Esempio n. 1
0
//! Function to calculate CIP and CIO locator according to requested IAU conventions
std::pair< Eigen::Vector2d, double > getPositionOfCipInGcrs(
        const double terrestrialTime, const double julianDaysEpochShift,
        const basic_astrodynamics::IAUConventions precessionNutationTheory )
{
    // Declare Sofa function return arguments (by reference)
    double xAngle, yAngle;
    double originLocator;

    // Check for IAU convention and retrieve requested values.
    switch( precessionNutationTheory )
    {
    case basic_astrodynamics::iau_2000_a:
        iauXys00a( julianDaysEpochShift, terrestrialTime / physical_constants::JULIAN_DAY,
                   &xAngle, &yAngle, &originLocator );
        break;

    case basic_astrodynamics::iau_2000_b:
        iauXys00b( julianDaysEpochShift, terrestrialTime / physical_constants::JULIAN_DAY,
                   &xAngle, &yAngle, &originLocator );
        break;

    case basic_astrodynamics::iau_2006:
        iauXys06a( julianDaysEpochShift, terrestrialTime / physical_constants::JULIAN_DAY,
                   &xAngle, &yAngle, &originLocator );
        break;
    default:
        throw std::runtime_error( "Warning, precession nutation theory selection not recongnized" );

    }

    // Set and return requested values.
    Eigen::Vector2d cioPosition;
    cioPosition << xAngle, yAngle;
    return std::pair< Eigen::Vector2d, double >( cioPosition, originLocator );
}
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
    double TT1, TT2, dX, dY, *xVec;
    size_t numRow, numVec;
    mxArray *retMat;
    double *retData;
    double GCRS2CIRS[3][3];
    
    if(nrhs<3||nrhs>4){
        mexErrMsgTxt("Wrong number of inputs");
    }
    
    if(nlhs>2) {
        mexErrMsgTxt("Wrong number of outputs.");
    }
    
    checkRealDoubleArray(prhs[0]);
    
    numRow = mxGetM(prhs[0]);
    numVec = mxGetN(prhs[0]);
    
    if(!(numRow==3||numRow==6)) {
        mexErrMsgTxt("The input vector has a bad dimensionality.");
    }

    xVec=(double*)mxGetData(prhs[0]);
    TT1=getDoubleFromMatlab(prhs[1]);
    TT2=getDoubleFromMatlab(prhs[2]);
    
    //If some values from the function getEOP will be needed.
    if(nrhs<4||mxGetM(prhs[3])==0) {
        mxArray *retVals[2];
        double *dXdY;
        mxArray *JulUTCMATLAB[2];
        double JulUTC[2];
        int retVal;
        
        //Get the time in UTC to look up the parameters by going to TAI and
        //then UTC.
        retVal=iauTttai(TT1, TT2, &JulUTC[0], &JulUTC[1]);
        if(retVal!=0) {
            mexErrMsgTxt("An error occurred computing TAI.");
        }
        retVal=iauTaiutc(JulUTC[0], JulUTC[1], &JulUTC[0], &JulUTC[1]);
        switch(retVal){
            case 1:
                mexWarnMsgTxt("Dubious Date entered.");
                break;
            case -1:
                mexErrMsgTxt("Unacceptable date entered");
                break;
            default:
                break;
        }
        
        JulUTCMATLAB[0]=doubleMat2Matlab(&JulUTC[0],1,1);
        JulUTCMATLAB[1]=doubleMat2Matlab(&JulUTC[1],1,1);

        //Get the Earth orientation parameters for the given date.
        mexCallMATLAB(2,retVals,2,JulUTCMATLAB,"getEOP");
        mxDestroyArray(JulUTCMATLAB[0]);
        mxDestroyArray(JulUTCMATLAB[1]);
        
        //%We do not need the polar motion coordinates.
        mxDestroyArray(retVals[0]);
        
        checkRealDoubleArray(retVals[1]);
        if(mxGetM(retVals[1])!=2||mxGetN(retVals[1])!=1) {
            mxDestroyArray(retVals[1]);
            mexErrMsgTxt("Error using the getEOP function.");
            return;
        }
        
        dXdY=(double*)mxGetData(retVals[1]);
        dX=dXdY[0];
        dY=dXdY[1];
        
        //Free the returned arrays.
        mxDestroyArray(retVals[1]);
    } else {//Get the celestial pole offsets
        size_t dim1, dim2;
        
        checkRealDoubleArray(prhs[4]);
        dim1 = mxGetM(prhs[4]);
        dim2 = mxGetN(prhs[4]);
        
        if((dim1==2&&dim2==1)||(dim1==1&&dim2==2)) {
            double *dXdY=(double*)mxGetData(prhs[4]);
        
            dX=dXdY[0];
            dY=dXdY[1];
        } else {
            mexErrMsgTxt("The celestial pole offsets have the wrong dimensionality.");
            return;
        }
    }
    
    {
    double x, y, s;
    double omega;
        
    //Get the X,Y coordinates of the Celestial Intermediate Pole (CIP) and
    //the Celestial Intermediate Origin (CIO) locator s, using the IAU 2006
    //precession and IAU 2000A nutation models.
    iauXys06a(TT1, TT2, &x, &y, &s);
    
    //Add the CIP offsets.
    x += dX;
    y += dY;
    
    //Get the GCRS-to-CIRS matrix
    iauC2ixys(x, y, s, GCRS2CIRS);
    }
    
    //Allocate space for the return vectors.
    retMat=mxCreateDoubleMatrix(numRow,numVec,mxREAL);
    retData=(double*)mxGetData(retMat);
    
    {
        size_t curVec;
        for(curVec=0;curVec<numVec;curVec++) {
            //Multiply the position vector with the rotation matrix.
            iauRxp(GCRS2CIRS, xVec+numRow*curVec, retData+numRow*curVec);
            
            //If a velocity vector was given.
            if(numRow>3) {
                double *velGCRS=xVec+numRow*curVec+3;//Velocity in GCRS
                double *retDataVel=retData+numRow*curVec+3;
                
                //Convert velocity from GCRS to CIRS.
                iauRxp(GCRS2CIRS, velGCRS, retDataVel);
            }
        }
    }
    plhs[0]=retMat;
    
    //If the rotation matrix is desired on the output.
    if(nlhs>1) {
        double *elPtr;
        size_t i,j;
        
        plhs[1]=mxCreateDoubleMatrix(3,3,mxREAL);
        elPtr=(double*)mxGetData(plhs[1]);
        
        for (i=0;i<3;i++) {
            for(j=0;j<3;j++) {
                elPtr[i+3*j]=GCRS2CIRS[i][j];
            }
        }
    }
}
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
    size_t numRow,numVec;
    mxArray *retMat;
    double *xVec, *retData;
    double TT1, TT2, UT11, UT12;
    //The if-statements below should properly initialize all of the EOP.
    //The following initializations to zero are to suppress warnings when
    //compiling with -Wconditional-uninitialized.
    double dX=0;
    double dY=0;
    double deltaT=0;
    double LOD=0;
    double GCRS2TIRS[3][3];
    //Polar motion matrix. ITRS=POM*TIRS. We will just be setting it to the
    //identity matrix as polar motion is not taken into account when going
    //to the TIRS.
    double rident[3][3]={{1,0,0},{0,1,0},{0,0,1}};
    double Omega[3];//The rotation vector in the TIRS
    
    if(nrhs<3||nrhs>6){
        mexErrMsgTxt("Wrong number of inputs");
    }
    
    if(nlhs>2) {
        mexErrMsgTxt("Wrong number of outputs.");
    }
    
    checkRealDoubleArray(prhs[0]);
    
    numRow = mxGetM(prhs[0]);
    numVec = mxGetN(prhs[0]);
    
    if(!(numRow==3||numRow==6)) {
        mexErrMsgTxt("The input vector has a bad dimensionality.");
    }
    
    xVec=(double*)mxGetData(prhs[0]);
    TT1=getDoubleFromMatlab(prhs[1]);
    TT2=getDoubleFromMatlab(prhs[2]);
    
    //If some values from the function getEOP will be needed
    if(nrhs<=5||mxIsEmpty(prhs[3])||mxIsEmpty(prhs[4])||mxIsEmpty(prhs[5])) {
        mxArray *retVals[5];
        double *dXdY;
        mxArray *JulUTCMATLAB[2];
        double JulUTC[2];
        int retVal;
        
        //Get the time in UTC to look up the parameters by going to TAI and
        //then UTC.
        retVal=iauTttai(TT1, TT2, &JulUTC[0], &JulUTC[1]);
        if(retVal!=0) {
            mexErrMsgTxt("An error occurred computing TAI.");
        }
        retVal=iauTaiutc(JulUTC[0], JulUTC[1], &JulUTC[0], &JulUTC[1]);
        switch(retVal){
            case 1:
                mexWarnMsgTxt("Dubious Date entered.");
                break;
            case -1:
                mexErrMsgTxt("Unacceptable date entered");
                break;
            default:
                break;
        }
        
        JulUTCMATLAB[0]=doubleMat2Matlab(&JulUTC[0],1,1);
        JulUTCMATLAB[1]=doubleMat2Matlab(&JulUTC[1],1,1);

        //Get the Earth orientation parameters for the given date.
        mexCallMATLAB(5,retVals,2,JulUTCMATLAB,"getEOP");
        mxDestroyArray(JulUTCMATLAB[0]);
        mxDestroyArray(JulUTCMATLAB[1]);
        
        //%We do not need the polar motion coordinates.
        mxDestroyArray(retVals[0]);
        
        checkRealDoubleArray(retVals[1]);
        if(mxGetM(retVals[1])!=2||mxGetN(retVals[1])!=1) {
            mxDestroyArray(retVals[1]);
            mxDestroyArray(retVals[2]);
            mxDestroyArray(retVals[3]);
            mxDestroyArray(retVals[4]);
            mexErrMsgTxt("Error using the getEOP function.");
            return;
        }
        
        dXdY=(double*)mxGetData(retVals[1]);
        dX=dXdY[0];
        dY=dXdY[1];
        
        //This is TT-UT1
        deltaT=getDoubleFromMatlab(retVals[3]);
        LOD=getDoubleFromMatlab(retVals[4]);
        //Free the returned arrays.
        mxDestroyArray(retVals[1]);
        mxDestroyArray(retVals[2]);
        mxDestroyArray(retVals[3]);
        mxDestroyArray(retVals[4]);
    }
    
    //If deltaT=TT-UT1 is given
    if(nrhs>3&&!mxIsEmpty(prhs[3])) {
        deltaT=getDoubleFromMatlab(prhs[3]);
    }
    
    //Obtain UT1 from terestrial time and deltaT.
    iauTtut1(TT1, TT2, deltaT, &UT11, &UT12);
    
    //Get celestial pole offsets, if given.
    if(nrhs>4&&!mxIsEmpty(prhs[4])) {
        size_t dim1, dim2;
        
        checkRealDoubleArray(prhs[4]);
        dim1 = mxGetM(prhs[4]);
        dim2 = mxGetN(prhs[4]);
        
        if((dim1==2&&dim2==1)||(dim1==1&&dim2==2)) {
            double *dXdY=(double*)mxGetData(prhs[4]);
        
            dX=dXdY[0];
            dY=dXdY[1];
        } else {
            mexErrMsgTxt("The celestial pole offsets have the wrong dimensionality.");
            return;
        }
    }
    
    //If LOD is given
    if(nrhs>5&&mxIsEmpty(prhs[5])) {
        LOD=getDoubleFromMatlab(prhs[5]);
    }
    
    //Compute the rotation matrix for going from GCRS to ITRS as well as
    //the instantaneous vector angular momentum due to the Earth's rotation
    //in TIRS coordinates.
    {
    double x, y, s, era;
    double rc2i[3][3];
    double omega;
        
    //Get the X,Y coordinates of the Celestial Intermediate Pole (CIP) and
    //the Celestial Intermediate Origin (CIO) locator s, using the IAU 2006
    //precession and IAU 2000A nutation models.
    iauXys06a(TT1, TT2, &x, &y, &s);
    
    //Add the CIP offsets.
    x += dX;
    y += dY;
    
    //Get the GCRS-to-CIRS matrix
    iauC2ixys(x, y, s, rc2i);
    
    //Find the Earth rotation angle for the given UT1 time. 
    era = iauEra00(UT11, UT12);
    
    //Set the polar motion matrix to the identity matrix so that the
    //conversion stops at the TIRS instead of the ITRS.

    //Combine the GCRS-to-CIRS matrix, the Earth rotation angle, and use
    //the identity matrix instead of the polar motion matrix to get a
    //to get the rotation matrix to go from GCRS to TIRS.
    iauC2tcio(rc2i, era, rident,GCRS2TIRS);
    
    //Next, to be able to transform the velocity, the rotation of the Earth
    //has to be taken into account. 
    
    //The angular velocity vector of the Earth in the TIRS in radians.
    omega=getScalarMatlabClassConst("Constants","IERSMeanEarthRotationRate");
    //Adjust for LOD
    omega=omega*(1-LOD/86400.0);//86400.0 is the number of seconds in a TT
                                //day.
    Omega[0]=0;
    Omega[1]=0;
    Omega[2]=omega;
    }
    
    //Allocate space for the return vectors.
    retMat=mxCreateDoubleMatrix(numRow,numVec,mxREAL);
    retData=(double*)mxGetData(retMat);
    
    {
        size_t curVec;
        for(curVec=0;curVec<numVec;curVec++) {
            //Multiply the position vector with the rotation matrix.
            iauRxp(GCRS2TIRS, xVec+numRow*curVec, retData+numRow*curVec);
            
            //If a velocity vector was given.
            if(numRow>3) {
                double *posGCRS=xVec+numRow*curVec;
                double posTIRS[3];
                double *velGCRS=xVec+numRow*curVec+3;//Velocity in GCRS
                double velTIRS[3];
                double *retDataVel=retData+numRow*curVec+3;
                double rotVel[3];
                //If a velocity was provided with the position, first
                //convert to TIRS coordinates, then account for the
                //rotation of the Earth.
                
                //Convert velocity from GCRS to TIRS.
                iauRxp(GCRS2TIRS, velGCRS, velTIRS);
                //Convert position from GCRS to TIRS
                iauRxp(GCRS2TIRS, posGCRS, posTIRS);
                                
                //Evaluate the cross product for the angular velocity due
                //to the Earth's rotation.
                iauPxp(Omega, posTIRS, rotVel);
                
                //Subtract out the instantaneous velocity due to rotation.
                iauPmp(velTIRS, rotVel, retDataVel);
            }
        }
    }
    plhs[0]=retMat;
    
    //If the rotation matrix is desired on the output.
    if(nlhs>1) {
        double *elPtr;
        size_t i,j;
        
        plhs[1]=mxCreateDoubleMatrix(3,3,mxREAL);
        elPtr=(double*)mxGetData(plhs[1]);
        
        for (i=0;i<3;i++) {
            for(j=0;j<3;j++) {
                elPtr[i+3*j]=GCRS2TIRS[i][j];
            }
        }
    }
}