciated.
**
**  Correspondence concerning SOFA software should be addressed as
**  follows:
**
**      By email:  [email protected]
**      By post:   IAU SOFA Center
**                 HM Nautical Almanac Office
**                 UK Hydrographic Office
**                 Admiralty Way, Taunton
**                 Somerset, TA1 2DN
**                 United Kingdom
**
**--------------------------------------------------------------------*/
}
int iauApio13(double utc1, double utc2, double dut1,
              double elong, double phi, double hm, double xp, double yp,
              double phpa, double tc, double rh, double wl,
              iauASTROM *astrom)
/*
**  - - - - - - - - - -
**   i a u A p i o 1 3
**  - - - - - - - - - -
**
**  For a terrestrial observer, prepare star-independent astrometry
**  parameters for transformations between CIRS and observed
**  coordinates.  The caller supplies UTC, site coordinates, ambient air
**  conditions and observing wavelength.
**
**  This function is part of the International Astronomical Union's
**  SOFA (Standards of Fundamental Astronomy) software collection.
**
**  Status:  support function.
**
**  Given:
**     utc1   double      UTC as a 2-part...
**     utc2   double      ...quasi Julian Date (Notes 1,2)
**     dut1   double      UT1-UTC (seconds)
**     elong  double      longitude (radians, east +ve, Note 3)
**     phi    double      geodetic latitude (radians, Note 3)
**     hm     double      height above ellipsoid (m, geodetic Notes 4,6)
**     xp,yp  double      polar motion coordinates (radians, Note 5)
**     phpa   double      pressure at the observer (hPa = mB, Note 6)
**     tc     double      ambient temperature at the observer (deg C)
**     rh     double      relative humidity at the observer (range 0-1)
**     wl     double      wavelength (micrometers, Note 7)
**
**  Returned:
**     astrom iauASTROM*  star-independent astrometry parameters:
**      pmt    double       unchanged
**      eb     double[3]    unchanged
**      eh     double[3]    unchanged
**      em     double       unchanged
**      v      double[3]    unchanged
**      bm1    double       unchanged
**      bpn    double[3][3] unchanged
**      along  double       longitude + s' (radians)
**      xpl    double       polar motion xp wrt local meridian (radians)
**      ypl    double       polar motion yp wrt local meridian (radians)
**      sphi   double       sine of geodetic latitude
**      cphi   double       cosine of geodetic latitude
**      diurab double       magnitude of diurnal aberration vector
**      eral   double       "local" Earth rotation angle (radians)
**      refa   double       refraction constant A (radians)
**      refb   double       refraction constant B (radians)
**
**  Returned (function value):
**            int         status: +1 = dubious year (Note 2)
**                                 0 = OK
**                                -1 = unacceptable date
**
**  Notes:
**
**  1)  utc1+utc2 is quasi Julian Date (see Note 2), apportioned in any
**      convenient way between the two arguments, for example where utc1
**      is the Julian Day Number and utc2 is the fraction of a day.
**
**      However, JD cannot unambiguously represent UTC during a leap
**      second unless special measures are taken.  The convention in the
**      present function is that the JD day represents UTC days whether
**      the length is 86399, 86400 or 86401 SI seconds.
**
**      Applications should use the function iauDtf2d to convert from
**      calendar date and time of day into 2-part quasi Julian Date, as
**      it implements the leap-second-ambiguity convention just
**      described.
**
**  2)  The warning status "dubious year" flags UTCs that predate the
**      introduction of the time scale or that are too far in the future
**      to be trusted.  See iauDat for further details.
**
**  3)  UT1-UTC is tabulated in IERS bulletins.  It increases by exactly
**      one second at the end of each positive UTC leap second,
**      introduced in order to keep UT1-UTC within +/- 0.9s.  n.b. This
**      practice is under review, and in the future UT1-UTC may grow
**      essentially without limit.
**
**  4)  The geographical coordinates are with respect to the WGS84
**      reference ellipsoid.  TAKE CARE WITH THE LONGITUDE SIGN:  the
**      longitude required by the present function is east-positive
**      (i.e. right-handed), in accordance with geographical convention.
**
**  5)  The polar motion xp,yp can be obtained from IERS bulletins.  The
**      values are the coordinates (in radians) of the Celestial
**      Intermediate Pole with respect to the International Terrestrial
**      Reference System (see IERS Conventions 2003), measured along the
**      meridians 0 and 90 deg west respectively.  For many applications,
**      xp and yp can be set to zero.
**
**      Internally, the polar motion is stored in a form rotated onto
**      the local meridian.
**
**  6)  If hm, the height above the ellipsoid of the observing station
**      in meters, is not known but phpa, the pressure in hPa (=mB), is
**      available, an adequate estimate of hm can be obtained from the
**      expression
**
**            hm = -29.3 * tsl * log ( phpa / 1013.25 );
**
**      where tsl is the approximate sea-level air temperature in K
**      (See Astrophysical Quantities, C.W.Allen, 3rd edition, section
**      52).  Similarly, if the pressure phpa is not known, it can be
**      estimated from the height of the observing station, hm, as
**      follows:
**
**            phpa = 1013.25 * exp ( -hm / ( 29.3 * tsl ) );
**
**      Note, however, that the refraction is nearly proportional to the
**      pressure and that an accurate phpa value is important for
**      precise work.
**
**  7)  The argument wl specifies the observing wavelength in
**      micrometers.  The transition from optical to radio is assumed to
**      occur at 100 micrometers (about 3000 GHz).
**
**  8)  It is advisable to take great care with units, as even unlikely
**      values of the input parameters are accepted and processed in
**      accordance with the models used.
**
**  9)  In cases where the caller wishes to supply his own Earth
**      rotation information and refraction constants, the function
**      iauApc can be used instead of the present function.
**
**  10) This is one of several functions that inserts into the astrom
**      structure star-independent parameters needed for the chain of
**      astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.
**
**      The various functions support different classes of observer and
**      portions of the transformation chain:
**
**          functions         observer        transformation
**
**       iauApcg iauApcg13    geocentric      ICRS <-> GCRS
**       iauApci iauApci13    terrestrial     ICRS <-> CIRS
**       iauApco iauApco13    terrestrial     ICRS <-> observed
**       iauApcs iauApcs13    space           ICRS <-> GCRS
**       iauAper iauAper13    terrestrial     update Earth rotation
**       iauApio iauApio13    terrestrial     CIRS <-> observed
**
**      Those with names ending in "13" use contemporary SOFA models to
**      compute the various ephemerides.  The others accept ephemerides
**      supplied by the caller.
**
**      The transformation from ICRS to GCRS covers space motion,
**      parallax, light deflection, and aberration.  From GCRS to CIRS
**      comprises frame bias and precession-nutation.  From CIRS to
**      observed takes account of Earth rotation, polar motion, diurnal
**      aberration and parallax (unless subsumed into the ICRS <-> GCRS
**      transformation), and atmospheric refraction.
**
**  11) The context structure astrom produced by this function is used
**      by iauAtioq and iauAtoiq.
**
**  Called:
**     iauUtctai    UTC to TAI
**     iauTaitt     TAI to TT
**     iauUtcut1    UTC to UT1
**     iauSp00      the TIO locator s', IERS 2000
**     iauEra00     Earth rotation angle, IAU 2000
**     iauRefco     refraction constants for given ambient conditions
**     iauApio      astrometry parameters, CIRS-observed
**
**  This revision:   2013 October 9
**
**  SOFA release 2013-12-02
**
**  Copyright (C) 2013 IAU SOFA Board.  See notes at end.
*/
{
   int j;
   double tai1, tai2, tt1, tt2, ut11, ut12, sp, theta, refa, refb;


/* UTC to other time scales. */
   j = iauUtctai(utc1, utc2, &tai1, &tai2);
   if ( j < 0 ) return -1;
   j = iauTaitt(tai1, tai2, &tt1, &tt2);
   j = iauUtcut1(utc1, utc2, dut1, &ut11, &ut12);
   if ( j < 0 ) return -1;

/* TIO locator s'. */
   sp = iauSp00(tt1, tt2);

/* Earth rotation angle. */
   theta = iauEra00(ut11, ut12);

/* Refraction constants A and B. */
   iauRefco(phpa, tc, rh, wl, &refa, &refb);

/* CIRS <-> observed astrometry parameters. */
   iauApio(sp, theta, elong, phi, hm, xp, yp, refa, refb, astrom);

/* Return any warning status. */
   return j;

/* Finished. */

/*----------------------------------------------------------------------
**
**  Copyright (C) 2013
**  Standards Of Fundamental Astronomy Board
**  of the International Astronomical Union.
**
**  =====================
**  SOFA Software License
**  =====================
**
**  NOTICE TO USER:
**
**  BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND
**  CONDITIONS WHICH APPLY TO ITS USE.
**
**  1. The Software is owned by the IAU SOFA Board ("SOFA").
**
**  2. Permission is granted to anyone to use the SOFA software for any
**     purpose, including commercial applications, free of charge and
**     without payment of royalties, subject to the conditions and
**     restrictions listed below.
**
**  3. You (the user) may copy and distribute SOFA source code to others,
**     and use and adapt its code and algorithms in your own software,
**     on a world-wide, royalty-free basis.  That portion of your
**     distribution that does not consist of intact and unchanged copies
**     of SOFA source code files is a "derived work" that must comply
**     with the following requirements:
**
**     a) Your work shall be marked or carry a statement that it
**        (i) uses routines and computations derived by you from
**        software provided by SOFA under license to you; and
**        (ii) does not itself constitute software provided by and/or
**        endorsed by SOFA.
**
**     b) The source code of your derived work must contain descriptions
**        of how the derived work is based upon, contains and/or differs
**        from the original SOFA software.
**
**     c) The names of all routines in your derived work shall not
**        include the prefix "iau" or "sofa" or trivial modifications
**        thereof such as changes of case.
**
**     d) The origin of the SOFA components of your derived work must
**        not be misrepresented;  you must not claim that you wrote the
**        original software, nor file a patent application for SOFA
**        software or algorithms embedded in the SOFA software.
**
**     e) These requirements must be reproduced intact in any source
**        distribution and shall apply to anyone to whom you have
**        granted a further right to modify the source code of your
**        derived work.
**
**     Note that, as originally distributed, the SOFA software is
**     intended to be a definitive implementation of the IAU standards,
**     and consequently third-party modifications are discouraged.  All
**     variations, no matter how minor, must be explicitly marked as
**     such, as explained above.
**
**  4. You shall not cause the SOFA software to be brought into
**     disrepute, either by misuse, or use for inappropriate tasks, or
**     by inappropriate modification.
**
**  5. The SOFA software is provided "as is" and SOFA makes no warranty
**     as to its use or performance.   SOFA does not and cannot warrant
**     the performance or results which the user may obtain by using the
**     SOFA software.  SOFA makes no warranties, express or implied, as
**     to non-infringement of third party rights, merchantability, or
**     fitness for any particular purpose.  In no event will SOFA be
**     liable to the user for any consequential, incidental, or special
**     damages, including any lost profits or lost savings, even if a
**     SOFA representative has been advised of such damages, or for any
**     claim by any third party.
**
**  6. The provision of any version of the SOFA software under the terms
**     and conditions specified herein does not imply that future
**     versions will also be made available under the same terms and
**     conditions.
*
**  In any published work or commercial product which uses the SOFA
**  software directly, acknowledgement (see www.iausofa.org) is
**  appreciated.
**
**  Correspondence concerning SOFA software should be addressed as
**  follows:
**
**      By email:  [email protected]
**      By post:   IAU SOFA Center
**                 HM Nautical Almanac Office
**                 UK Hydrographic Office
**                 Admiralty Way, Taunton
**                 Somerset, TA1 2DN
**                 United Kingdom
**
**--------------------------------------------------------------------*/

}
Esempio n. 5
0
void iauC2t00b(double tta, double ttb, double uta, double utb,
               double xp, double yp, double rc2t[3][3])
/*
**  - - - - - - - - - -
**   i a u C 2 t 0 0 b
**  - - - - - - - - - -
**
**  Form the celestial to terrestrial matrix given the date, the UT1 and
**  the polar motion, using the IAU 2000B nutation model.
**
**  This function is part of the International Astronomical Union's
**  SOFA (Standards Of Fundamental Astronomy) software collection.
**
**  Status:  support function.
**
**  Given:
**     tta,ttb  double         TT as a 2-part Julian Date (Note 1)
**     uta,utb  double         UT1 as a 2-part Julian Date (Note 1)
**     xp,yp    double         coordinates of the pole (radians, Note 2)
**
**  Returned:
**     rc2t     double[3][3]   celestial-to-terrestrial matrix (Note 3)
**
**  Notes:
**
**  1) The TT and UT1 dates tta+ttb and uta+utb are Julian Dates,
**     apportioned in any convenient way between the arguments uta and
**     utb.  For example, JD(UT1)=2450123.7 could be expressed in any of
**     these ways, among others:
**
**             uta            utb
**
**         2450123.7           0.0       (JD method)
**         2451545.0       -1421.3       (J2000 method)
**         2400000.5       50123.2       (MJD method)
**         2450123.5           0.2       (date & time method)
**
**     The JD method is the most natural and convenient to use in
**     cases where the loss of several decimal digits of resolution is
**     acceptable.  The J2000 and MJD methods are good compromises
**     between resolution and convenience.  In the case of uta,utb, the
**     date & time method is best matched to the Earth rotation angle
**     algorithm used:  maximum precision is delivered when the uta
**     argument is for 0hrs UT1 on the day in question and the utb
**     argument lies in the range 0 to 1, or vice versa.
**
**  2) The arguments xp and yp are the coordinates (in radians) of the
**     Celestial Intermediate Pole with respect to the International
**     Terrestrial Reference System (see IERS Conventions 2003),
**     measured along the meridians to 0 and 90 deg west respectively.
**
**  3) The matrix rc2t transforms from celestial to terrestrial
**     coordinates:
**
**        [TRS] = RPOM * R_3(ERA) * RC2I * [CRS]
**
**              = rc2t * [CRS]
**
**     where [CRS] is a vector in the Geocentric Celestial Reference
**     System and [TRS] is a vector in the International Terrestrial
**     Reference System (see IERS Conventions 2003), RC2I is the
**     celestial-to-intermediate matrix, ERA is the Earth rotation
**     angle and RPOM is the polar motion matrix.
**
**  4) The present function is faster, but slightly less accurate (about
**     1 mas), than the iauC2t00a function.
**
**  Called:
**     iauC2i00b    celestial-to-intermediate matrix, IAU 2000B
**     iauEra00     Earth rotation angle, IAU 2000
**     iauPom00     polar motion matrix
**     iauC2tcio    form CIO-based celestial-to-terrestrial matrix
**
**  Reference:
**
**     McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
**     IERS Technical Note No. 32, BKG (2004)
**
**  This revision:  2009 April 1
**
**  SOFA release 2012-03-01
**
**  Copyright (C) 2012 IAU SOFA Board.  See notes at end.
*/
{
   double rc2i[3][3], era, rpom[3][3];


/* Form the celestial-to-intermediate matrix for this TT (IAU 2000B). */
   iauC2i00b(tta, ttb, rc2i);

/* Predict the Earth rotation angle for this UT1. */
   era = iauEra00(uta, utb);

/* Form the polar motion matrix (neglecting s'). */
   iauPom00(xp, yp, 0.0, rpom);

/* Combine to form the celestial-to-terrestrial matrix. */
   iauC2tcio(rc2i, era, rpom, rc2t);

   return;

/*----------------------------------------------------------------------
**
**  Copyright (C) 2012
**  Standards Of Fundamental Astronomy Board
**  of the International Astronomical Union.
**
**  =====================
**  SOFA Software License
**  =====================
**
**  NOTICE TO USER:
**
**  BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND
**  CONDITIONS WHICH APPLY TO ITS USE.
**
**  1. The Software is owned by the IAU SOFA Board ("SOFA").
**
**  2. Permission is granted to anyone to use the SOFA software for any
**     purpose, including commercial applications, free of charge and
**     without payment of royalties, subject to the conditions and
**     restrictions listed below.
**
**  3. You (the user) may copy and distribute SOFA source code to others,
**     and use and adapt its code and algorithms in your own software,
**     on a world-wide, royalty-free basis.  That portion of your
**     distribution that does not consist of intact and unchanged copies
**     of SOFA source code files is a "derived work" that must comply
**     with the following requirements:
**
**     a) Your work shall be marked or carry a statement that it
**        (i) uses routines and computations derived by you from
**        software provided by SOFA under license to you; and
**        (ii) does not itself constitute software provided by and/or
**        endorsed by SOFA.
**
**     b) The source code of your derived work must contain descriptions
**        of how the derived work is based upon, contains and/or differs
**        from the original SOFA software.
**
**     c) The names of all routines in your derived work shall not
**        include the prefix "iau" or "sofa" or trivial modifications
**        thereof such as changes of case.
**
**     d) The origin of the SOFA components of your derived work must
**        not be misrepresented;  you must not claim that you wrote the
**        original software, nor file a patent application for SOFA
**        software or algorithms embedded in the SOFA software.
**
**     e) These requirements must be reproduced intact in any source
**        distribution and shall apply to anyone to whom you have
**        granted a further right to modify the source code of your
**        derived work.
**
**     Note that, as originally distributed, the SOFA software is
**     intended to be a definitive implementation of the IAU standards,
**     and consequently third-party modifications are discouraged.  All
**     variations, no matter how minor, must be explicitly marked as
**     such, as explained above.
**
**  4. You shall not cause the SOFA software to be brought into
**     disrepute, either by misuse, or use for inappropriate tasks, or
**     by inappropriate modification.
**
**  5. The SOFA software is provided "as is" and SOFA makes no warranty
**     as to its use or performance.   SOFA does not and cannot warrant
**     the performance or results which the user may obtain by using the
**     SOFA software.  SOFA makes no warranties, express or implied, as
**     to non-infringement of third party rights, merchantability, or
**     fitness for any particular purpose.  In no event will SOFA be
**     liable to the user for any consequential, incidental, or special
**     damages, including any lost profits or lost savings, even if a
**     SOFA representative has been advised of such damages, or for any
**     claim by any third party.
**
**  6. The provision of any version of the SOFA software under the terms
**     and conditions specified herein does not imply that future
**     versions will also be made available under the same terms and
**     conditions.
*
**  In any published work or commercial product which uses the SOFA
**  software directly, acknowledgement (see www.iausofa.org) is
**  appreciated.
**
**  Correspondence concerning SOFA software should be addressed as
**  follows:
**
**      By email:  [email protected]
**      By post:   IAU SOFA Center
**                 HM Nautical Almanac Office
**                 UK Hydrographic Office
**                 Admiralty Way, Taunton
**                 Somerset, TA1 2DN
**                 United Kingdom
**
**--------------------------------------------------------------------*/
}
Esempio n. 6
0
void iauAper13(double ut11, double ut12, iauASTROM *astrom)
/*
**  - - - - - - - - - -
**   i a u A p e r 1 3
**  - - - - - - - - - -
**
**  In the star-independent astrometry parameters, update only the
**  Earth rotation angle.  The caller provides UT1, (n.b. not UTC).
**
**  This function is part of the International Astronomical Union's
**  SOFA (Standards of Fundamental Astronomy) software collection.
**
**  Status:  support function.
**
**  Given:
**     ut11    double      UT1 as a 2-part...
**     ut12    double      ...Julian Date (Note 1)
**     astrom  iauASTROM*  star-independent astrometry parameters:
**      pmt    double       not used
**      eb     double[3]    not used
**      eh     double[3]    not used
**      em     double       not used
**      v      double[3]    not used
**      bm1    double       not used
**      bpn    double[3][3] not used
**      along  double       longitude + s' (radians)
**      xpl    double       not used
**      ypl    double       not used
**      sphi   double       not used
**      cphi   double       not used
**      diurab double       not used
**      eral   double       not used
**      refa   double       not used
**      refb   double       not used
**
**  Returned:
**     astrom  iauASTROM*  star-independent astrometry parameters:
**      pmt    double       unchanged
**      eb     double[3]    unchanged
**      eh     double[3]    unchanged
**      em     double       unchanged
**      v      double[3]    unchanged
**      bm1    double       unchanged
**      bpn    double[3][3] unchanged
**      along  double       unchanged
**      xpl    double       unchanged
**      ypl    double       unchanged
**      sphi   double       unchanged
**      cphi   double       unchanged
**      diurab double       unchanged
**      eral   double       "local" Earth rotation angle (radians)
**      refa   double       unchanged
**      refb   double       unchanged
**
**  Notes:
**
**  1) The UT1 date (n.b. not UTC) ut11+ut12 is a Julian Date,
**     apportioned in any convenient way between the arguments ut11 and
**     ut12.  For example, JD(UT1)=2450123.7 could be expressed in any
**     of these ways, among others:
**
**            ut11           ut12
**
**         2450123.7           0.0       (JD method)
**         2451545.0       -1421.3       (J2000 method)
**         2400000.5       50123.2       (MJD method)
**         2450123.5           0.2       (date & time method)
**
**     The JD method is the most natural and convenient to use in cases
**     where the loss of several decimal digits of resolution is
**     acceptable.  The J2000 and MJD methods are good compromises
**     between resolution and convenience.  The date & time method is
**     best matched to the algorithm used:  maximum precision is
**     delivered when the ut11 argument is for 0hrs UT1 on the day in
**     question and the ut12 argument lies in the range 0 to 1, or vice
**     versa.
**
**  2) If the caller wishes to provide the Earth rotation angle itself,
**     the function iauAper can be used instead.  One use of this
**     technique is to substitute Greenwich apparent sidereal time and
**     thereby to support equinox based transformations directly.
**
**  3) This is one of several functions that inserts into the astrom
**     structure star-independent parameters needed for the chain of
**     astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.
**
**     The various functions support different classes of observer and
**     portions of the transformation chain:
**
**          functions         observer        transformation
**
**       iauApcg iauApcg13    geocentric      ICRS <-> GCRS
**       iauApci iauApci13    terrestrial     ICRS <-> CIRS
**       iauApco iauApco13    terrestrial     ICRS <-> observed
**       iauApcs iauApcs13    space           ICRS <-> GCRS
**       iauAper iauAper13    terrestrial     update Earth rotation
**       iauApio iauApio13    terrestrial     CIRS <-> observed
**
**     Those with names ending in "13" use contemporary SOFA models to
**     compute the various ephemerides.  The others accept ephemerides
**     supplied by the caller.
**
**     The transformation from ICRS to GCRS covers space motion,
**     parallax, light deflection, and aberration.  From GCRS to CIRS
**     comprises frame bias and precession-nutation.  From CIRS to
**     observed takes account of Earth rotation, polar motion, diurnal
**     aberration and parallax (unless subsumed into the ICRS <-> GCRS
**     transformation), and atmospheric refraction.
**
**  Called:
**     iauAper      astrometry parameters: update ERA
**     iauEra00     Earth rotation angle, IAU 2000
**
**  This revision:   2013 September 25
**
**  SOFA release 2015-02-09
**
**  Copyright (C) 2015 IAU SOFA Board.  See notes at end.
*/
{
   iauAper(iauEra00(ut11,ut12), astrom);

/* Finished. */

/*----------------------------------------------------------------------
**
**  Copyright (C) 2015
**  Standards Of Fundamental Astronomy Board
**  of the International Astronomical Union.
**
**  =====================
**  SOFA Software License
**  =====================
**
**  NOTICE TO USER:
**
**  BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND
**  CONDITIONS WHICH APPLY TO ITS USE.
**
**  1. The Software is owned by the IAU SOFA Board ("SOFA").
**
**  2. Permission is granted to anyone to use the SOFA software for any
**     purpose, including commercial applications, free of charge and
**     without payment of royalties, subject to the conditions and
**     restrictions listed below.
**
**  3. You (the user) may copy and distribute SOFA source code to others,
**     and use and adapt its code and algorithms in your own software,
**     on a world-wide, royalty-free basis.  That portion of your
**     distribution that does not consist of intact and unchanged copies
**     of SOFA source code files is a "derived work" that must comply
**     with the following requirements:
**
**     a) Your work shall be marked or carry a statement that it
**        (i) uses routines and computations derived by you from
**        software provided by SOFA under license to you; and
**        (ii) does not itself constitute software provided by and/or
**        endorsed by SOFA.
**
**     b) The source code of your derived work must contain descriptions
**        of how the derived work is based upon, contains and/or differs
**        from the original SOFA software.
**
**     c) The names of all routines in your derived work shall not
**        include the prefix "iau" or "sofa" or trivial modifications
**        thereof such as changes of case.
**
**     d) The origin of the SOFA components of your derived work must
**        not be misrepresented;  you must not claim that you wrote the
**        original software, nor file a patent application for SOFA
**        software or algorithms embedded in the SOFA software.
**
**     e) These requirements must be reproduced intact in any source
**        distribution and shall apply to anyone to whom you have
**        granted a further right to modify the source code of your
**        derived work.
**
**     Note that, as originally distributed, the SOFA software is
**     intended to be a definitive implementation of the IAU standards,
**     and consequently third-party modifications are discouraged.  All
**     variations, no matter how minor, must be explicitly marked as
**     such, as explained above.
**
**  4. You shall not cause the SOFA software to be brought into
**     disrepute, either by misuse, or use for inappropriate tasks, or
**     by inappropriate modification.
**
**  5. The SOFA software is provided "as is" and SOFA makes no warranty
**     as to its use or performance.   SOFA does not and cannot warrant
**     the performance or results which the user may obtain by using the
**     SOFA software.  SOFA makes no warranties, express or implied, as
**     to non-infringement of third party rights, merchantability, or
**     fitness for any particular purpose.  In no event will SOFA be
**     liable to the user for any consequential, incidental, or special
**     damages, including any lost profits or lost savings, even if a
**     SOFA representative has been advised of such damages, or for any
**     claim by any third party.
**
**  6. The provision of any version of the SOFA software under the terms
**     and conditions specified herein does not imply that future
**     versions will also be made available under the same terms and
**     conditions.
*
**  In any published work or commercial product which uses the SOFA
**  software directly, acknowledgement (see www.iausofa.org) is
**  appreciated.
**
**  Correspondence concerning SOFA software should be addressed as
**  follows:
**
**      By email:  [email protected]
**      By post:   IAU SOFA Center
**                 HM Nautical Almanac Office
**                 UK Hydrographic Office
**                 Admiralty Way, Taunton
**                 Somerset, TA1 2DN
**                 United Kingdom
**
**--------------------------------------------------------------------*/

}
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
    double TT1,TT2,*xVec;
    double deltaT=0;
    double LOD=0;
    size_t numRow,numVec;
    double CIRS2TIRS[3][3];
    double TIRS2CIRS[3][3];
    double Omega[3];//The rotation vector in the TIRS
    mxArray *retMat;
    double *retData;

    if(nrhs<3||nrhs>5){
        mexErrMsgTxt("Wrong number of inputs");
    }
    
    if(nlhs>2) {
        mexErrMsgTxt("Wrong number of outputs.");
    }
    
    checkRealDoubleArray(prhs[0]);
    
    numRow = mxGetM(prhs[0]);
    numVec = mxGetN(prhs[0]);
    
    if(!(numRow==3||numRow==6)) {
        mexErrMsgTxt("The input vector has a bad dimensionality.");
    }
    
    xVec=(double*)mxGetData(prhs[0]);
    TT1=getDoubleFromMatlab(prhs[1]);
    TT2=getDoubleFromMatlab(prhs[2]);
        
    //If some values from the function getEOP will be needed
    if(nrhs<=4||mxIsEmpty(prhs[3])||mxIsEmpty(prhs[4])) {
        mxArray *retVals[5];
        mxArray *JulUTCMATLAB[2];
        double JulUTC[2];
        int retVal;
        
        //Get the time in UTC to look up the parameters by going to TAI and
        //then UTC.
        retVal=iauTttai(TT1, TT2, &JulUTC[0], &JulUTC[1]);
        if(retVal!=0) {
            mexErrMsgTxt("An error occurred computing TAI.");
        }
        retVal=iauTaiutc(JulUTC[0], JulUTC[1], &JulUTC[0], &JulUTC[1]);
        switch(retVal){
            case 1:
                mexWarnMsgTxt("Dubious Date entered.");
                break;
            case -1:
                mexErrMsgTxt("Unacceptable date entered");
                break;
            default:
                break;
        }
        
        JulUTCMATLAB[0]=doubleMat2Matlab(&JulUTC[0],1,1);
        JulUTCMATLAB[1]=doubleMat2Matlab(&JulUTC[1],1,1);

        //Get the Earth orientation parameters for the given date.
        mexCallMATLAB(5,retVals,2,JulUTCMATLAB,"getEOP");
        mxDestroyArray(JulUTCMATLAB[0]);
        mxDestroyArray(JulUTCMATLAB[1]);
        
        //We do not need the polar motion coordinates.
        mxDestroyArray(retVals[0]);
        //We do not need the celestial pole offsets.
        mxDestroyArray(retVals[1]);

        //This is TT-UT1
        deltaT=getDoubleFromMatlab(retVals[3]);
        LOD=getDoubleFromMatlab(retVals[4]);
        //Free the returned arrays.
        mxDestroyArray(retVals[2]);
        mxDestroyArray(retVals[3]);
        mxDestroyArray(retVals[4]);
    }

    //If deltaT=TT-UT1 is given
    if(nrhs>3&&!mxIsEmpty(prhs[3])) {
        deltaT=getDoubleFromMatlab(prhs[3]);
    }
    //If LOD is given
    if(nrhs>4&&!mxIsEmpty(prhs[4])) {
        LOD=getDoubleFromMatlab(prhs[4]);
    }
    
    //Compute the rotation matrix for going from CIRS to TIRS as well as
    //the instantaneous vector angular momentum due to the Earth's rotation
    //in GCRS coordinates.
    {
        double UT11, UT12;
        double era, omega;
        //Obtain UT1 from terestrial time and deltaT.
        iauTtut1(TT1, TT2, deltaT, &UT11, &UT12);
 
        //Find the Earth rotation angle for the given UT1 time. 
        era = iauEra00(UT11, UT12);
        
        //Construct the rotation matrix.
        CIRS2TIRS[0][0]=1;
        CIRS2TIRS[0][1]=0;
        CIRS2TIRS[0][2]=0;
        CIRS2TIRS[1][0]=0;
        CIRS2TIRS[1][1]=1;
        CIRS2TIRS[1][2]=0;
        CIRS2TIRS[2][0]=0;
        CIRS2TIRS[2][1]=0;
        CIRS2TIRS[2][2]=1;     
        iauRz(era, CIRS2TIRS);
        
        //To go from the TIRS to the GCRS, we need to use the inverse rotation
        //matrix, which is just the transpose of the rotation matrix.
        iauTr(CIRS2TIRS, TIRS2CIRS);
        
        //Next, to be able to transform the velocity, the rotation of the Earth
        //has to be taken into account. 

        //The angular velocity vector of the Earth in the TIRS in radians.
        omega=getScalarMatlabClassConst("Constants","IERSMeanEarthRotationRate");
        //Adjust for LOD
        omega=omega*(1-LOD/86400.0);//86400.0 is the number of seconds in a TT
                                    //day.
        Omega[0]=0;
        Omega[1]=0;
        Omega[2]=omega;
    }
    
    //Allocate space for the return vectors.
    retMat=mxCreateDoubleMatrix(numRow,numVec,mxREAL);
    retData=(double*)mxGetData(retMat);
    {
        size_t curVec;
        for(curVec=0;curVec<numVec;curVec++) {
            //Multiply the position vector with the rotation matrix.
            iauRxp(TIRS2CIRS, xVec+numRow*curVec, retData+numRow*curVec);
            
            //If a velocity vector was given.
            if(numRow>3) {
                double *posTIRS=xVec+numRow*curVec;
                double *velTIRS=xVec+numRow*curVec+3;//Velocity in GCRS
                double *retDataVel=retData+numRow*curVec+3;
                double rotVel[3];

                //Evaluate the cross product for the angular velocity due
                //to the Earth's rotation.
                iauPxp(Omega, posTIRS, rotVel);
                
                //Add the instantaneous velocity due to rotation.
                iauPpp(velTIRS, rotVel, retDataVel);
                
                //Rotate from TIRS to GCRS
                iauRxp(TIRS2CIRS, retDataVel, retDataVel);
            }
        }
    }
    plhs[0]=retMat;
    
    if(nlhs>1) {
        double *elPtr;
        size_t i,j;
        
        plhs[1]=mxCreateDoubleMatrix(3,3,mxREAL);
        elPtr=(double*)mxGetData(plhs[1]);
        
        for (i=0;i<3;i++) {
            for(j=0;j<3;j++) {
                elPtr[i+3*j]=TIRS2CIRS[i][j];
            }
        }
    }
}
Esempio n. 8
0
//! Function to calculate ERA (earth rotation angle)
double calculateEarthRotationAngle( const double ut1, const double julianDaysEpochShift )
{
    return iauEra00( julianDaysEpochShift, ut1 / physical_constants::JULIAN_DAY );
}