Esempio n. 1
0
static int btusb_send_frame(struct sk_buff *skb)
{
	struct hci_dev *hdev = (struct hci_dev *) skb->dev;
	struct btusb_data *data = hci_get_drvdata(hdev);
	struct usb_ctrlrequest *dr;
	struct urb *urb;
	unsigned int pipe;
	int err;

	BT_DBG("%s", hdev->name);

	if (!test_bit(HCI_RUNNING, &hdev->flags))
		return -EBUSY;

	switch (bt_cb(skb)->pkt_type) {
	case HCI_COMMAND_PKT:
		urb = usb_alloc_urb(0, GFP_ATOMIC);
		if (!urb)
			return -ENOMEM;

		dr = kmalloc(sizeof(*dr), GFP_ATOMIC);
		if (!dr) {
			usb_free_urb(urb);
			return -ENOMEM;
		}

		dr->bRequestType = data->cmdreq_type;
		dr->bRequest     = 0;
		dr->wIndex       = 0;
		dr->wValue       = 0;
		dr->wLength      = __cpu_to_le16(skb->len);

		pipe = usb_sndctrlpipe(data->udev, 0x00);

		usb_fill_control_urb(urb, data->udev, pipe, (void *) dr,
				skb->data, skb->len, btusb_tx_complete, skb);

		hdev->stat.cmd_tx++;
		break;

	case HCI_ACLDATA_PKT:
		if (!data->bulk_tx_ep)
			return -ENODEV;

		urb = usb_alloc_urb(0, GFP_ATOMIC);
		if (!urb)
			return -ENOMEM;

		pipe = usb_sndbulkpipe(data->udev,
					data->bulk_tx_ep->bEndpointAddress);

		usb_fill_bulk_urb(urb, data->udev, pipe,
				skb->data, skb->len, btusb_tx_complete, skb);

		hdev->stat.acl_tx++;
		break;

	case HCI_SCODATA_PKT:
		if (!data->isoc_tx_ep || hdev->conn_hash.sco_num < 1)
			return -ENODEV;

		urb = usb_alloc_urb(BTUSB_MAX_ISOC_FRAMES, GFP_ATOMIC);
		if (!urb)
			return -ENOMEM;

		pipe = usb_sndisocpipe(data->udev,
					data->isoc_tx_ep->bEndpointAddress);

		usb_fill_int_urb(urb, data->udev, pipe,
				skb->data, skb->len, btusb_isoc_tx_complete,
				skb, data->isoc_tx_ep->bInterval);

		urb->transfer_flags  = URB_ISO_ASAP;

		__fill_isoc_descriptor(urb, skb->len,
				le16_to_cpu(data->isoc_tx_ep->wMaxPacketSize));

		hdev->stat.sco_tx++;
		goto skip_waking;

	default:
		return -EILSEQ;
	}

	err = inc_tx(data);
	if (err) {
		usb_anchor_urb(urb, &data->deferred);
		schedule_work(&data->waker);
		err = 0;
		goto done;
	}

skip_waking:
	usb_anchor_urb(urb, &data->tx_anchor);

	err = usb_submit_urb(urb, GFP_ATOMIC);
	if (err < 0) {
		if (err != -EPERM && err != -ENODEV)
			BT_ERR("%s urb %p submission failed (%d)",
						hdev->name, urb, -err);
		kfree(urb->setup_packet);
		usb_unanchor_urb(urb);
	} else {
		usb_mark_last_busy(data->udev);
	}

done:
	usb_free_urb(urb);
	return err;
}
Esempio n. 2
0
static int lge_hsd_probe(struct platform_device *pdev)
{
	int ret = 0;
	struct max1462x_platform_data *pdata = pdev->dev.platform_data;
	struct hsd_info *hi;

	HSD_DBG("lge_hsd_probe\n");

	hi = kzalloc(sizeof(struct hsd_info), GFP_KERNEL);

	if (hi == NULL) {
		HSD_ERR("Failed to allloate headset per device info\n");
		return -ENOMEM;
	}

	if (pdev->dev.of_node) {
		pdata = devm_kzalloc(&pdev->dev, sizeof(struct max1462x_platform_data), GFP_KERNEL);
		if (!pdata) {
			HSD_ERR("Failed to allocate memory\n");
			return -ENOMEM;
		}
		pdev->dev.platform_data = pdata;

		max1462x_parse_dt(&pdev->dev, pdata);
	} else {
		pdata = devm_kzalloc(&pdev->dev, sizeof(struct max1462x_platform_data), GFP_KERNEL);
		if (!pdata) {
			HSD_ERR("Failed to allocate memory\n");
			return -ENOMEM;
		} else {
			pdata = pdev->dev.platform_data;
		}
	}
	hi->key_code = pdata->key_code;

	platform_set_drvdata(pdev, hi);

	atomic_set(&hi->btn_state, 0);
	atomic_set(&hi->is_3_pole_or_not, 1);
	atomic_set(&hi->irq_key_enabled, FALSE);

	hi->gpio_mic_en = pdata->gpio_mic_en;
	hi->gpio_detect = pdata->gpio_detect;
	hi->gpio_key = pdata->gpio_key;
	hi->gpio_set_value_func = pdata->gpio_set_value_func;
	hi->gpio_get_value_func = pdata->gpio_get_value_func;
	hi->latency_for_key = msecs_to_jiffies(50); /* convert milli to jiffies */
	mutex_init(&hi->mutex_lock);
	INIT_WORK(&hi->work, detect_work);
	INIT_DELAYED_WORK(&hi->work_for_key_pressed, button_pressed);
	INIT_DELAYED_WORK(&hi->work_for_key_released, button_released);

	ret = gpio_request(hi->gpio_mic_en, "gpio_mic_en");
	if (ret < 0) {
		HSD_ERR("Failed to configure gpio%d (gpio_mic_en) gpio_request\n", hi->gpio_mic_en);
		goto error_02;
	}

	ret = gpio_direction_output(hi->gpio_mic_en, 0);
	if (ret < 0) {
		HSD_ERR("Failed to configure gpio%d (gpio_mic_en) gpio_direction_input\n", hi->gpio_mic_en);
		goto error_02;
	}
	HSD_DBG("gpio_get_value_cansleep(hi->gpio_mic_en) = %d\n", gpio_get_value_cansleep(hi->gpio_mic_en));

	/* init gpio_detect */
	ret = gpio_request(hi->gpio_detect, "gpio_detect");
	if (ret < 0) {
		HSD_ERR("Failed to configure gpio%d (gpio_det) gpio_request\n", hi->gpio_detect);
		goto error_03;
	}

	ret = gpio_direction_input(hi->gpio_detect);
	if (ret < 0) {
		HSD_ERR("Failed to configure gpio%d (gpio_det) gpio_direction_input\n", hi->gpio_detect);
		goto error_03;
	}

	/*init gpio_key */
	ret = gpio_request(hi->gpio_key, "gpio_key");
	if (ret < 0) {
		HSD_ERR("Failed to configure gpio%d (gpio_key) gpio_request\n", hi->gpio_key);
		goto error_04;
	}

	ret = gpio_direction_input(hi->gpio_key);
	if (ret < 0) {
		HSD_ERR("Failed to configure gpio%d (gpio_key) gpio_direction_input\n", hi->gpio_key);
		goto error_04;
	}

	/* initialize irq of gpio_key */
	hi->irq_key = gpio_to_irq(hi->gpio_key);

	HSD_DBG("hi->irq_key = %d\n", hi->irq_key);

	if (hi->irq_key < 0) {
		HSD_ERR("Failed to get interrupt number\n");
		ret = hi->irq_key;
		goto error_06;
	}
	ret = request_threaded_irq(hi->irq_key, NULL, button_irq_handler,
			IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, pdev->name, hi);
	if (ret) {
		HSD_ERR("failed to request button irq\n");
		goto error_06;
	}

	ret = irq_set_irq_wake(hi->irq_key, 1);
	if (ret < 0) {
		HSD_ERR("Failed to set irq_key interrupt wake\n");
		goto error_06;
	}

	hi->irq_detect = gpio_to_irq(hi->gpio_detect);
	HSD_DBG("hi->irq_detect = %d\n", hi->irq_detect);

	if (hi->irq_detect < 0) {
		HSD_ERR("Failed to get interrupt number\n");
		ret = hi->irq_detect;
		goto error_07;
	}
	ret = request_threaded_irq(hi->irq_detect, NULL, earjack_det_irq_handler,
			IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, pdev->name, hi);

	if (ret) {
		HSD_ERR("failed to request button irq\n");
		goto error_07;
	}

	ret = irq_set_irq_wake(hi->irq_detect, 1);
	if (ret < 0) {
		HSD_ERR("Failed to set gpio_detect interrupt wake\n");
		goto error_07;
	}
	/* initialize switch device */
	hi->sdev.name = pdata->switch_name;
	hi->sdev.print_state = lge_hsd_print_state;

	ret = switch_dev_register(&hi->sdev);
	if (ret < 0) {
		HSD_ERR("Failed to register switch device\n");
		goto error_08;
	}

	/* initialize input device */
	hi->input = input_allocate_device();
	if (!hi->input) {
		HSD_ERR("Failed to allocate input device\n");
		ret = -ENOMEM;
		goto error_09;
	}

	hi->input->name = pdata->keypad_name;

	hi->input->id.vendor    = 0x0001;
	hi->input->id.product   = 1;
	hi->input->id.version   = 1;

	set_bit(EV_SYN, hi->input->evbit);
	set_bit(EV_KEY, hi->input->evbit);
	set_bit(EV_SW, hi->input->evbit);
	set_bit(hi->key_code, hi->input->keybit);
	set_bit(SW_HEADPHONE_INSERT, hi->input->swbit);
	set_bit(SW_MICROPHONE_INSERT, hi->input->swbit);
	input_set_capability(hi->input, EV_KEY, KEY_MEDIA);
	input_set_capability(hi->input, EV_KEY, 582);
	input_set_capability(hi->input, EV_KEY, KEY_VOLUMEUP);
	input_set_capability(hi->input, EV_KEY, KEY_VOLUMEDOWN);
	ret = input_register_device(hi->input);
	if (ret) {
		HSD_ERR("Failed to register input device\n");
		goto error_09;
	}

	if (!(hi->gpio_get_value_func(hi->gpio_detect)))

#ifdef CONFIG_MAX1462X_USE_LOCAL_WORK_QUEUE
		/* to detect in initialization with eacjack insertion */
		queue_work(local_max1462x_workqueue, &(hi->work));
#else
	/* to detect in initialization with eacjack insertion */
	schedule_work(&(hi->work));
#endif
	return ret;

error_09:
	input_free_device(hi->input);
error_08:
	switch_dev_unregister(&hi->sdev);
error_07:
	free_irq(hi->irq_detect, 0);
error_06:
	free_irq(hi->irq_key, 0);
error_04:
	gpio_free(hi->gpio_key);
error_03:
	gpio_free(hi->gpio_detect);
error_02:
	gpio_free(hi->gpio_mic_en);
	kfree(hi);
	return ret;
}
Esempio n. 3
0
static int rfkill_init(struct platform_device *sdev)
{
	/* add rfkill */
	int retval;

	/* keep the hardware wireless state */
	get_wireless_state_ec_standard();

	rfk_bluetooth = rfkill_alloc("msi-bluetooth", &sdev->dev,
				RFKILL_TYPE_BLUETOOTH,
				&rfkill_bluetooth_ops, NULL);
	if (!rfk_bluetooth) {
		retval = -ENOMEM;
		goto err_bluetooth;
	}
	retval = rfkill_register(rfk_bluetooth);
	if (retval)
		goto err_bluetooth;

	rfk_wlan = rfkill_alloc("msi-wlan", &sdev->dev, RFKILL_TYPE_WLAN,
				&rfkill_wlan_ops, NULL);
	if (!rfk_wlan) {
		retval = -ENOMEM;
		goto err_wlan;
	}
	retval = rfkill_register(rfk_wlan);
	if (retval)
		goto err_wlan;

	if (threeg_exists) {
		rfk_threeg = rfkill_alloc("msi-threeg", &sdev->dev,
				RFKILL_TYPE_WWAN, &rfkill_threeg_ops, NULL);
		if (!rfk_threeg) {
			retval = -ENOMEM;
			goto err_threeg;
		}
		retval = rfkill_register(rfk_threeg);
		if (retval)
			goto err_threeg;
	}

	/* schedule to run rfkill state initial */
	if (quirks->ec_delay) {
		schedule_delayed_work(&msi_rfkill_init,
			round_jiffies_relative(1 * HZ));
	} else
		schedule_work(&msi_rfkill_work);

	return 0;

err_threeg:
	rfkill_destroy(rfk_threeg);
	if (rfk_wlan)
		rfkill_unregister(rfk_wlan);
err_wlan:
	rfkill_destroy(rfk_wlan);
	if (rfk_bluetooth)
		rfkill_unregister(rfk_bluetooth);
err_bluetooth:
	rfkill_destroy(rfk_bluetooth);

	return retval;
}
Esempio n. 4
0
static void
bch_l2l1(struct hisax_if *ifc, int pr, void *arg)
{
	struct hfc4s8s_btype *bch = ifc->priv;
	struct hfc4s8s_l1 *l1 = bch->l1p;
	struct sk_buff *skb = (struct sk_buff *) arg;
	long mode = (long) arg;
	u_long flags;

	switch (pr) {

		case (PH_DATA | REQUEST):
			if (!l1->enabled || (bch->mode == L1_MODE_NULL)) {
				dev_kfree_skb(skb);
				break;
			}
			spin_lock_irqsave(&l1->lock, flags);
			skb_queue_tail(&bch->tx_queue, skb);
			if (!bch->tx_skb && (bch->tx_cnt <= 0)) {
				l1->hw->mr.r_irq_fifo_blx[l1->st_num] |=
				    ((bch->bchan == 1) ? 1 : 4);
				spin_unlock_irqrestore(&l1->lock, flags);
				schedule_work(&l1->hw->tqueue);
			} else
				spin_unlock_irqrestore(&l1->lock, flags);
			break;

		case (PH_ACTIVATE | REQUEST):
		case (PH_DEACTIVATE | REQUEST):
			if (!l1->enabled)
				break;
			if (pr == (PH_DEACTIVATE | REQUEST))
				mode = L1_MODE_NULL;

			switch (mode) {
				case L1_MODE_HDLC:
					spin_lock_irqsave(&l1->lock,
							  flags);
					l1->hw->mr.timer_usg_cnt++;
					l1->hw->mr.
					    fifo_slow_timer_service[l1->
								    st_num]
					    |=
					    ((bch->bchan ==
					      1) ? 0x2 : 0x8);
					Write_hfc8(l1->hw, R_FIFO,
						   (l1->st_num * 8 +
						    ((bch->bchan ==
						      1) ? 0 : 2)));
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, A_CON_HDLC, 0xc);	/* HDLC mode, flag fill, connect ST */
					Write_hfc8(l1->hw, A_SUBCH_CFG, 0);	/* 8 bits */
					Write_hfc8(l1->hw, A_IRQ_MSK, 1);	/* enable TX interrupts for hdlc */
					Write_hfc8(l1->hw, A_INC_RES_FIFO, 2);	/* reset fifo */
					wait_busy(l1->hw);

					Write_hfc8(l1->hw, R_FIFO,
						   (l1->st_num * 8 +
						    ((bch->bchan ==
						      1) ? 1 : 3)));
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, A_CON_HDLC, 0xc);	/* HDLC mode, flag fill, connect ST */
					Write_hfc8(l1->hw, A_SUBCH_CFG, 0);	/* 8 bits */
					Write_hfc8(l1->hw, A_IRQ_MSK, 1);	/* enable RX interrupts for hdlc */
					Write_hfc8(l1->hw, A_INC_RES_FIFO, 2);	/* reset fifo */

					Write_hfc8(l1->hw, R_ST_SEL,
						   l1->st_num);
					l1->hw->mr.r_ctrl0 |=
					    (bch->bchan & 3);
					Write_hfc8(l1->hw, A_ST_CTRL0,
						   l1->hw->mr.r_ctrl0);
					bch->mode = L1_MODE_HDLC;
					spin_unlock_irqrestore(&l1->lock,
							       flags);

					bch->b_if.ifc.l1l2(&bch->b_if.ifc,
							   PH_ACTIVATE |
							   INDICATION,
							   NULL);
					break;

				case L1_MODE_TRANS:
					spin_lock_irqsave(&l1->lock,
							  flags);
					l1->hw->mr.
					    fifo_rx_trans_enables[l1->
								  st_num]
					    |=
					    ((bch->bchan ==
					      1) ? 0x2 : 0x8);
					l1->hw->mr.timer_usg_cnt++;
					Write_hfc8(l1->hw, R_FIFO,
						   (l1->st_num * 8 +
						    ((bch->bchan ==
						      1) ? 0 : 2)));
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, A_CON_HDLC, 0xf);	/* Transparent mode, 1 fill, connect ST */
					Write_hfc8(l1->hw, A_SUBCH_CFG, 0);	/* 8 bits */
					Write_hfc8(l1->hw, A_IRQ_MSK, 0);	/* disable TX interrupts */
					Write_hfc8(l1->hw, A_INC_RES_FIFO, 2);	/* reset fifo */
					wait_busy(l1->hw);

					Write_hfc8(l1->hw, R_FIFO,
						   (l1->st_num * 8 +
						    ((bch->bchan ==
						      1) ? 1 : 3)));
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, A_CON_HDLC, 0xf);	/* Transparent mode, 1 fill, connect ST */
					Write_hfc8(l1->hw, A_SUBCH_CFG, 0);	/* 8 bits */
					Write_hfc8(l1->hw, A_IRQ_MSK, 0);	/* disable RX interrupts */
					Write_hfc8(l1->hw, A_INC_RES_FIFO, 2);	/* reset fifo */

					Write_hfc8(l1->hw, R_ST_SEL,
						   l1->st_num);
					l1->hw->mr.r_ctrl0 |=
					    (bch->bchan & 3);
					Write_hfc8(l1->hw, A_ST_CTRL0,
						   l1->hw->mr.r_ctrl0);
					bch->mode = L1_MODE_TRANS;
					spin_unlock_irqrestore(&l1->lock,
							       flags);

					bch->b_if.ifc.l1l2(&bch->b_if.ifc,
							   PH_ACTIVATE |
							   INDICATION,
							   NULL);
					break;

				default:
					if (bch->mode == L1_MODE_NULL)
						break;
					spin_lock_irqsave(&l1->lock,
							  flags);
					l1->hw->mr.
					    fifo_slow_timer_service[l1->
								    st_num]
					    &=
					    ~((bch->bchan ==
					       1) ? 0x3 : 0xc);
					l1->hw->mr.
					    fifo_rx_trans_enables[l1->
								  st_num]
					    &=
					    ~((bch->bchan ==
					       1) ? 0x3 : 0xc);
					l1->hw->mr.timer_usg_cnt--;
					Write_hfc8(l1->hw, R_FIFO,
						   (l1->st_num * 8 +
						    ((bch->bchan ==
						      1) ? 0 : 2)));
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, A_IRQ_MSK, 0);	/* disable TX interrupts */
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, R_FIFO,
						   (l1->st_num * 8 +
						    ((bch->bchan ==
						      1) ? 1 : 3)));
					wait_busy(l1->hw);
					Write_hfc8(l1->hw, A_IRQ_MSK, 0);	/* disable RX interrupts */
					Write_hfc8(l1->hw, R_ST_SEL,
						   l1->st_num);
					l1->hw->mr.r_ctrl0 &=
					    ~(bch->bchan & 3);
					Write_hfc8(l1->hw, A_ST_CTRL0,
						   l1->hw->mr.r_ctrl0);
					spin_unlock_irqrestore(&l1->lock,
							       flags);

					bch->mode = L1_MODE_NULL;
					bch->b_if.ifc.l1l2(&bch->b_if.ifc,
							   PH_DEACTIVATE |
							   INDICATION,
							   NULL);
					if (bch->tx_skb) {
						dev_kfree_skb(bch->tx_skb);
						bch->tx_skb = NULL;
					}
					if (bch->rx_skb) {
						dev_kfree_skb(bch->rx_skb);
						bch->rx_skb = NULL;
					}
					skb_queue_purge(&bch->tx_queue);
					bch->tx_cnt = 0;
					bch->rx_ptr = NULL;
					break;
			}

			/* timer is only used when at least one b channel */
			/* is set up to transparent mode */
			if (l1->hw->mr.timer_usg_cnt) {
				Write_hfc8(l1->hw, R_IRQMSK_MISC,
					   M_TI_IRQMSK);
			} else {
				Write_hfc8(l1->hw, R_IRQMSK_MISC, 0);
			}

			break;

		default:
			printk(KERN_INFO
			       "HFC-4S/8S: Unknown B-chan cmd 0x%x received, ignored\n",
			       pr);
			break;
	}
	if (!l1->enabled)
		bch->b_if.ifc.l1l2(&bch->b_if.ifc,
				   PH_DEACTIVATE | INDICATION, NULL);
}				/* bch_l2l1 */
Esempio n. 5
0
void bl_timer_callback(unsigned long data)
{
	schedule_work(&bl_off_work);
}
Esempio n. 6
0
void lbs_set_multicast_list(struct net_device *dev)
{
	struct lbs_private *priv = dev->ml_priv;

	schedule_work(&priv->mcast_work);
}
Esempio n. 7
0
static void hotplug_decision_work_fn(struct work_struct *work)
{
	unsigned int running, disable_load, sampling_rate, enable_load, avg_running = 0;
	unsigned int online_cpus, available_cpus, i, j;
#if DEBUG
	unsigned int k;
#endif

	online_cpus = num_online_cpus();
	available_cpus = CPUS_AVAILABLE;
	disable_load = DISABLE_LOAD_THRESHOLD * online_cpus;
	enable_load = ENABLE_LOAD_THRESHOLD * online_cpus;
	/*
	 * Multiply nr_running() by 100 so we don't have to
	 * use fp division to get the average.
	 */
	running = nr_running() * 100;

	history[index] = running;

#if DEBUG
	pr_info("online_cpus is: %d\n", online_cpus);
	pr_info("enable_load is: %d\n", enable_load);
	pr_info("disable_load is: %d\n", disable_load);
	pr_info("index is: %d\n", index);
	pr_info("running is: %d\n", running);
#endif

	/*
	 * Use a circular buffer to calculate the average load
	 * over the sampling periods.
	 * This will absorb load spikes of short duration where
	 * we don't want additional cores to be onlined because
	 * the cpufreq driver should take care of those load spikes.
	 */
	for (i = 0, j = index; i < SAMPLING_PERIODS; i++, j--) {
		avg_running += history[j];
		if (unlikely(j == 0))
			j = INDEX_MAX_VALUE;
	}

	/*
	 * If we are at the end of the buffer, return to the beginning.
	 */
	if (unlikely(index++ == INDEX_MAX_VALUE))
		index = 0;

#if DEBUG
	pr_info("array contents: ");
	for (k = 0; k < SAMPLING_PERIODS; k++) {
		 pr_info("%d: %d\t",k, history[k]);
	}
	pr_info("\n");
	pr_info("avg_running before division: %d\n", avg_running);
#endif

	avg_running = avg_running / SAMPLING_PERIODS;

#if DEBUG
	pr_info("average_running is: %d\n", avg_running);
#endif

	if (likely(!(flags & HOTPLUG_DISABLED))) {
		if (unlikely((avg_running >= ENABLE_ALL_LOAD_THRESHOLD) && (online_cpus < available_cpus) && (max_online_cpus > online_cpus))) {
			pr_info("auto_hotplug: Onlining all CPUs, avg running: %d\n", avg_running);
			/*
			 * Flush any delayed offlining work from the workqueue.
			 * No point in having expensive unnecessary hotplug transitions.
			 * We still online after flushing, because load is high enough to
			 * warrant it.
			 * We set the paused flag so the sampling can continue but no more
			 * hotplug events will occur.
			 */
			flags |= HOTPLUG_PAUSED;
			if (delayed_work_pending(&hotplug_offline_work))
				cancel_delayed_work(&hotplug_offline_work);
			schedule_work(&hotplug_online_all_work);
			return;
		} else if (flags & HOTPLUG_PAUSED) {
			schedule_delayed_work_on(0, &hotplug_decision_work, MIN_SAMPLING_RATE);
			return;
		} else if ((avg_running >= enable_load) && (online_cpus < available_cpus) && (max_online_cpus > online_cpus)) {
			pr_info("auto_hotplug: Onlining single CPU, avg running: %d\n", avg_running);
			if (delayed_work_pending(&hotplug_offline_work))
				cancel_delayed_work(&hotplug_offline_work);
			schedule_work(&hotplug_online_single_work);
			return;
		} else if ((avg_running <= disable_load) && (min_online_cpus < online_cpus)) {
			/* Only queue a cpu_down() if there isn't one already pending */
			if (!(delayed_work_pending(&hotplug_offline_work))) {
				pr_info("auto_hotplug: Offlining CPU, avg running: %d\n", avg_running);
				schedule_delayed_work_on(0, &hotplug_offline_work, HZ);
			}
			/* If boostpulse is active, clear the flags */
			if (flags & BOOSTPULSE_ACTIVE) {
				flags &= ~BOOSTPULSE_ACTIVE;
				pr_info("auto_hotplug: Clearing boostpulse flags\n");
			}
		}
	}

	/*
	 * Reduce the sampling rate dynamically based on online cpus.
	 */
	sampling_rate = MIN_SAMPLING_RATE * (online_cpus * online_cpus);
#if DEBUG
	pr_info("sampling_rate is: %d\n", jiffies_to_msecs(sampling_rate));
#endif
	schedule_delayed_work_on(0, &hotplug_decision_work, sampling_rate);

}
Esempio n. 8
0
/* Resets the Xen limit, sets new target, and kicks off processing. */
static void balloon_set_new_target(unsigned long target)
{
	/* No need for lock. Not read-modify-write updates. */
	balloon_stats.target_pages = target;
	schedule_work(&balloon_worker);
}
Esempio n. 9
0
int lbs_process_event(struct lbs_private *priv, u32 event)
{
	int ret = 0;
	lbs_deb_enter(LBS_DEB_CMD);

	switch (event) {
	case MACREG_INT_CODE_LINK_SENSED:
		printk("EVENT: link sensed\n");//掉线
		break;

	case MACREG_INT_CODE_DEAUTHENTICATED:
		printk("EVENT: deauthenticated\n");
		//lbs_mac_event_disconnected(priv);
		break;

	case MACREG_INT_CODE_DISASSOCIATED:
		printk("EVENT: disassociated\n");
		//lbs_mac_event_disconnected(priv);
		break;

	case MACREG_INT_CODE_LINK_LOST_NO_SCAN:
		printk("EVENT: link lost\n");
		//lbs_mac_event_disconnected(priv);
		break;

	case MACREG_INT_CODE_PS_SLEEP:
		printk("EVENT: ps sleep\n");

		/* handle unexpected PS SLEEP event */
		if (priv->psstate == PS_STATE_FULL_POWER) {
			printk("EVENT: in FULL POWER mode, ignoreing PS_SLEEP\n");
			break;
		}
		priv->psstate = PS_STATE_PRE_SLEEP;

		//lbs_ps_confirm_sleep(priv);

		break;

	case MACREG_INT_CODE_HOST_AWAKE:
		printk("EVENT: host awake\n");
		//lbs_send_confirmwake(priv);
		break;

	case MACREG_INT_CODE_PS_AWAKE:
		printk("EVENT: ps awake\n");
		/* handle unexpected PS AWAKE event */
		if (priv->psstate == PS_STATE_FULL_POWER) {
			printk(
			       "EVENT: In FULL POWER mode - ignore PS AWAKE\n");
			break;
		}

		priv->psstate = PS_STATE_AWAKE;

		if (priv->needtowakeup) {
			/*
			 * wait for the command processing to finish
			 * before resuming sending
			 * priv->needtowakeup will be set to FALSE
			 * in lbs_ps_wakeup()
			 */
			printk("waking up ...\n");
			//lbs_ps_wakeup(priv, 0);
		}
		break;

	case MACREG_INT_CODE_MIC_ERR_UNICAST:
		printk("EVENT: UNICAST MIC ERROR\n");
		//handle_mic_failureevent(priv, MACREG_INT_CODE_MIC_ERR_UNICAST);
		break;

	case MACREG_INT_CODE_MIC_ERR_MULTICAST:
		printk("EVENT: MULTICAST MIC ERROR\n");
		//handle_mic_failureevent(priv, MACREG_INT_CODE_MIC_ERR_MULTICAST);
		break;

	case MACREG_INT_CODE_MIB_CHANGED:
		printk("EVENT: MIB CHANGED\n");
		break;
	case MACREG_INT_CODE_INIT_DONE:
		printk("EVENT: INIT DONE\n");
		break;
	case MACREG_INT_CODE_ADHOC_BCN_LOST:
		printk("EVENT: ADHOC beacon lost\n");
		break;
	case MACREG_INT_CODE_RSSI_LOW:
		printk("EVENT: rssi low\n");
		break;
	case MACREG_INT_CODE_SNR_LOW:
		printk("EVENT: snr low\n");
		break;
	case MACREG_INT_CODE_MAX_FAIL:
		printk("EVENT: max fail\n");
		break;
	case MACREG_INT_CODE_RSSI_HIGH:
		printk("EVENT: rssi high\n");
		break;
	case MACREG_INT_CODE_SNR_HIGH:
		printk("EVENT: snr high\n");
		break;
#ifdef MASK_DEBUG
	case MACREG_INT_CODE_MESH_AUTO_STARTED:
		/* Ignore spurious autostart events if autostart is disabled */
		if (!priv->mesh_autostart_enabled) {
			lbs_pr_info("EVENT: MESH_AUTO_STARTED (ignoring)\n");
			break;
		}
		lbs_pr_info("EVENT: MESH_AUTO_STARTED\n");
		priv->mesh_connect_status = LBS_CONNECTED;
		if (priv->mesh_open) {
			netif_carrier_on(priv->mesh_dev);
			if (!priv->tx_pending_len)
				netif_wake_queue(priv->mesh_dev);
		}
		priv->mode = IW_MODE_ADHOC;
		schedule_work(&priv->sync_channel);
		break;
#endif
	default:
		printk("EVENT: unknown event id %d\n", event);
		break;
	}

	lbs_deb_leave_args(LBS_DEB_CMD, ret);
	return ret;
}
Esempio n. 10
0
static int apanic_proc_write(struct file *file, const char __user *buffer,
		unsigned long count, void *data)
{
	schedule_work(&proc_removal_work);
	return count;
}
Esempio n. 11
0
static void balloon_alarm(unsigned long unused)
{
	schedule_work(&balloon_worker);
}
void pwr_trig_fscreen(void)
{
    if (mutex_trylock(&scr_lock))
        schedule_work(&screenwake_presspwr_work);
}
Esempio n. 13
0
static void bcm203x_complete(struct urb *urb)
{
	struct bcm203x_data *data = urb->context;
	struct usb_device *udev = urb->dev;
	int len;

	BT_DBG("udev %p urb %p", udev, urb);

	if (urb->status) {
		BT_ERR("URB failed with status %d", urb->status);
		data->state = BCM203X_ERROR;
		return;
	}

	switch (data->state) {
	case BCM203X_LOAD_MINIDRV:
		memcpy(data->buffer, "#", 1);

		usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, BCM203X_OUT_EP),
				data->buffer, 1, bcm203x_complete, data);

		data->state = BCM203X_SELECT_MEMORY;

		schedule_work(&data->work);
		break;

	case BCM203X_SELECT_MEMORY:
		usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, BCM203X_IN_EP),
				data->buffer, 32, bcm203x_complete, data, 1);

		data->state = BCM203X_CHECK_MEMORY;

		if (usb_submit_urb(data->urb, GFP_ATOMIC) < 0)
			BT_ERR("Can't submit URB");
		break;

	case BCM203X_CHECK_MEMORY:
		if (data->buffer[0] != '#') {
			BT_ERR("Memory select failed");
			data->state = BCM203X_ERROR;
			break;
		}

		data->state = BCM203X_LOAD_FIRMWARE;

	case BCM203X_LOAD_FIRMWARE:
		if (data->fw_sent == data->fw_size) {
			usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, BCM203X_IN_EP),
				data->buffer, 32, bcm203x_complete, data, 1);

			data->state = BCM203X_CHECK_FIRMWARE;
		} else {
			len = min_t(uint, data->fw_size - data->fw_sent, 4096);

			usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, BCM203X_OUT_EP),
				data->fw_data + data->fw_sent, len, bcm203x_complete, data);

			data->fw_sent += len;
		}

		if (usb_submit_urb(data->urb, GFP_ATOMIC) < 0)
			BT_ERR("Can't submit URB");
		break;

	case BCM203X_CHECK_FIRMWARE:
		if (data->buffer[0] != '.') {
			BT_ERR("Firmware loading failed");
			data->state = BCM203X_ERROR;
			break;
		}

		data->state = BCM203X_RESET;
		break;
	}
}
Esempio n. 14
0
static int bcm203x_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
	const struct firmware *firmware;
	struct usb_device *udev = interface_to_usbdev(intf);
	struct bcm203x_data *data;
	int size;

	BT_DBG("intf %p id %p", intf, id);

	if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
		return -ENODEV;

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data) {
		BT_ERR("Can't allocate memory for data structure");
		return -ENOMEM;
	}

	data->udev  = udev;
	data->state = BCM203X_LOAD_MINIDRV;

	data->urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!data->urb) {
		BT_ERR("Can't allocate URB");
		kfree(data);
		return -ENOMEM;
	}

	if (request_firmware(&firmware, "BCM2033-MD.hex", &udev->dev) < 0) {
		BT_ERR("Mini driver request failed");
		usb_free_urb(data->urb);
		kfree(data);
		return -EIO;
	}

	BT_DBG("minidrv data %p size %zu", firmware->data, firmware->size);

	size = max_t(uint, firmware->size, 4096);

	data->buffer = kmalloc(size, GFP_KERNEL);
	if (!data->buffer) {
		BT_ERR("Can't allocate memory for mini driver");
		release_firmware(firmware);
		usb_free_urb(data->urb);
		kfree(data);
		return -ENOMEM;
	}

	memcpy(data->buffer, firmware->data, firmware->size);

	usb_fill_bulk_urb(data->urb, udev, usb_sndbulkpipe(udev, BCM203X_OUT_EP),
			data->buffer, firmware->size, bcm203x_complete, data);

	release_firmware(firmware);

	if (request_firmware(&firmware, "BCM2033-FW.bin", &udev->dev) < 0) {
		BT_ERR("Firmware request failed");
		usb_free_urb(data->urb);
		kfree(data->buffer);
		kfree(data);
		return -EIO;
	}

	BT_DBG("firmware data %p size %zu", firmware->data, firmware->size);

	data->fw_data = kmalloc(firmware->size, GFP_KERNEL);
	if (!data->fw_data) {
		BT_ERR("Can't allocate memory for firmware image");
		release_firmware(firmware);
		usb_free_urb(data->urb);
		kfree(data->buffer);
		kfree(data);
		return -ENOMEM;
	}

	memcpy(data->fw_data, firmware->data, firmware->size);
	data->fw_size = firmware->size;
	data->fw_sent = 0;

	release_firmware(firmware);

	INIT_WORK(&data->work, bcm203x_work);

	usb_set_intfdata(intf, data);

	schedule_work(&data->work);

	return 0;
}
Esempio n. 15
0
static int fsa9485_detect_dev(struct fsa9485_usbsw *usbsw)
{
	int device_type, ret;
	unsigned int dev1, dev2, adc;
	struct fsa9485_platform_data *pdata = usbsw->pdata;
	struct i2c_client *client = usbsw->client;
#if defined(CONFIG_VIDEO_MHL_V1) || defined(CONFIG_VIDEO_MHL_V2)
//	u8 mhl_ret = 0;
#endif
	pr_info("%s", __func__);

	device_type = i2c_smbus_read_word_data(client, FSA9485_REG_DEV_T1);
	if (device_type < 0) {
		dev_err(&client->dev, "%s: err %d\n", __func__, device_type);
		return device_type;
	}
	dev1 = device_type & 0xff;
	dev2 = device_type >> 8;
	adc = i2c_smbus_read_byte_data(client, FSA9485_REG_ADC);

	if (usbsw->dock_attached)
		pdata->dock_cb(FSA9485_DETACHED_DOCK);

	if (local_usbsw->dock_ready == 1) {
		if (adc == 0x10)
			dev2 = DEV_SMARTDOCK;
		else if (adc == 0x12)
			dev2 = DEV_AUDIO_DOCK;
	}

	dev_info(&client->dev, "dev1: 0x%02x, dev2: 0x%02x, adc: 0x%02x\n",
		dev1, dev2, adc);

	/* Attached */
	if (dev1 || dev2) {
		/* USB */
		if (dev1 & DEV_USB || dev2 & DEV_T2_USB_MASK) {
			dev_info(&client->dev, "usb connect\n");

			if (pdata->usb_cb)
				pdata->usb_cb(FSA9485_ATTACHED);
			if (usbsw->mansw) {
				ret = i2c_smbus_write_byte_data(client,
				FSA9485_REG_MANSW1, usbsw->mansw);

				if (ret < 0)
					dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);
			}
		/* USB_CDP */
		} else if (dev1 & DEV_USB_CHG) {
			dev_info(&client->dev, "usb_cdp connect\n");

			if (pdata->usb_cdp_cb)
				pdata->usb_cdp_cb(FSA9485_ATTACHED);
			if (usbsw->mansw) {
				ret = i2c_smbus_write_byte_data(client,
				FSA9485_REG_MANSW1, usbsw->mansw);

				if (ret < 0)
					dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);
			}

		/* UART */
		} else if (dev1 & DEV_T1_UART_MASK || dev2 & DEV_T2_UART_MASK) {
			uart_connecting = 1;
			dev_info(&client->dev, "uart connect\n");
			i2c_smbus_write_byte_data(client,
						FSA9485_REG_CTRL, 0x1E);
			if (pdata->uart_cb)
				pdata->uart_cb(FSA9485_ATTACHED);

			if (usbsw->mansw) {
				ret = i2c_smbus_write_byte_data(client,
					FSA9485_REG_MANSW1, SW_UART);

				if (ret < 0)
					dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);
			}
		/* CHARGER */
		} else if (dev1 & DEV_T1_CHARGER_MASK) {
			dev_info(&client->dev, "charger connect\n");

			if (pdata->charger_cb)
				pdata->charger_cb(FSA9485_ATTACHED);
		/* for SAMSUNG OTG */
		} else if (dev1 & DEV_USB_OTG) {
			dev_info(&client->dev, "otg connect\n");
			if (pdata->otg_cb)
				pdata->otg_cb(FSA9485_ATTACHED);
			i2c_smbus_write_byte_data(client,
						FSA9485_REG_MANSW1, 0x27);
			i2c_smbus_write_byte_data(client,
						FSA9485_REG_MANSW2, 0x02);
			msleep(50);
			i2c_smbus_write_byte_data(client,
						FSA9485_REG_CTRL, 0x1a);
		/* JIG */
		} else if (dev2 & DEV_T2_JIG_MASK) {
			dev_info(&client->dev, "jig connect\n");

			if (pdata->jig_cb)
				pdata->jig_cb(FSA9485_ATTACHED);
		/* Desk Dock */
		} else if (dev2 & DEV_AV) {
			if ((adc & 0x1F) == ADC_DESKDOCK) {
				dev_info(&client->dev, "FSA Deskdock Attach\n");
				FSA9485_CheckAndHookAudioDock(1);
				usbsw->deskdock = 1;
#if defined(CONFIG_VIDEO_MHL_V1) || defined(CONFIG_VIDEO_MHL_V2)
				isDeskdockconnected = 1;
#endif
				i2c_smbus_write_byte_data(client,
						FSA9485_REG_RESERVED_20, 0x08);
			} else {
				dev_info(&client->dev, "FSA MHL Attach\n");
				i2c_smbus_write_byte_data(client,
						FSA9485_REG_RESERVED_20, 0x08);
#if defined(CONFIG_VIDEO_MHL_V1) || defined(CONFIG_VIDEO_MHL_V2)
				DisableFSA9485Interrupts();

				isMhlAttached = MHL_ATTACHED;
				schedule_work(&usbsw->mhl_work);

				EnableFSA9485Interrupts();
#else
				dev_info(&client->dev, "FSA mhl attach, but not support MHL feature!\n");
#endif
			}
		/* Car Dock */
		} else if (dev2 & DEV_JIG_UART_ON) {
#if !defined(CONFIG_MUIC_FSA9485_SUPPORT_CAR_DOCK)
			if (usbsw->is_factory_start) {
#endif
				dev_info(&client->dev, "car dock connect\n");

				if (pdata->dock_cb)
					pdata->dock_cb(FSA9485_ATTACHED_CAR_DOCK);
				ret = i2c_smbus_write_byte_data(client,
						FSA9485_REG_MANSW1, SW_AUDIO);

				if (ret < 0)
					dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);

				ret = i2c_smbus_read_byte_data(client,
					FSA9485_REG_CTRL);
				if (ret < 0)
					dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);

				ret = i2c_smbus_write_byte_data(client,
					FSA9485_REG_CTRL, ret & ~CON_MANUAL_SW);
				if (ret < 0)
					dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);
				usbsw->dock_attached = FSA9485_ATTACHED;
#if !defined(CONFIG_MUIC_FSA9485_SUPPORT_CAR_DOCK)
			} else {
				uart_connecting = 1;
				dev_info(&client->dev, "uart connect\n");
				i2c_smbus_write_byte_data(client,
						FSA9485_REG_CTRL, 0x1E);
				if (pdata->uart_cb)
					pdata->uart_cb(FSA9485_ATTACHED);

				if (usbsw->mansw) {
					ret = i2c_smbus_write_byte_data(client,
						FSA9485_REG_MANSW1, SW_UART);
					if (ret < 0)
						dev_err(&client->dev,
							"%s: err %d\n", __func__, ret);
				}
			}
#endif /* !CONFIG_MUIC_FSA9485_SUPPORT_CAR_DOCK */
		/* SmartDock */
		} else if (dev2 & DEV_SMARTDOCK) {
			usbsw->adc = adc;
			dev_info(&client->dev, "smart dock connect\n");

			usbsw->mansw = SW_DHOST;
			ret = i2c_smbus_write_byte_data(client,
					FSA9485_REG_MANSW1, SW_DHOST);
			if (ret < 0)
				dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);
			ret = i2c_smbus_read_byte_data(client,
					FSA9485_REG_CTRL);
			if (ret < 0)
				dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);
			ret = i2c_smbus_write_byte_data(client,
					FSA9485_REG_CTRL, ret & ~CON_MANUAL_SW);
			if (ret < 0)
				dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);

			if (pdata->smartdock_cb)
				pdata->smartdock_cb(FSA9485_ATTACHED);
#if defined(CONFIG_VIDEO_MHL_V1) || defined(CONFIG_VIDEO_MHL_V2)
//			mhl_onoff_ex(1);
#endif
		} else if (dev2 & DEV_AUDIO_DOCK) {
			usbsw->adc = adc;
			dev_info(&client->dev, "audio dock connect\n");

			usbsw->mansw = SW_DHOST;
			ret = i2c_smbus_write_byte_data(client,
					FSA9485_REG_MANSW1, SW_DHOST);
			if (ret < 0)
				dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);
			ret = i2c_smbus_read_byte_data(client,
					FSA9485_REG_CTRL);
			if (ret < 0)
				dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);
			ret = i2c_smbus_write_byte_data(client,
					FSA9485_REG_CTRL, ret & ~CON_MANUAL_SW);
			if (ret < 0)
				dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);

			if (pdata->audio_dock_cb)
				pdata->audio_dock_cb(FSA9485_ATTACHED);
		}
	/* Detached */
	} else {
		/* USB */
		if (usbsw->dev1 & DEV_USB ||
				usbsw->dev2 & DEV_T2_USB_MASK) {
			if (pdata->usb_cb)
				pdata->usb_cb(FSA9485_DETACHED);
		} else if (usbsw->dev1 & DEV_USB_CHG) {
			if (pdata->usb_cdp_cb)
				pdata->usb_cdp_cb(FSA9485_DETACHED);

		/* UART */
		} else if (usbsw->dev1 & DEV_T1_UART_MASK ||
				usbsw->dev2 & DEV_T2_UART_MASK) {
			if (pdata->uart_cb)
				pdata->uart_cb(FSA9485_DETACHED);
			uart_connecting = 0;
			dev_info(&client->dev, "[FSA9485] uart disconnect\n");

		/* CHARGER */
		} else if (usbsw->dev1 & DEV_T1_CHARGER_MASK) {
			if (pdata->charger_cb)
				pdata->charger_cb(FSA9485_DETACHED);
		/* for SAMSUNG OTG */
		} else if (usbsw->dev1 & DEV_USB_OTG) {
			if (pdata->otg_cb)
				pdata->otg_cb(FSA9485_DETACHED);
			i2c_smbus_write_byte_data(client,
						FSA9485_REG_CTRL, 0x1E);
		/* JIG */
		} else if (usbsw->dev2 & DEV_T2_JIG_MASK) {
			if (pdata->jig_cb)
				pdata->jig_cb(FSA9485_DETACHED);
		/* Desk Dock */
		} else if (usbsw->dev2 & DEV_AV) {

			pr_info("FSA MHL Detach\n");
			i2c_smbus_write_byte_data(client,
					FSA9485_REG_RESERVED_20, 0x04);
#if defined(CONFIG_VIDEO_MHL_V1) || defined(CONFIG_VIDEO_MHL_V2)
			if (isDeskdockconnected)
				FSA9485_CheckAndHookAudioDock(0);

			isMhlAttached = MHL_DETACHED;
			schedule_work(&usbsw->mhl_work);

			isDeskdockconnected = 0;
#else
			if (usbsw->deskdock) {
				FSA9485_CheckAndHookAudioDock(0);
				usbsw->deskdock = 0;
			} else {
				pr_info("FSA detach mhl cable, but not support MHL feature\n");
			}
#endif
		/* Car Dock */
		} else if (usbsw->dev2 & DEV_JIG_UART_ON) {
#if !defined(CONFIG_MUIC_FSA9485_SUPPORT_CAR_DOCK)
			if (usbsw->is_factory_start) {
#endif
				if (pdata->dock_cb)
					pdata->dock_cb(FSA9485_DETACHED_DOCK);
					ret = i2c_smbus_read_byte_data(client,
						FSA9485_REG_CTRL);
					if (ret < 0)
						dev_err(&client->dev,
							"%s: err %d\n", __func__, ret);

					ret = i2c_smbus_write_byte_data(client,
						FSA9485_REG_CTRL,
						ret | CON_MANUAL_SW);
					if (ret < 0)
						dev_err(&client->dev,
							"%s: err %d\n", __func__, ret);
					usbsw->dock_attached = FSA9485_DETACHED;
#if !defined(CONFIG_MUIC_FSA9485_SUPPORT_CAR_DOCK)
			} else {
				if (pdata->uart_cb)
					pdata->uart_cb(FSA9485_DETACHED);
				uart_connecting = 0;
				dev_info(&client->dev, "[FSA9485] uart disconnect\n");
			}
#endif /* !CONFIG_MUIC_FSA9485_SUPPORT_CAR_DOCK */
		} else if (usbsw->adc == 0x10) {
			dev_info(&client->dev, "smart dock disconnect\n");

			ret = i2c_smbus_read_byte_data(client,
						FSA9485_REG_CTRL);
				if (ret < 0)
					dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);
				ret = i2c_smbus_write_byte_data(client,
						FSA9485_REG_CTRL,
						ret | CON_MANUAL_SW);
				if (ret < 0)
					dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);

			if (pdata->smartdock_cb)
				pdata->smartdock_cb(FSA9485_DETACHED);
			usbsw->adc = 0;
#if defined(CONFIG_VIDEO_MHL_V1) || defined(CONFIG_VIDEO_MHL_V2)
//			mhl_onoff_ex(false);
#endif
		} else if (usbsw->adc == 0x12) {
			dev_info(&client->dev, "audio dock disconnect\n");

			ret = i2c_smbus_read_byte_data(client,
						FSA9485_REG_CTRL);
				if (ret < 0)
					dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);
				ret = i2c_smbus_write_byte_data(client,
						FSA9485_REG_CTRL,
						ret | CON_MANUAL_SW);
				if (ret < 0)
					dev_err(&client->dev,
						"%s: err %d\n", __func__, ret);

			if (pdata->audio_dock_cb)
				pdata->audio_dock_cb(FSA9485_DETACHED);
			usbsw->adc = 0;
		}

	}
	usbsw->dev1 = dev1;
	usbsw->dev2 = dev2;

	return adc;
}
Esempio n. 16
0
static int cpmac_poll(struct napi_struct *napi, int budget)
{
	struct sk_buff *skb;
	struct cpmac_desc *desc, *restart;
	struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
	int received = 0, processed = 0;

	spin_lock(&priv->rx_lock);
	if (unlikely(!priv->rx_head)) {
		if (netif_msg_rx_err(priv) && net_ratelimit())
			printk(KERN_WARNING "%s: rx: polling, but no queue\n",
			       priv->dev->name);
		spin_unlock(&priv->rx_lock);
		napi_complete(napi);
		return 0;
	}

	desc = priv->rx_head;
	restart = NULL;
	while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
		processed++;

		if ((desc->dataflags & CPMAC_EOQ) != 0) {
			/* The last update to eoq->hw_next didn't happen
			* soon enough, and the receiver stopped here.
			*Remember this descriptor so we can restart
			* the receiver after freeing some space.
			*/
			if (unlikely(restart)) {
				if (netif_msg_rx_err(priv))
					printk(KERN_ERR "%s: poll found a"
						" duplicate EOQ: %p and %p\n",
						priv->dev->name, restart, desc);
				goto fatal_error;
			}

			restart = desc->next;
		}

		skb = cpmac_rx_one(priv, desc);
		if (likely(skb)) {
			netif_receive_skb(skb);
			received++;
		}
		desc = desc->next;
	}

	if (desc != priv->rx_head) {
		/* We freed some buffers, but not the whole ring,
		 * add what we did free to the rx list */
		desc->prev->hw_next = (u32)0;
		priv->rx_head->prev->hw_next = priv->rx_head->mapping;
	}

	/* Optimization: If we did not actually process an EOQ (perhaps because
	 * of quota limits), check to see if the tail of the queue has EOQ set.
	* We should immediately restart in that case so that the receiver can
	* restart and run in parallel with more packet processing.
	* This lets us handle slightly larger bursts before running
	* out of ring space (assuming dev->weight < ring_size) */

	if (!restart &&
	     (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
		    == CPMAC_EOQ &&
	     (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
		/* reset EOQ so the poll loop (above) doesn't try to
		* restart this when it eventually gets to this descriptor.
		*/
		priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
		restart = priv->rx_head;
	}

	if (restart) {
		priv->dev->stats.rx_errors++;
		priv->dev->stats.rx_fifo_errors++;
		if (netif_msg_rx_err(priv) && net_ratelimit())
			printk(KERN_WARNING "%s: rx dma ring overrun\n",
			       priv->dev->name);

		if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
			if (netif_msg_drv(priv))
				printk(KERN_ERR "%s: cpmac_poll is trying to "
					"restart rx from a descriptor that's "
					"not free: %p\n",
					priv->dev->name, restart);
				goto fatal_error;
		}

		cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
	}

	priv->rx_head = desc;
	spin_unlock(&priv->rx_lock);
	if (unlikely(netif_msg_rx_status(priv)))
		printk(KERN_DEBUG "%s: poll processed %d packets\n",
		       priv->dev->name, received);
	if (processed == 0) {
		/* we ran out of packets to read,
		 * revert to interrupt-driven mode */
		napi_complete(napi);
		cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
		return 0;
	}

	return 1;

fatal_error:
	/* Something went horribly wrong.
	 * Reset hardware to try to recover rather than wedging. */

	if (netif_msg_drv(priv)) {
		printk(KERN_ERR "%s: cpmac_poll is confused. "
				"Resetting hardware\n", priv->dev->name);
		cpmac_dump_all_desc(priv->dev);
		printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
			priv->dev->name,
			cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
			cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
	}

	spin_unlock(&priv->rx_lock);
	napi_complete(napi);
	netif_tx_stop_all_queues(priv->dev);
	napi_disable(&priv->napi);

	atomic_inc(&priv->reset_pending);
	cpmac_hw_stop(priv->dev);
	if (!schedule_work(&priv->reset_work))
		atomic_dec(&priv->reset_pending);
	return 0;

}
Esempio n. 17
0
/*
 * Main event dispatcher. Called from other parts and drivers.
 * Send the event on the appropriate channels.
 * May be called from interrupt context.
 */
void wireless_send_event(struct net_device *	dev,
			 unsigned int		cmd,
			 union iwreq_data *	wrqu,
			 const char *		extra)
{
	const struct iw_ioctl_description *	descr = NULL;
	int extra_len = 0;
	struct iw_event  *event;		/* Mallocated whole event */
	int event_len;				/* Its size */
	int hdr_len;				/* Size of the event header */
	int wrqu_off = 0;			/* Offset in wrqu */
	/* Don't "optimise" the following variable, it will crash */
	unsigned	cmd_index;		/* *MUST* be unsigned */
	struct sk_buff *skb;
	struct nlmsghdr *nlh;
	struct nlattr *nla;
#ifdef CONFIG_COMPAT
	struct __compat_iw_event *compat_event;
	struct compat_iw_point compat_wrqu;
	struct sk_buff *compskb;
#endif

	/*
	 * Nothing in the kernel sends scan events with data, be safe.
	 * This is necessary because we cannot fix up scan event data
	 * for compat, due to being contained in 'extra', but normally
	 * applications are required to retrieve the scan data anyway
	 * and no data is included in the event, this codifies that
	 * practice.
	 */
	if (WARN_ON(cmd == SIOCGIWSCAN && extra))
		extra = NULL;

	/* Get the description of the Event */
	if (cmd <= SIOCIWLAST) {
		cmd_index = IW_IOCTL_IDX(cmd);
		if (cmd_index < standard_ioctl_num)
			descr = &(standard_ioctl[cmd_index]);
	} else {
		cmd_index = IW_EVENT_IDX(cmd);
		if (cmd_index < standard_event_num)
			descr = &(standard_event[cmd_index]);
	}
	/* Don't accept unknown events */
	if (descr == NULL) {
		/* Note : we don't return an error to the driver, because
		 * the driver would not know what to do about it. It can't
		 * return an error to the user, because the event is not
		 * initiated by a user request.
		 * The best the driver could do is to log an error message.
		 * We will do it ourselves instead...
		 */
		netdev_err(dev, "(WE) : Invalid/Unknown Wireless Event (0x%04X)\n",
			   cmd);
		return;
	}

	/* Check extra parameters and set extra_len */
	if (descr->header_type == IW_HEADER_TYPE_POINT) {
		/* Check if number of token fits within bounds */
		if (wrqu->data.length > descr->max_tokens) {
			netdev_err(dev, "(WE) : Wireless Event too big (%d)\n",
				   wrqu->data.length);
			return;
		}
		if (wrqu->data.length < descr->min_tokens) {
			netdev_err(dev, "(WE) : Wireless Event too small (%d)\n",
				   wrqu->data.length);
			return;
		}
		/* Calculate extra_len - extra is NULL for restricted events */
		if (extra != NULL)
			extra_len = wrqu->data.length * descr->token_size;
		/* Always at an offset in wrqu */
		wrqu_off = IW_EV_POINT_OFF;
	}

	/* Total length of the event */
	hdr_len = event_type_size[descr->header_type];
	event_len = hdr_len + extra_len;

	/*
	 * The problem for 64/32 bit.
	 *
	 * On 64-bit, a regular event is laid out as follows:
	 *      |  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |
	 *      | event.len | event.cmd |     p a d d i n g     |
	 *      | wrqu data ... (with the correct size)         |
	 *
	 * This padding exists because we manipulate event->u,
	 * and 'event' is not packed.
	 *
	 * An iw_point event is laid out like this instead:
	 *      |  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |
	 *      | event.len | event.cmd |     p a d d i n g     |
	 *      | iwpnt.len | iwpnt.flg |     p a d d i n g     |
	 *      | extra data  ...
	 *
	 * The second padding exists because struct iw_point is extended,
	 * but this depends on the platform...
	 *
	 * On 32-bit, all the padding shouldn't be there.
	 */

	skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
	if (!skb)
		return;

	/* Send via the RtNetlink event channel */
	nlh = rtnetlink_ifinfo_prep(dev, skb);
	if (WARN_ON(!nlh)) {
		kfree_skb(skb);
		return;
	}

	/* Add the wireless events in the netlink packet */
	nla = nla_reserve(skb, IFLA_WIRELESS, event_len);
	if (!nla) {
		kfree_skb(skb);
		return;
	}
	event = nla_data(nla);

	/* Fill event - first clear to avoid data leaking */
	memset(event, 0, hdr_len);
	event->len = event_len;
	event->cmd = cmd;
	memcpy(&event->u, ((char *) wrqu) + wrqu_off, hdr_len - IW_EV_LCP_LEN);
	if (extra_len)
		memcpy(((char *) event) + hdr_len, extra, extra_len);

	nlmsg_end(skb, nlh);
#ifdef CONFIG_COMPAT
	hdr_len = compat_event_type_size[descr->header_type];
	event_len = hdr_len + extra_len;

	compskb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
	if (!compskb) {
		kfree_skb(skb);
		return;
	}

	/* Send via the RtNetlink event channel */
	nlh = rtnetlink_ifinfo_prep(dev, compskb);
	if (WARN_ON(!nlh)) {
		kfree_skb(skb);
		kfree_skb(compskb);
		return;
	}

	/* Add the wireless events in the netlink packet */
	nla = nla_reserve(compskb, IFLA_WIRELESS, event_len);
	if (!nla) {
		kfree_skb(skb);
		kfree_skb(compskb);
		return;
	}
	compat_event = nla_data(nla);

	compat_event->len = event_len;
	compat_event->cmd = cmd;
	if (descr->header_type == IW_HEADER_TYPE_POINT) {
		compat_wrqu.length = wrqu->data.length;
		compat_wrqu.flags = wrqu->data.flags;
		memcpy(&compat_event->pointer,
			((char *) &compat_wrqu) + IW_EV_COMPAT_POINT_OFF,
			hdr_len - IW_EV_COMPAT_LCP_LEN);
		if (extra_len)
			memcpy(((char *) compat_event) + hdr_len,
				extra, extra_len);
	} else {
		/* extra_len must be zero, so no if (extra) needed */
		memcpy(&compat_event->pointer, wrqu,
			hdr_len - IW_EV_COMPAT_LCP_LEN);
	}

	nlmsg_end(compskb, nlh);

	skb_shinfo(skb)->frag_list = compskb;
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,32))
	skb_queue_tail(&dev_net(dev)->wext_nlevents, skb);
	schedule_work(&wireless_nlevent_work);
#else
	skb_queue_tail(&wireless_nlevent_queue, skb);
	tasklet_schedule(&wireless_nlevent_tasklet);
#endif
}
Esempio n. 18
0
/*
 * OMAP can use "CLK / (16 or 13) / div" for baud rate. And then we have have
 * some differences in how we want to handle flow control.
 */
static void omap_8250_set_termios(struct uart_port *port,
				  struct ktermios *termios,
				  struct ktermios *old)
{
	struct uart_8250_port *up = up_to_u8250p(port);
	struct omap8250_priv *priv = up->port.private_data;
	unsigned char cval = 0;
	unsigned int baud;

	switch (termios->c_cflag & CSIZE) {
	case CS5:
		cval = UART_LCR_WLEN5;
		break;
	case CS6:
		cval = UART_LCR_WLEN6;
		break;
	case CS7:
		cval = UART_LCR_WLEN7;
		break;
	default:
	case CS8:
		cval = UART_LCR_WLEN8;
		break;
	}

	if (termios->c_cflag & CSTOPB)
		cval |= UART_LCR_STOP;
	if (termios->c_cflag & PARENB)
		cval |= UART_LCR_PARITY;
	if (!(termios->c_cflag & PARODD))
		cval |= UART_LCR_EPAR;
	if (termios->c_cflag & CMSPAR)
		cval |= UART_LCR_SPAR;

	/*
	 * Ask the core to calculate the divisor for us.
	 */
	baud = uart_get_baud_rate(port, termios, old,
				  port->uartclk / 16 / 0xffff,
				  port->uartclk / 13);
	omap_8250_get_divisor(port, baud, priv);

	/*
	 * Ok, we're now changing the port state. Do it with
	 * interrupts disabled.
	 */
	pm_runtime_get_sync(port->dev);
	spin_lock_irq(&port->lock);

	/*
	 * Update the per-port timeout.
	 */
	uart_update_timeout(port, termios->c_cflag, baud);

	up->port.read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR;
	if (termios->c_iflag & INPCK)
		up->port.read_status_mask |= UART_LSR_FE | UART_LSR_PE;
	if (termios->c_iflag & (IGNBRK | PARMRK))
		up->port.read_status_mask |= UART_LSR_BI;

	/*
	 * Characters to ignore
	 */
	up->port.ignore_status_mask = 0;
	if (termios->c_iflag & IGNPAR)
		up->port.ignore_status_mask |= UART_LSR_PE | UART_LSR_FE;
	if (termios->c_iflag & IGNBRK) {
		up->port.ignore_status_mask |= UART_LSR_BI;
		/*
		 * If we're ignoring parity and break indicators,
		 * ignore overruns too (for real raw support).
		 */
		if (termios->c_iflag & IGNPAR)
			up->port.ignore_status_mask |= UART_LSR_OE;
	}

	/*
	 * ignore all characters if CREAD is not set
	 */
	if ((termios->c_cflag & CREAD) == 0)
		up->port.ignore_status_mask |= UART_LSR_DR;

	/*
	 * Modem status interrupts
	 */
	up->ier &= ~UART_IER_MSI;
	if (UART_ENABLE_MS(&up->port, termios->c_cflag))
		up->ier |= UART_IER_MSI;

	up->lcr = cval;
	/* Up to here it was mostly serial8250_do_set_termios() */

	/*
	 * We enable TRIG_GRANU for RX and TX and additionaly we set
	 * SCR_TX_EMPTY bit. The result is the following:
	 * - RX_TRIGGER amount of bytes in the FIFO will cause an interrupt.
	 * - less than RX_TRIGGER number of bytes will also cause an interrupt
	 *   once the UART decides that there no new bytes arriving.
	 * - Once THRE is enabled, the interrupt will be fired once the FIFO is
	 *   empty - the trigger level is ignored here.
	 *
	 * Once DMA is enabled:
	 * - UART will assert the TX DMA line once there is room for TX_TRIGGER
	 *   bytes in the TX FIFO. On each assert the DMA engine will move
	 *   TX_TRIGGER bytes into the FIFO.
	 * - UART will assert the RX DMA line once there are RX_TRIGGER bytes in
	 *   the FIFO and move RX_TRIGGER bytes.
	 * This is because threshold and trigger values are the same.
	 */
	up->fcr = UART_FCR_ENABLE_FIFO;
	up->fcr |= TRIGGER_FCR_MASK(TX_TRIGGER) << OMAP_UART_FCR_TX_TRIG;
	up->fcr |= TRIGGER_FCR_MASK(RX_TRIGGER) << OMAP_UART_FCR_RX_TRIG;

	priv->scr = OMAP_UART_SCR_RX_TRIG_GRANU1_MASK | OMAP_UART_SCR_TX_EMPTY |
		OMAP_UART_SCR_TX_TRIG_GRANU1_MASK;

	if (up->dma)
		priv->scr |= OMAP_UART_SCR_DMAMODE_1 |
			OMAP_UART_SCR_DMAMODE_CTL;

	priv->xon = termios->c_cc[VSTART];
	priv->xoff = termios->c_cc[VSTOP];

	priv->efr = 0;
	up->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS | UPSTAT_AUTOXOFF);

	if (termios->c_cflag & CRTSCTS && up->port.flags & UPF_HARD_FLOW) {
		/* Enable AUTOCTS (autoRTS is enabled when RTS is raised) */
		up->port.status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
		priv->efr |= UART_EFR_CTS;
	} else	if (up->port.flags & UPF_SOFT_FLOW) {
		/*
		 * OMAP rx s/w flow control is borked; the transmitter remains
		 * stuck off even if rx flow control is subsequently disabled
		 */

		/*
		 * IXOFF Flag:
		 * Enable XON/XOFF flow control on output.
		 * Transmit XON1, XOFF1
		 */
		if (termios->c_iflag & IXOFF) {
			up->port.status |= UPSTAT_AUTOXOFF;
			priv->efr |= OMAP_UART_SW_TX;
		}
	}
	omap8250_restore_regs(up);

	spin_unlock_irq(&up->port.lock);
	pm_runtime_mark_last_busy(port->dev);
	pm_runtime_put_autosuspend(port->dev);

	/* calculate wakeup latency constraint */
	priv->calc_latency = USEC_PER_SEC * 64 * 8 / baud;
	priv->latency = priv->calc_latency;

	schedule_work(&priv->qos_work);

	/* Don't rewrite B0 */
	if (tty_termios_baud_rate(termios))
		tty_termios_encode_baud_rate(termios, baud, baud);
}
Esempio n. 19
0
static void
serial_omap_set_termios(struct uart_port *port, struct ktermios *termios,
			struct ktermios *old)
{
	struct uart_omap_port *up = to_uart_omap_port(port);
	unsigned char cval = 0;
	unsigned long flags = 0;
	unsigned int baud, quot;

	switch (termios->c_cflag & CSIZE) {
	case CS5:
		cval = UART_LCR_WLEN5;
		break;
	case CS6:
		cval = UART_LCR_WLEN6;
		break;
	case CS7:
		cval = UART_LCR_WLEN7;
		break;
	default:
	case CS8:
		cval = UART_LCR_WLEN8;
		break;
	}

	if (termios->c_cflag & CSTOPB)
		cval |= UART_LCR_STOP;
	if (termios->c_cflag & PARENB)
		cval |= UART_LCR_PARITY;
	if (!(termios->c_cflag & PARODD))
		cval |= UART_LCR_EPAR;
	if (termios->c_cflag & CMSPAR)
		cval |= UART_LCR_SPAR;

	/*
	 * Ask the core to calculate the divisor for us.
	 */

	baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk/13);
	quot = serial_omap_get_divisor(port, baud);

	/* calculate wakeup latency constraint */
	up->calc_latency = (USEC_PER_SEC * up->port.fifosize) / (baud / 8);
	up->latency = up->calc_latency;
	schedule_work(&up->qos_work);

	up->dll = quot & 0xff;
	up->dlh = quot >> 8;
	up->mdr1 = UART_OMAP_MDR1_DISABLE;

	up->fcr = UART_FCR_R_TRIG_01 | UART_FCR_T_TRIG_01 |
			UART_FCR_ENABLE_FIFO;

	/*
	 * Ok, we're now changing the port state. Do it with
	 * interrupts disabled.
	 */
	pm_runtime_get_sync(up->dev);
	spin_lock_irqsave(&up->port.lock, flags);

	/*
	 * Update the per-port timeout.
	 */
	uart_update_timeout(port, termios->c_cflag, baud);

	up->port.read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR;
	if (termios->c_iflag & INPCK)
		up->port.read_status_mask |= UART_LSR_FE | UART_LSR_PE;
	if (termios->c_iflag & (BRKINT | PARMRK))
		up->port.read_status_mask |= UART_LSR_BI;

	/*
	 * Characters to ignore
	 */
	up->port.ignore_status_mask = 0;
	if (termios->c_iflag & IGNPAR)
		up->port.ignore_status_mask |= UART_LSR_PE | UART_LSR_FE;
	if (termios->c_iflag & IGNBRK) {
		up->port.ignore_status_mask |= UART_LSR_BI;
		/*
		 * If we're ignoring parity and break indicators,
		 * ignore overruns too (for real raw support).
		 */
		if (termios->c_iflag & IGNPAR)
			up->port.ignore_status_mask |= UART_LSR_OE;
	}

	/*
	 * ignore all characters if CREAD is not set
	 */
	if ((termios->c_cflag & CREAD) == 0)
		up->port.ignore_status_mask |= UART_LSR_DR;

	/*
	 * Modem status interrupts
	 */
	up->ier &= ~UART_IER_MSI;
	if (UART_ENABLE_MS(&up->port, termios->c_cflag))
		up->ier |= UART_IER_MSI;
	serial_out(up, UART_IER, up->ier);
	serial_out(up, UART_LCR, cval);		/* reset DLAB */
	up->lcr = cval;
	up->scr = 0;

	/* FIFOs and DMA Settings */

	/* FCR can be changed only when the
	 * baud clock is not running
	 * DLL_REG and DLH_REG set to 0.
	 */
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
	serial_out(up, UART_DLL, 0);
	serial_out(up, UART_DLM, 0);
	serial_out(up, UART_LCR, 0);

	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);

	up->efr = serial_in(up, UART_EFR) & ~UART_EFR_ECB;
	up->efr &= ~UART_EFR_SCD;
	serial_out(up, UART_EFR, up->efr | UART_EFR_ECB);

	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
	up->mcr = serial_in(up, UART_MCR) & ~UART_MCR_TCRTLR;
	serial_out(up, UART_MCR, up->mcr | UART_MCR_TCRTLR);
	/* FIFO ENABLE, DMA MODE */

	up->scr |= OMAP_UART_SCR_RX_TRIG_GRANU1_MASK;
	/*
	 * NOTE: Setting OMAP_UART_SCR_RX_TRIG_GRANU1_MASK
	 * sets Enables the granularity of 1 for TRIGGER RX
	 * level. Along with setting RX FIFO trigger level
	 * to 1 (as noted below, 16 characters) and TLR[3:0]
	 * to zero this will result RX FIFO threshold level
	 * to 1 character, instead of 16 as noted in comment
	 * below.
	 */

	/* Set receive FIFO threshold to 16 characters and
	 * transmit FIFO threshold to 32 spaces
	 */
	up->fcr &= ~OMAP_UART_FCR_RX_FIFO_TRIG_MASK;
	up->fcr &= ~OMAP_UART_FCR_TX_FIFO_TRIG_MASK;
	up->fcr |= UART_FCR6_R_TRIGGER_16 | UART_FCR6_T_TRIGGER_24 |
		UART_FCR_ENABLE_FIFO;

	serial_out(up, UART_FCR, up->fcr);
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);

	serial_out(up, UART_OMAP_SCR, up->scr);

	/* Reset UART_MCR_TCRTLR: this must be done with the EFR_ECB bit set */
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
	serial_out(up, UART_MCR, up->mcr);
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);
	serial_out(up, UART_EFR, up->efr);
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);

	/* Protocol, Baud Rate, and Interrupt Settings */

	if (up->errata & UART_ERRATA_i202_MDR1_ACCESS)
		serial_omap_mdr1_errataset(up, up->mdr1);
	else
		serial_out(up, UART_OMAP_MDR1, up->mdr1);

	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);
	serial_out(up, UART_EFR, up->efr | UART_EFR_ECB);

	serial_out(up, UART_LCR, 0);
	serial_out(up, UART_IER, 0);
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);

	serial_out(up, UART_DLL, up->dll);	/* LS of divisor */
	serial_out(up, UART_DLM, up->dlh);	/* MS of divisor */

	serial_out(up, UART_LCR, 0);
	serial_out(up, UART_IER, up->ier);
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);

	serial_out(up, UART_EFR, up->efr);
	serial_out(up, UART_LCR, cval);

	if (!serial_omap_baud_is_mode16(port, baud))
		up->mdr1 = UART_OMAP_MDR1_13X_MODE;
	else
		up->mdr1 = UART_OMAP_MDR1_16X_MODE;

	if (up->errata & UART_ERRATA_i202_MDR1_ACCESS)
		serial_omap_mdr1_errataset(up, up->mdr1);
	else
		serial_out(up, UART_OMAP_MDR1, up->mdr1);

	/* Configure flow control */
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);

	/* XON1/XOFF1 accessible mode B, TCRTLR=0, ECB=0 */
	serial_out(up, UART_XON1, termios->c_cc[VSTART]);
	serial_out(up, UART_XOFF1, termios->c_cc[VSTOP]);

	/* Enable access to TCR/TLR */
	serial_out(up, UART_EFR, up->efr | UART_EFR_ECB);
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
	serial_out(up, UART_MCR, up->mcr | UART_MCR_TCRTLR);

	serial_out(up, UART_TI752_TCR, OMAP_UART_TCR_TRIG);

	up->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS | UPSTAT_AUTOXOFF);

	if (termios->c_cflag & CRTSCTS && up->port.flags & UPF_HARD_FLOW) {
		/* Enable AUTOCTS (autoRTS is enabled when RTS is raised) */
		up->port.status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
		up->efr |= UART_EFR_CTS;
	} else {
		/* Disable AUTORTS and AUTOCTS */
		up->efr &= ~(UART_EFR_CTS | UART_EFR_RTS);
	}

	if (up->port.flags & UPF_SOFT_FLOW) {
		/* clear SW control mode bits */
		up->efr &= OMAP_UART_SW_CLR;

		/*
		 * IXON Flag:
		 * Enable XON/XOFF flow control on input.
		 * Receiver compares XON1, XOFF1.
		 */
		if (termios->c_iflag & IXON)
			up->efr |= OMAP_UART_SW_RX;

		/*
		 * IXOFF Flag:
		 * Enable XON/XOFF flow control on output.
		 * Transmit XON1, XOFF1
		 */
		if (termios->c_iflag & IXOFF) {
			up->port.status |= UPSTAT_AUTOXOFF;
			up->efr |= OMAP_UART_SW_TX;
		}

		/*
		 * IXANY Flag:
		 * Enable any character to restart output.
		 * Operation resumes after receiving any
		 * character after recognition of the XOFF character
		 */
		if (termios->c_iflag & IXANY)
			up->mcr |= UART_MCR_XONANY;
		else
			up->mcr &= ~UART_MCR_XONANY;
	}
	serial_out(up, UART_MCR, up->mcr);
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);
	serial_out(up, UART_EFR, up->efr);
	serial_out(up, UART_LCR, up->lcr);

	serial_omap_set_mctrl(&up->port, up->port.mctrl);

	spin_unlock_irqrestore(&up->port.lock, flags);
	pm_runtime_mark_last_busy(up->dev);
	pm_runtime_put_autosuspend(up->dev);
	dev_dbg(up->port.dev, "serial_omap_set_termios+%d\n", up->port.line);
}
Esempio n. 20
0
/*
 * lkkbd_interrupt() is called by the low level driver when a character
 * is received.
 */
static irqreturn_t lkkbd_interrupt(struct serio *serio,
				   unsigned char data, unsigned int flags)
{
	struct lkkbd *lk = serio_get_drvdata(serio);
	struct input_dev *input_dev = lk->dev;
	unsigned int keycode;
	int i;

	DBG(KERN_INFO "Got byte 0x%02x\n", data);

	if (lk->ignore_bytes > 0) {
		DBG(KERN_INFO "Ignoring a byte on %s\n", lk->name);
		lk->id[LK_NUM_IGNORE_BYTES - lk->ignore_bytes--] = data;

		if (lk->ignore_bytes == 0)
			lkkbd_detection_done(lk);

		return IRQ_HANDLED;
	}

	switch (data) {
	case LK_ALL_KEYS_UP:
		for (i = 0; i < ARRAY_SIZE(lkkbd_keycode); i++)
			input_report_key(input_dev, lk->keycode[i], 0);
		input_sync(input_dev);
		break;

	case 0x01:
		DBG(KERN_INFO "Got 0x01, scheduling re-initialization\n");
		lk->ignore_bytes = LK_NUM_IGNORE_BYTES;
		lk->id[LK_NUM_IGNORE_BYTES - lk->ignore_bytes--] = data;
		schedule_work(&lk->tq);
		break;

	case LK_METRONOME:
	case LK_OUTPUT_ERROR:
	case LK_INPUT_ERROR:
	case LK_KBD_LOCKED:
	case LK_KBD_TEST_MODE_ACK:
	case LK_PREFIX_KEY_DOWN:
	case LK_MODE_CHANGE_ACK:
	case LK_RESPONSE_RESERVED:
		DBG(KERN_INFO "Got %s and don't know how to handle...\n",
			response_name(data));
		break;

	default:
		keycode = lk->keycode[data];
		if (keycode != KEY_RESERVED) {
			input_report_key(input_dev, keycode,
					 !test_bit(keycode, input_dev->key));
			input_sync(input_dev);
		} else {
#ifdef CONFIG_DEBUG_PRINTK
			printk(KERN_WARNING
				"%s: Unknown key with scancode 0x%02x on %s.\n",
				__FILE__, data, lk->name);
#else
			;
#endif
		}
	}

	return IRQ_HANDLED;
}
Esempio n. 21
0
static void
dch_l2l1(struct hisax_d_if *iface, int pr, void *arg)
{
	struct hfc4s8s_l1 *l1 = iface->ifc.priv;
	struct sk_buff *skb = (struct sk_buff *) arg;
	u_long flags;

	switch (pr) {

		case (PH_DATA | REQUEST):
			if (!l1->enabled) {
				dev_kfree_skb(skb);
				break;
			}
			spin_lock_irqsave(&l1->lock, flags);
			skb_queue_tail(&l1->d_tx_queue, skb);
			if ((skb_queue_len(&l1->d_tx_queue) == 1) &&
			    (l1->tx_cnt <= 0)) {
				l1->hw->mr.r_irq_fifo_blx[l1->st_num] |=
				    0x10;
				spin_unlock_irqrestore(&l1->lock, flags);
				schedule_work(&l1->hw->tqueue);
			} else
				spin_unlock_irqrestore(&l1->lock, flags);
			break;

		case (PH_ACTIVATE | REQUEST):
			if (!l1->enabled)
				break;
			if (!l1->nt_mode) {
				if (l1->l1_state < 6) {
					spin_lock_irqsave(&l1->lock,
							  flags);

					Write_hfc8(l1->hw, R_ST_SEL,
						   l1->st_num);
					Write_hfc8(l1->hw, A_ST_WR_STA,
						   0x60);
					mod_timer(&l1->l1_timer,
						  jiffies + L1_TIMER_T3);
					spin_unlock_irqrestore(&l1->lock,
							       flags);
				} else if (l1->l1_state == 7)
					l1->d_if.ifc.l1l2(&l1->d_if.ifc,
							  PH_ACTIVATE |
							  INDICATION,
							  NULL);
			} else {
				if (l1->l1_state != 3) {
					spin_lock_irqsave(&l1->lock,
							  flags);
					Write_hfc8(l1->hw, R_ST_SEL,
						   l1->st_num);
					Write_hfc8(l1->hw, A_ST_WR_STA,
						   0x60);
					spin_unlock_irqrestore(&l1->lock,
							       flags);
				} else if (l1->l1_state == 3)
					l1->d_if.ifc.l1l2(&l1->d_if.ifc,
							  PH_ACTIVATE |
							  INDICATION,
							  NULL);
			}
			break;

		default:
			printk(KERN_INFO
			       "HFC-4S/8S: Unknown D-chan cmd 0x%x received, ignored\n",
			       pr);
			break;
	}
	if (!l1->enabled)
		l1->d_if.ifc.l1l2(&l1->d_if.ifc,
				  PH_DEACTIVATE | INDICATION, NULL);
}				/* dch_l2l1 */
Esempio n. 22
0
static void hisax_sched_event(struct IsdnCardState *cs, int event)
{
	test_and_set_bit(event, &cs->event);
	schedule_work(&cs->tqueue);
}
Esempio n. 23
0
static void brcmf_netdev_set_multicast_list(struct net_device *ndev)
{
	struct brcmf_if *ifp = netdev_priv(ndev);

	schedule_work(&ifp->multicast_work);
}
Esempio n. 24
0
static void hisax_b_sched_event(struct BCState *bcs, int event)
{
	test_and_set_bit(event, &bcs->event);
	schedule_work(&bcs->tqueue);
}
Esempio n. 25
0
static void gpio_keys_timer(unsigned long _data)
{
	struct gpio_button_data *data = (struct gpio_button_data *)_data;

	schedule_work(&data->work);
}
Esempio n. 26
0
static irqreturn_t register_handler(int irq, void *data)
{
	schedule_work(&work);

	return IRQ_HANDLED;
}
Esempio n. 27
0
static void
serial_omap_set_termios(struct uart_port *port, struct ktermios *termios,
			struct ktermios *old)
{
	struct uart_omap_port *up = (struct uart_omap_port *)port;
	unsigned char cval = 0;
	unsigned char efr = 0;
	unsigned long flags = 0;
	unsigned int baud, quot;

	switch (termios->c_cflag & CSIZE) {
	case CS5:
		cval = UART_LCR_WLEN5;
		break;
	case CS6:
		cval = UART_LCR_WLEN6;
		break;
	case CS7:
		cval = UART_LCR_WLEN7;
		break;
	default:
	case CS8:
		cval = UART_LCR_WLEN8;
		break;
	}

	if (termios->c_cflag & CSTOPB)
		cval |= UART_LCR_STOP;
	if (termios->c_cflag & PARENB)
		cval |= UART_LCR_PARITY;
	if (!(termios->c_cflag & PARODD))
		cval |= UART_LCR_EPAR;

	/*
	 * Ask the core to calculate the divisor for us.
	 */

	baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk/13);
	quot = serial_omap_get_divisor(port, baud);

	/* calculate wakeup latency constraint */
	up->calc_latency = (1000000 * up->port.fifosize) /
				(1000 * baud / 8);
	up->latency = up->calc_latency;
	schedule_work(&up->qos_work);

	up->dll = quot & 0xff;
	up->dlh = quot >> 8;
	up->mdr1 = UART_OMAP_MDR1_DISABLE;

	up->fcr = UART_FCR_R_TRIG_01 | UART_FCR_T_TRIG_01 |
			UART_FCR_ENABLE_FIFO;
	if (up->use_dma)
		up->fcr |= UART_FCR_DMA_SELECT;

	/*
	 * Ok, we're now changing the port state. Do it with
	 * interrupts disabled.
	 */
	pm_runtime_get_sync(&up->pdev->dev);
	spin_lock_irqsave(&up->port.lock, flags);

	/*
	 * Update the per-port timeout.
	 */
	uart_update_timeout(port, termios->c_cflag, baud);

	up->port.read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR;
	if (termios->c_iflag & INPCK)
		up->port.read_status_mask |= UART_LSR_FE | UART_LSR_PE;
	if (termios->c_iflag & (BRKINT | PARMRK))
		up->port.read_status_mask |= UART_LSR_BI;

	/*
	 * Characters to ignore
	 */
	up->port.ignore_status_mask = 0;
	if (termios->c_iflag & IGNPAR)
		up->port.ignore_status_mask |= UART_LSR_PE | UART_LSR_FE;
	if (termios->c_iflag & IGNBRK) {
		up->port.ignore_status_mask |= UART_LSR_BI;
		/*
		 * If we're ignoring parity and break indicators,
		 * ignore overruns too (for real raw support).
		 */
		if (termios->c_iflag & IGNPAR)
			up->port.ignore_status_mask |= UART_LSR_OE;
	}

	/*
	 * ignore all characters if CREAD is not set
	 */
	if ((termios->c_cflag & CREAD) == 0)
		up->port.ignore_status_mask |= UART_LSR_DR;

	/*
	 * Modem status interrupts
	 */
	up->ier &= ~UART_IER_MSI;
	if (UART_ENABLE_MS(&up->port, termios->c_cflag))
		up->ier |= UART_IER_MSI;
	serial_out(up, UART_IER, up->ier);
	serial_out(up, UART_LCR, cval);		/* reset DLAB */
	up->lcr = cval;
	up->scr = OMAP_UART_SCR_TX_EMPTY;

	/* FIFOs and DMA Settings */

	/* FCR can be changed only when the
	 * baud clock is not running
	 * DLL_REG and DLH_REG set to 0.
	 */
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
	serial_out(up, UART_DLL, 0);
	serial_out(up, UART_DLM, 0);
	serial_out(up, UART_LCR, 0);

	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);

	up->efr = serial_in(up, UART_EFR);
	serial_out(up, UART_EFR, up->efr | UART_EFR_ECB);

	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
	up->mcr = serial_in(up, UART_MCR);
	serial_out(up, UART_MCR, up->mcr | UART_MCR_TCRTLR);
	/* FIFO ENABLE, DMA MODE */
	serial_out(up, UART_FCR, up->fcr);
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);

	if (up->use_dma) {
		serial_out(up, UART_TI752_TLR, 0);
		up->scr |= (UART_FCR_TRIGGER_4 | UART_FCR_TRIGGER_8);
	}

	serial_out(up, UART_OMAP_SCR, up->scr);

	serial_out(up, UART_EFR, up->efr);
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
	serial_out(up, UART_MCR, up->mcr);

	/* Protocol, Baud Rate, and Interrupt Settings */

	if (up->errata & UART_ERRATA_i202_MDR1_ACCESS)
		serial_omap_mdr1_errataset(up, up->mdr1);
	else
		serial_out(up, UART_OMAP_MDR1, up->mdr1);

	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);

	up->efr = serial_in(up, UART_EFR);
	serial_out(up, UART_EFR, up->efr | UART_EFR_ECB);

	serial_out(up, UART_LCR, 0);
	serial_out(up, UART_IER, 0);
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);

	serial_out(up, UART_DLL, up->dll);	/* LS of divisor */
	serial_out(up, UART_DLM, up->dlh);	/* MS of divisor */

	serial_out(up, UART_LCR, 0);
	serial_out(up, UART_IER, up->ier);
	serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);

	serial_out(up, UART_EFR, up->efr);
	serial_out(up, UART_LCR, cval);

	if (baud > 230400 && baud != 3000000)
		up->mdr1 = UART_OMAP_MDR1_13X_MODE;
	else
		up->mdr1 = UART_OMAP_MDR1_16X_MODE;

	if (up->errata & UART_ERRATA_i202_MDR1_ACCESS)
		serial_omap_mdr1_errataset(up, up->mdr1);
	else
		serial_out(up, UART_OMAP_MDR1, up->mdr1);

	/* Hardware Flow Control Configuration */

	if (termios->c_cflag & CRTSCTS) {
		efr |= (UART_EFR_CTS | UART_EFR_RTS);
		serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);

		up->mcr = serial_in(up, UART_MCR);
		serial_out(up, UART_MCR, up->mcr | UART_MCR_TCRTLR);

		serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);
		up->efr = serial_in(up, UART_EFR);
		serial_out(up, UART_EFR, up->efr | UART_EFR_ECB);

		serial_out(up, UART_TI752_TCR, OMAP_UART_TCR_TRIG);
		serial_out(up, UART_EFR, efr); /* Enable AUTORTS and AUTOCTS */
		serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
		serial_out(up, UART_MCR, up->mcr | UART_MCR_RTS);
		serial_out(up, UART_LCR, cval);
	}

	serial_omap_set_mctrl(&up->port, up->port.mctrl);
	/* Software Flow Control Configuration */
	serial_omap_configure_xonxoff(up, termios);

	spin_unlock_irqrestore(&up->port.lock, flags);
	pm_runtime_put(&up->pdev->dev);
	dev_dbg(up->port.dev, "serial_omap_set_termios+%d\n", up->port.line);
}
Esempio n. 28
0
static void kgdboc_restore_input(void)
{
	schedule_work(&kgdboc_restore_input_work);
}
Esempio n. 29
0
/*
 * Called from timekeeping and resume code to reprogramm the hrtimer
 * interrupt device on all cpus.
 */
void clock_was_set_delayed(void)
{
	schedule_work(&hrtimer_work);
}
int wl_cfg80211_set_btcoex_dhcp(struct net_device *dev, char *command)
{

	struct wl_priv *wl = wlcfg_drv_priv;
	char powermode_val = 0;
	char buf_reg66va_dhcp_on[8] = { 66, 00, 00, 00, 0x10, 0x27, 0x00, 0x00 };
	char buf_reg41va_dhcp_on[8] = { 41, 00, 00, 00, 0x33, 0x00, 0x00, 0x00 };
	char buf_reg68va_dhcp_on[8] = { 68, 00, 00, 00, 0x90, 0x01, 0x00, 0x00 };

	uint32 regaddr;
	static uint32 saved_reg66;
	static uint32 saved_reg41;
	static uint32 saved_reg68;
	static bool saved_status = FALSE;

#ifdef COEX_DHCP
	char buf_flag7_default[8] =   { 7, 00, 00, 00, 0x0, 0x00, 0x00, 0x00};
	struct btcoex_info *btco_inf = wl->btcoex_info;
#endif /* COEX_DHCP */

#ifdef PKT_FILTER_SUPPORT
	dhd_pub_t *dhd =  (dhd_pub_t *)(wl->pub);
	int i;
#endif

	/* Figure out powermode 1 or o command */
	strncpy((char *)&powermode_val, command + strlen("BTCOEXMODE") +1, 1);

	if (strnicmp((char *)&powermode_val, "1", strlen("1")) == 0) {

		WL_TRACE(("%s: DHCP session starts\n", __FUNCTION__));

#ifdef PKT_FILTER_SUPPORT
		dhd->dhcp_in_progress = 1;

		/* Disable packet filtering */
		if (dhd_pkt_filter_enable && dhd->early_suspended) {
			WL_TRACE(("DHCP in progressing , disable packet filter!!!\n"));
			for (i = 0; i < dhd->pktfilter_count; i++) {
				dhd_pktfilter_offload_enable(dhd, dhd->pktfilter[i],
				 0, dhd_master_mode);
			}
		}
#endif

		/* Retrieve and saved orig regs value */
		if ((saved_status == FALSE) &&
			(!dev_wlc_intvar_get_reg(dev, "btc_params", 66,  &saved_reg66)) &&
			(!dev_wlc_intvar_get_reg(dev, "btc_params", 41,  &saved_reg41)) &&
			(!dev_wlc_intvar_get_reg(dev, "btc_params", 68,  &saved_reg68)))   {
				saved_status = TRUE;
				WL_TRACE(("Saved 0x%x 0x%x 0x%x\n",
					saved_reg66, saved_reg41, saved_reg68));

				/* Disable PM mode during dhpc session */

				/* Disable PM mode during dhpc session */
#ifdef COEX_DHCP
				/* Start  BT timer only for SCO connection */
				if (btcoex_is_sco_active(dev)) {
					/* btc_params 66 */
					dev_wlc_bufvar_set(dev, "btc_params",
						(char *)&buf_reg66va_dhcp_on[0],
						sizeof(buf_reg66va_dhcp_on));
					/* btc_params 41 0x33 */
					dev_wlc_bufvar_set(dev, "btc_params",
						(char *)&buf_reg41va_dhcp_on[0],
						sizeof(buf_reg41va_dhcp_on));
					/* btc_params 68 0x190 */
					dev_wlc_bufvar_set(dev, "btc_params",
						(char *)&buf_reg68va_dhcp_on[0],
						sizeof(buf_reg68va_dhcp_on));
					saved_status = TRUE;

					btco_inf->bt_state = BT_DHCP_START;
					btco_inf->timer_on = 1;
					mod_timer(&btco_inf->timer, btco_inf->timer.expires);
					WL_TRACE(("%s enable BT DHCP Timer\n",
					__FUNCTION__));
				}
#endif /* COEX_DHCP */
		}
		else if (saved_status == TRUE) {
			WL_ERR(("%s was called w/o DHCP OFF. Continue\n", __FUNCTION__));
		}
	}
	else if (strnicmp((char *)&powermode_val, "2", strlen("2")) == 0) {


#ifdef PKT_FILTER_SUPPORT
		dhd->dhcp_in_progress = 0;

		/* Enable packet filtering */
		if (dhd_pkt_filter_enable && dhd->early_suspended) {
			WL_TRACE(("DHCP is complete , enable packet filter!!!\n"));
			for (i = 0; i < dhd->pktfilter_count; i++) {
				dhd_pktfilter_offload_enable(dhd, dhd->pktfilter[i],
				 1, dhd_master_mode);
			}
		}
#endif

		/* Restoring PM mode */

#ifdef COEX_DHCP
		/* Stop any bt timer because DHCP session is done */
		WL_TRACE(("%s disable BT DHCP Timer\n", __FUNCTION__));
		if (btco_inf->timer_on) {
			btco_inf->timer_on = 0;
			del_timer_sync(&btco_inf->timer);

			if (btco_inf->bt_state != BT_DHCP_IDLE) {
			/* need to restore original btc flags & extra btc params */
				WL_TRACE(("%s bt->bt_state:%d\n",
					__FUNCTION__, btco_inf->bt_state));
				/* wake up btcoex thread to restore btlags+params  */
				schedule_work(&btco_inf->work);
			}
		}

		/* Restoring btc_flag paramter anyway */
		if (saved_status == TRUE)
			dev_wlc_bufvar_set(dev, "btc_flags",
				(char *)&buf_flag7_default[0], sizeof(buf_flag7_default));
#endif /* COEX_DHCP */

		/* Restore original values */
		if (saved_status == TRUE) {
			regaddr = 66;
			dev_wlc_intvar_set_reg(dev, "btc_params",
				(char *)&regaddr, (char *)&saved_reg66);
			regaddr = 41;
			dev_wlc_intvar_set_reg(dev, "btc_params",
				(char *)&regaddr, (char *)&saved_reg41);
			regaddr = 68;
			dev_wlc_intvar_set_reg(dev, "btc_params",
				(char *)&regaddr, (char *)&saved_reg68);

			WL_TRACE(("restore regs {66,41,68} <- 0x%x 0x%x 0x%x\n",
				saved_reg66, saved_reg41, saved_reg68));
		}
		saved_status = FALSE;

	}
	else {
		WL_ERR(("%s Unkwown yet power setting, ignored\n",
			__FUNCTION__));
	}

	snprintf(command, 3, "OK");

	return (strlen("OK"));
}