FilterBase::FilterBase() :
    state_(STATE_SIZE),
    transferFunction_(STATE_SIZE, STATE_SIZE),
    transferFunctionJacobian_(STATE_SIZE, STATE_SIZE),
    estimateErrorCovariance_(STATE_SIZE, STATE_SIZE),
    covarianceEpsilon_(STATE_SIZE, STATE_SIZE),
    processNoiseCovariance_(STATE_SIZE, STATE_SIZE),
    identity_(STATE_SIZE, STATE_SIZE),
    pi_(3.141592653589793),
    tau_(6.283185307179586),
    debug_(false),
    debugStream_(NULL)
  {
    initialized_ = false;

    // Clear the state
    state_.setZero();

    // Prepare the invariant parts of the transfer
    // function
    transferFunction_.setIdentity();

    // Clear the Jacobian
    transferFunctionJacobian_.setZero();

    // Prepare the invariant parts of the transfer
    // function
    estimateErrorCovariance_.setIdentity();

    // We need the identity for the update equations
    identity_.setIdentity();

    // Set the epsilon matrix to be a matrix with small values on the diagonal
    // It is used to maintain the positive-definite property of the covariance
    covarianceEpsilon_.setIdentity();
    covarianceEpsilon_ *= 0.001;

    // Assume 30Hz from sensor data (configurable)
    sensorTimeout_ = 0.033333333;

    // Initialize our last update and measurement times
    lastUpdateTime_ = 0;
    lastMeasurementTime_ = 0;

    // These can be overridden via the launch parameters,
    // but we need default values.
    processNoiseCovariance_.setZero();
    processNoiseCovariance_(StateMemberX, StateMemberX) = 0.03;
    processNoiseCovariance_(StateMemberY, StateMemberY) = 0.03;
    processNoiseCovariance_(StateMemberZ, StateMemberZ) = 0.4;
    processNoiseCovariance_(StateMemberRoll, StateMemberRoll) = 0.03;
    processNoiseCovariance_(StateMemberPitch, StateMemberPitch) = 0.03;
    processNoiseCovariance_(StateMemberYaw, StateMemberYaw) = 0.06;
    processNoiseCovariance_(StateMemberVx, StateMemberVx) = 0.025;
    processNoiseCovariance_(StateMemberVy, StateMemberVy) = 0.025;
    processNoiseCovariance_(StateMemberVz, StateMemberVz) = 0.05;
    processNoiseCovariance_(StateMemberVroll, StateMemberVroll) = 0.002;
    processNoiseCovariance_(StateMemberVpitch, StateMemberVpitch) = 0.002;
    processNoiseCovariance_(StateMemberVyaw, StateMemberVyaw) = 0.004;
  }
Esempio n. 2
0
  FilterBase::FilterBase() :
    state_(STATE_SIZE),
    predictedState_(STATE_SIZE),
    transferFunction_(STATE_SIZE, STATE_SIZE),
    transferFunctionJacobian_(STATE_SIZE, STATE_SIZE),
    estimateErrorCovariance_(STATE_SIZE, STATE_SIZE),
    covarianceEpsilon_(STATE_SIZE, STATE_SIZE),
    processNoiseCovariance_(STATE_SIZE, STATE_SIZE),
    identity_(STATE_SIZE, STATE_SIZE),
    debug_(false),
    debugStream_(NULL)
  {
    initialized_ = false;

    // Clear the state and predicted state
    state_.setZero();
    predictedState_.setZero();

    // Prepare the invariant parts of the transfer
    // function
    transferFunction_.setIdentity();

    // Clear the Jacobian
    transferFunctionJacobian_.setZero();

    // Set the estimate error covariance. We want our measurements
    // to be accepted rapidly when the filter starts, so we should
    // initialize the state's covariance with large values.
    estimateErrorCovariance_.setIdentity();
    estimateErrorCovariance_ *= 1e-9;

    // We need the identity for the update equations
    identity_.setIdentity();

    // Set the epsilon matrix to be a matrix with small values on the diagonal
    // It is used to maintain the positive-definite property of the covariance
    covarianceEpsilon_.setIdentity();
    covarianceEpsilon_ *= 0.001;

    // Assume 30Hz from sensor data (configurable)
    sensorTimeout_ = 0.033333333;

    // Initialize our last update and measurement times
    lastUpdateTime_ = 0;
    lastMeasurementTime_ = 0;

    // These can be overridden via the launch parameters,
    // but we need default values.
    processNoiseCovariance_.setZero();
    processNoiseCovariance_(StateMemberX, StateMemberX) = 0.05;
    processNoiseCovariance_(StateMemberY, StateMemberY) = 0.05;
    processNoiseCovariance_(StateMemberZ, StateMemberZ) = 0.06;
    processNoiseCovariance_(StateMemberRoll, StateMemberRoll) = 0.03;
    processNoiseCovariance_(StateMemberPitch, StateMemberPitch) = 0.03;
    processNoiseCovariance_(StateMemberYaw, StateMemberYaw) = 0.06;
    processNoiseCovariance_(StateMemberVx, StateMemberVx) = 0.025;
    processNoiseCovariance_(StateMemberVy, StateMemberVy) = 0.025;
    processNoiseCovariance_(StateMemberVz, StateMemberVz) = 0.04;
    processNoiseCovariance_(StateMemberVroll, StateMemberVroll) = 0.01;
    processNoiseCovariance_(StateMemberVpitch, StateMemberVpitch) = 0.01;
    processNoiseCovariance_(StateMemberVyaw, StateMemberVyaw) = 0.02;
    processNoiseCovariance_(StateMemberAx, StateMemberAx) = 0.01;
    processNoiseCovariance_(StateMemberAy, StateMemberAy) = 0.01;
    processNoiseCovariance_(StateMemberAz, StateMemberAz) = 0.015;
  }