Esempio n. 1
0
File: enc_API.c Progetto: kode54/Cog
opus_int silk_InitEncoder(                              /* O    Returns error code                              */
    void                            *encState,          /* I/O  State                                           */
    int                              arch,              /* I    Run-time architecture                           */
    silk_EncControlStruct           *encStatus          /* O    Encoder Status                                  */
)
{
    silk_encoder *psEnc;
    opus_int n, ret = SILK_NO_ERROR;

    psEnc = (silk_encoder *)encState;

    /* Reset encoder */
    silk_memset( psEnc, 0, sizeof( silk_encoder ) );
    for( n = 0; n < ENCODER_NUM_CHANNELS; n++ ) {
        if( ret += silk_init_encoder( &psEnc->state_Fxx[ n ], arch ) ) {
            silk_assert( 0 );
        }
    }

    psEnc->nChannelsAPI = 1;
    psEnc->nChannelsInternal = 1;

    /* Read control structure */
    if( ret += silk_QueryEncoder( encState, encStatus ) ) {
        silk_assert( 0 );
    }

    return ret;
}
Esempio n. 2
0
opus_int silk_VAD_Init(                                         /* O    Return value, 0 if success                  */
    silk_VAD_state              *psSilk_VAD                     /* I/O  Pointer to Silk VAD state                   */
)
{
    opus_int b, ret = 0;

    /* reset state memory */
    silk_memset( psSilk_VAD, 0, sizeof( silk_VAD_state ) );

    /* init noise levels */
    /* Initialize array with approx pink noise levels (psd proportional to inverse of frequency) */
    for( b = 0; b < VAD_N_BANDS; b++ ) {
        psSilk_VAD->NoiseLevelBias[ b ] = silk_max_32( silk_DIV32_16( VAD_NOISE_LEVELS_BIAS, b + 1 ), 1 );
    }

    /* Initialize state */
    for( b = 0; b < VAD_N_BANDS; b++ ) {
        psSilk_VAD->NL[ b ]     = silk_MUL( 100, psSilk_VAD->NoiseLevelBias[ b ] );
        psSilk_VAD->inv_NL[ b ] = silk_DIV32( silk_int32_MAX, psSilk_VAD->NL[ b ] );
    }
    psSilk_VAD->counter = 15;

    /* init smoothed energy-to-noise ratio*/
    for( b = 0; b < VAD_N_BANDS; b++ ) {
        psSilk_VAD->NrgRatioSmth_Q8[ b ] = 100 * 256;       /* 100 * 256 --> 20 dB SNR */
    }

    return( ret );
}
Esempio n. 3
0
/* Uses SMULL(), available on armv4                                     */
opus_int32 silk_schur64(                            /* O    returns residual energy                                     */
    opus_int32                  rc_Q16[],           /* O    Reflection coefficients [order] Q16                         */
    const opus_int32            c[],                /* I    Correlations [order+1]                                      */
    opus_int32                  order               /* I    Prediction order                                            */
)
{
    opus_int   k, n;
    opus_int32 C[ SILK_MAX_ORDER_LPC + 1 ][ 2 ];
    opus_int32 Ctmp1_Q30, Ctmp2_Q30, rc_tmp_Q31;

    silk_assert( order==6||order==8||order==10||order==12||order==14||order==16 );

    /* Check for invalid input */
    if( c[ 0 ] <= 0 ) {
        silk_memset( rc_Q16, 0, order * sizeof( opus_int32 ) );
        return 0;
    }

    for( k = 0; k < order + 1; k++ ) {
        C[ k ][ 0 ] = C[ k ][ 1 ] = c[ k ];
    }

    for( k = 0; k < order; k++ ) {
        /* Check that we won't be getting an unstable rc, otherwise stop here. */
        if (silk_abs_int32(C[ k + 1 ][ 0 ]) >= C[ 0 ][ 1 ]) {
           if ( C[ k + 1 ][ 0 ] > 0 ) {
              rc_Q16[ k ] = -SILK_FIX_CONST( .99f, 16 );
           } else {
              rc_Q16[ k ] = SILK_FIX_CONST( .99f, 16 );
           }
           k++;
           break;
        }

        /* Get reflection coefficient: divide two Q30 values and get result in Q31 */
        rc_tmp_Q31 = silk_DIV32_varQ( -C[ k + 1 ][ 0 ], C[ 0 ][ 1 ], 31 );

        /* Save the output */
        rc_Q16[ k ] = silk_RSHIFT_ROUND( rc_tmp_Q31, 15 );

        /* Update correlations */
        for( n = 0; n < order - k; n++ ) {
            Ctmp1_Q30 = C[ n + k + 1 ][ 0 ];
            Ctmp2_Q30 = C[ n ][ 1 ];

            /* Multiply and add the highest int32 */
            C[ n + k + 1 ][ 0 ] = Ctmp1_Q30 + silk_SMMUL( silk_LSHIFT( Ctmp2_Q30, 1 ), rc_tmp_Q31 );
            C[ n ][ 1 ]         = Ctmp2_Q30 + silk_SMMUL( silk_LSHIFT( Ctmp1_Q30, 1 ), rc_tmp_Q31 );
        }
    }

    for(; k < order; k++ ) {
       rc_Q16[ k ] = 0;
    }

    return silk_max_32( 1, C[ 0 ][ 1 ] );
}
void silk_LPC_analysis_filter(
    opus_int16                  *out,               /* O    Output signal                                               */
    const opus_int16            *in,                /* I    Input signal                                                */
    const opus_int16            *B,                 /* I    MA prediction coefficients, Q12 [order]                     */
    const opus_int32            len,                /* I    Signal length                                               */
    const opus_int32            d                   /* I    Filter order                                                */
)
{
    opus_int         ix, j;
    opus_int32       out32_Q12, out32;
    const opus_int16 *in_ptr;

    silk_assert( d >= 6 );
    silk_assert( (d & 1) == 0 );
    silk_assert( d <= len );

    for( ix = d; ix < len; ix++ ) {
        in_ptr = &in[ ix - 1 ];

        out32_Q12 = silk_SMULBB( in_ptr[  0 ], B[ 0 ] );
        /* Allowing wrap around so that two wraps can cancel each other. The rare
           cases where the result wraps around can only be triggered by invalid streams*/
        out32_Q12 = silk_SMLABB_ovflw( out32_Q12, in_ptr[ -1 ], B[ 1 ] );
        out32_Q12 = silk_SMLABB_ovflw( out32_Q12, in_ptr[ -2 ], B[ 2 ] );
        out32_Q12 = silk_SMLABB_ovflw( out32_Q12, in_ptr[ -3 ], B[ 3 ] );
        out32_Q12 = silk_SMLABB_ovflw( out32_Q12, in_ptr[ -4 ], B[ 4 ] );
        out32_Q12 = silk_SMLABB_ovflw( out32_Q12, in_ptr[ -5 ], B[ 5 ] );
        for( j = 6; j < d; j += 2 ) {
            out32_Q12 = silk_SMLABB_ovflw( out32_Q12, in_ptr[ -j     ], B[ j     ] );
            out32_Q12 = silk_SMLABB_ovflw( out32_Q12, in_ptr[ -j - 1 ], B[ j + 1 ] );
        }

        /* Subtract prediction */
        out32_Q12 = silk_SUB32_ovflw( silk_LSHIFT( (opus_int32)in_ptr[ 1 ], 12 ), out32_Q12 );

        /* Scale to Q0 */
        out32 = silk_RSHIFT_ROUND( out32_Q12, 12 );

        /* Saturate output */
        out[ ix ] = (opus_int16)silk_SAT16( out32 );
    }

    /* Set first d output samples to zero */
    silk_memset( out, 0, d * sizeof( opus_int16 ) );
}
Esempio n. 5
0
opus_int silk_init_decoder(
    silk_decoder_state          *psDec                          /* I/O  Decoder state pointer                       */
)
{
    /* Clear the entire encoder state, except anything copied */
    silk_memset( psDec, 0, sizeof( silk_decoder_state ) );

    /* Used to deactivate LSF interpolation */
    psDec->first_frame_after_reset = 1;
    psDec->prev_gain_Q16 = 65536;

    /* Reset CNG state */
    silk_CNG_Reset( psDec );

    /* Reset PLC state */
    silk_PLC_Reset( psDec );

    return(0);
}
Esempio n. 6
0
opus_int silk_init_encoder(
    silk_encoder_state_Fxx          *psEnc                                  /* I/O  Pointer to Silk FIX encoder state                                           */
)
{
    opus_int ret = 0;

    /* Clear the entire encoder state */
    silk_memset( psEnc, 0, sizeof( silk_encoder_state_Fxx ) );

    psEnc->sCmn.variable_HP_smth1_Q15 = silk_LSHIFT( silk_lin2log( SILK_FIX_CONST( VARIABLE_HP_MIN_CUTOFF_HZ, 16 ) ) - ( 16 << 7 ), 8 );
    psEnc->sCmn.variable_HP_smth2_Q15 = psEnc->sCmn.variable_HP_smth1_Q15;

    /* Used to deactivate LSF interpolation, pitch prediction */
    psEnc->sCmn.first_frame_after_reset = 1;

    /* Initialize Silk VAD */
    ret += silk_VAD_Init( &psEnc->sCmn.sVAD );

    return  ret;
}
void silk_LPC_analysis_filter_FLP(
    silk_float                      r_LPC[],                            /* O    LPC residual signal                         */
    const silk_float                PredCoef[],                         /* I    LPC coefficients                            */
    const silk_float                s[],                                /* I    Input signal                                */
    const opus_int                  length,                             /* I    Length of input signal                      */
    const opus_int                  Order                               /* I    LPC order                                   */
)
{
    silk_assert( Order <= length );

    switch( Order ) {
        case 6:
            silk_LPC_analysis_filter6_FLP(  r_LPC, PredCoef, s, length );
        break;

        case 8:
            silk_LPC_analysis_filter8_FLP(  r_LPC, PredCoef, s, length );
        break;

        case 10:
            silk_LPC_analysis_filter10_FLP( r_LPC, PredCoef, s, length );
        break;

        case 12:
            silk_LPC_analysis_filter12_FLP( r_LPC, PredCoef, s, length );
        break;

        case 16:
            silk_LPC_analysis_filter16_FLP( r_LPC, PredCoef, s, length );
        break;

        default:
            silk_assert( 0 );
        break;
    }

    /* Set first Order output samples to zero */
    silk_memset( r_LPC, 0, Order * sizeof( silk_float ) );
}
Esempio n. 8
0
static inline void silk_PLC_conceal(
    silk_decoder_state                  *psDec,             /* I/O Decoder state        */
    silk_decoder_control                *psDecCtrl,         /* I/O Decoder control      */
    opus_int16                          frame[]             /* O LPC residual signal    */
)
{
    opus_int   i, j, k;
    opus_int   lag, idx, sLTP_buf_idx, shift1, shift2;
    opus_int32 rand_seed, harm_Gain_Q15, rand_Gain_Q15, inv_gain_Q16, inv_gain_Q30;
    opus_int32 energy1, energy2, *rand_ptr, *pred_lag_ptr;
    opus_int32 LPC_exc_Q14, LPC_pred_Q10, LTP_pred_Q12;
    opus_int16 rand_scale_Q14;
    opus_int16 *B_Q14, *exc_buf_ptr;
    opus_int32 *sLPC_Q14_ptr;
    opus_int16 exc_buf[ 2 * MAX_SUB_FRAME_LENGTH ];
    opus_int16 A_Q12[ MAX_LPC_ORDER ];
    opus_int16 sLTP[ MAX_FRAME_LENGTH ];
    opus_int32 sLTP_Q14[ 2 * MAX_FRAME_LENGTH ];
    silk_PLC_struct *psPLC = &psDec->sPLC;

    if (psDec->first_frame_after_reset)
       silk_memset(psPLC->prevLPC_Q12, 0, MAX_LPC_ORDER*sizeof(psPLC->prevLPC_Q12[ 0 ]));

    /* Find random noise component */
    /* Scale previous excitation signal */
    exc_buf_ptr = exc_buf;
    for( k = 0; k < 2; k++ ) {
        for( i = 0; i < psPLC->subfr_length; i++ ) {
            exc_buf_ptr[ i ] = ( opus_int16 )silk_RSHIFT(
                silk_SMULWW( psDec->exc_Q10[ i + ( k + psPLC->nb_subfr - 2 ) * psPLC->subfr_length ], psPLC->prevGain_Q16[ k ] ), 10 );
        }
        exc_buf_ptr += psPLC->subfr_length;
    }
    /* Find the subframe with lowest energy of the last two and use that as random noise generator */
    silk_sum_sqr_shift( &energy1, &shift1, exc_buf,                         psPLC->subfr_length );
    silk_sum_sqr_shift( &energy2, &shift2, &exc_buf[ psPLC->subfr_length ], psPLC->subfr_length );

    if( silk_RSHIFT( energy1, shift2 ) < silk_RSHIFT( energy2, shift1 ) ) {
        /* First sub-frame has lowest energy */
        rand_ptr = &psDec->exc_Q10[ silk_max_int( 0, ( psPLC->nb_subfr - 1 ) * psPLC->subfr_length - RAND_BUF_SIZE ) ];
    } else {
        /* Second sub-frame has lowest energy */
        rand_ptr = &psDec->exc_Q10[ silk_max_int( 0, psPLC->nb_subfr * psPLC->subfr_length - RAND_BUF_SIZE ) ];
    }

    /* Setup Gain to random noise component */
    B_Q14          = psPLC->LTPCoef_Q14;
    rand_scale_Q14 = psPLC->randScale_Q14;

    /* Setup attenuation gains */
    harm_Gain_Q15 = HARM_ATT_Q15[ silk_min_int( NB_ATT - 1, psDec->lossCnt ) ];
    if( psDec->prevSignalType == TYPE_VOICED ) {
        rand_Gain_Q15 = PLC_RAND_ATTENUATE_V_Q15[  silk_min_int( NB_ATT - 1, psDec->lossCnt ) ];
    } else {
        rand_Gain_Q15 = PLC_RAND_ATTENUATE_UV_Q15[ silk_min_int( NB_ATT - 1, psDec->lossCnt ) ];
    }

    /* LPC concealment. Apply BWE to previous LPC */
    silk_bwexpander( psPLC->prevLPC_Q12, psDec->LPC_order, SILK_FIX_CONST( BWE_COEF, 16 ) );

    /* Preload LPC coeficients to array on stack. Gives small performance gain */
    silk_memcpy( A_Q12, psPLC->prevLPC_Q12, psDec->LPC_order * sizeof( opus_int16 ) );

    /* First Lost frame */
    if( psDec->lossCnt == 0 ) {
        rand_scale_Q14 = 1 << 14;

        /* Reduce random noise Gain for voiced frames */
        if( psDec->prevSignalType == TYPE_VOICED ) {
            for( i = 0; i < LTP_ORDER; i++ ) {
                rand_scale_Q14 -= B_Q14[ i ];
            }
            rand_scale_Q14 = silk_max_16( 3277, rand_scale_Q14 ); /* 0.2 */
            rand_scale_Q14 = ( opus_int16 )silk_RSHIFT( silk_SMULBB( rand_scale_Q14, psPLC->prevLTP_scale_Q14 ), 14 );
        } else {
            /* Reduce random noise for unvoiced frames with high LPC gain */
            opus_int32 invGain_Q30, down_scale_Q30;

            silk_LPC_inverse_pred_gain( &invGain_Q30, psPLC->prevLPC_Q12, psDec->LPC_order );

            down_scale_Q30 = silk_min_32( silk_RSHIFT( 1 << 30, LOG2_INV_LPC_GAIN_HIGH_THRES ), invGain_Q30 );
            down_scale_Q30 = silk_max_32( silk_RSHIFT( 1 << 30, LOG2_INV_LPC_GAIN_LOW_THRES ), down_scale_Q30 );
            down_scale_Q30 = silk_LSHIFT( down_scale_Q30, LOG2_INV_LPC_GAIN_HIGH_THRES );

            rand_Gain_Q15 = silk_RSHIFT( silk_SMULWB( down_scale_Q30, rand_Gain_Q15 ), 14 );
        }
    }

    rand_seed    = psPLC->rand_seed;
    lag          = silk_RSHIFT_ROUND( psPLC->pitchL_Q8, 8 );
    sLTP_buf_idx = psDec->ltp_mem_length;

    /* Rewhiten LTP state */
    idx = psDec->ltp_mem_length - lag - psDec->LPC_order - LTP_ORDER / 2;
    silk_assert( idx > 0 );
    silk_LPC_analysis_filter( &sLTP[ idx ], &psDec->outBuf[ idx ], A_Q12, psDec->ltp_mem_length - idx, psDec->LPC_order );
    /* Scale LTP state */
    inv_gain_Q16 = silk_INVERSE32_varQ( psPLC->prevGain_Q16[ 1 ], 32 );
    inv_gain_Q16 = silk_min( inv_gain_Q16, silk_int16_MAX );
    inv_gain_Q30 = silk_LSHIFT( inv_gain_Q16, 14 );
    for( i = idx + psDec->LPC_order; i < psDec->ltp_mem_length; i++ ) {
        sLTP_Q14[ i ] = silk_SMULWB( inv_gain_Q30, sLTP[ i ] );
    }

    /***************************/
    /* LTP synthesis filtering */
    /***************************/
    for( k = 0; k < psDec->nb_subfr; k++ ) {
        /* Setup pointer */
        pred_lag_ptr = &sLTP_Q14[ sLTP_buf_idx - lag + LTP_ORDER / 2 ];
        for( i = 0; i < psDec->subfr_length; i++ ) {
            /* Unrolled loop */
            LTP_pred_Q12 = silk_SMULWB(               pred_lag_ptr[  0 ], B_Q14[ 0 ] );
            LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[ -1 ], B_Q14[ 1 ] );
            LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[ -2 ], B_Q14[ 2 ] );
            LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[ -3 ], B_Q14[ 3 ] );
            LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[ -4 ], B_Q14[ 4 ] );
            pred_lag_ptr++;

            /* Generate LPC excitation */
            rand_seed = silk_RAND( rand_seed );
            idx = silk_RSHIFT( rand_seed, 25 ) & RAND_BUF_MASK;
            LPC_exc_Q14 = silk_LSHIFT32( silk_SMULWB( rand_ptr[ idx ], rand_scale_Q14 ), 6 ); /* Random noise part */
            LPC_exc_Q14 = silk_ADD32( LPC_exc_Q14, silk_LSHIFT32( LTP_pred_Q12, 2 ) );        /* Harmonic part */
            sLTP_Q14[ sLTP_buf_idx ] = LPC_exc_Q14;
            sLTP_buf_idx++;
        }

        /* Gradually reduce LTP gain */
        for( j = 0; j < LTP_ORDER; j++ ) {
            B_Q14[ j ] = silk_RSHIFT( silk_SMULBB( harm_Gain_Q15, B_Q14[ j ] ), 15 );
        }
        /* Gradually reduce excitation gain */
        rand_scale_Q14 = silk_RSHIFT( silk_SMULBB( rand_scale_Q14, rand_Gain_Q15 ), 15 );

        /* Slowly increase pitch lag */
        psPLC->pitchL_Q8 = silk_SMLAWB( psPLC->pitchL_Q8, psPLC->pitchL_Q8, PITCH_DRIFT_FAC_Q16 );
        psPLC->pitchL_Q8 = silk_min_32( psPLC->pitchL_Q8, silk_LSHIFT( silk_SMULBB( MAX_PITCH_LAG_MS, psDec->fs_kHz ), 8 ) );
        lag = silk_RSHIFT_ROUND( psPLC->pitchL_Q8, 8 );
    }

    /***************************/
    /* LPC synthesis filtering */
    /***************************/
    sLPC_Q14_ptr = &sLTP_Q14[ psDec->ltp_mem_length - MAX_LPC_ORDER ];

    /* Copy LPC state */
    silk_memcpy( sLPC_Q14_ptr, psDec->sLPC_Q14_buf, MAX_LPC_ORDER * sizeof( opus_int32 ) );

    silk_assert( psDec->LPC_order >= 10 ); /* check that unrolling works */
    for( i = 0; i < psDec->frame_length; i++ ) {
        /* partly unrolled */
        LPC_pred_Q10 = silk_SMULWB(               sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  1 ], A_Q12[ 0 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  2 ], A_Q12[ 1 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  3 ], A_Q12[ 2 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  4 ], A_Q12[ 3 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  5 ], A_Q12[ 4 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  6 ], A_Q12[ 5 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  7 ], A_Q12[ 6 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  8 ], A_Q12[ 7 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  9 ], A_Q12[ 8 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - 10 ], A_Q12[ 9 ] );
        for( j = 10; j < psDec->LPC_order; j++ ) {
            LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - j - 1 ], A_Q12[ j ] );
        }

        /* Add prediction to LPC excitation */
        sLPC_Q14_ptr[ MAX_LPC_ORDER + i ] = silk_ADD_LSHIFT32( sLPC_Q14_ptr[ MAX_LPC_ORDER + i ], LPC_pred_Q10, 4 );

        /* Scale with Gain */
        frame[ i ] = ( opus_int16 )silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( sLPC_Q14_ptr[ MAX_LPC_ORDER + i ], psPLC->prevGain_Q16[ 1 ] ), 14 ) );
    }

    /* Save LPC state */
    silk_memcpy( psDec->sLPC_Q14_buf, &sLPC_Q14_ptr[ psDec->frame_length ], MAX_LPC_ORDER * sizeof( opus_int32 ) );

    /**************************************/
    /* Update states                      */
    /**************************************/
    psPLC->rand_seed     = rand_seed;
    psPLC->randScale_Q14 = rand_scale_Q14;
    for( i = 0; i < MAX_NB_SUBFR; i++ ) {
        psDecCtrl->pitchL[ i ] = lag;
    }
}
Esempio n. 9
0
/* Encode quantization indices of excitation */
void silk_encode_pulses(
    ec_enc                      *psRangeEnc,                    /* I/O  compressor data structure                   */
    const opus_int              signalType,                     /* I    Signal type                                 */
    const opus_int              quantOffsetType,                /* I    quantOffsetType                             */
    opus_int8                   pulses[],                       /* I    quantization indices                        */
    const opus_int              frame_length                    /* I    Frame length                                */
)
{
    opus_int   i, k, j, iter, bit, nLS, scale_down, RateLevelIndex = 0;
    opus_int32 abs_q, minSumBits_Q5, sumBits_Q5;
    opus_int   abs_pulses[ MAX_FRAME_LENGTH ];
    opus_int   sum_pulses[ MAX_NB_SHELL_BLOCKS ];
    opus_int   nRshifts[   MAX_NB_SHELL_BLOCKS ];
    opus_int   pulses_comb[ 8 ];
    opus_int   *abs_pulses_ptr;
    const opus_int8 *pulses_ptr;
    const opus_uint8 *cdf_ptr;
    const opus_uint8 *nBits_ptr;

    silk_memset( pulses_comb, 0, 8 * sizeof( opus_int ) ); /* Fixing Valgrind reported problem*/

    /****************************/
    /* Prepare for shell coding */
    /****************************/
    /* Calculate number of shell blocks */
    silk_assert( 1 << LOG2_SHELL_CODEC_FRAME_LENGTH == SHELL_CODEC_FRAME_LENGTH );
    iter = silk_RSHIFT( frame_length, LOG2_SHELL_CODEC_FRAME_LENGTH );
    if( iter * SHELL_CODEC_FRAME_LENGTH < frame_length ) {
        silk_assert( frame_length == 12 * 10 ); /* Make sure only happens for 10 ms @ 12 kHz */
        iter++;
        silk_memset( &pulses[ frame_length ], 0, SHELL_CODEC_FRAME_LENGTH * sizeof(opus_int8));
    }

    /* Take the absolute value of the pulses */
    for( i = 0; i < iter * SHELL_CODEC_FRAME_LENGTH; i+=4 ) {
        abs_pulses[i+0] = ( opus_int )silk_abs( pulses[ i + 0 ] );
        abs_pulses[i+1] = ( opus_int )silk_abs( pulses[ i + 1 ] );
        abs_pulses[i+2] = ( opus_int )silk_abs( pulses[ i + 2 ] );
        abs_pulses[i+3] = ( opus_int )silk_abs( pulses[ i + 3 ] );
    }

    /* Calc sum pulses per shell code frame */
    abs_pulses_ptr = abs_pulses;
    for( i = 0; i < iter; i++ ) {
        nRshifts[ i ] = 0;

        while( 1 ) {
            /* 1+1 -> 2 */
            scale_down = combine_and_check( pulses_comb, abs_pulses_ptr, silk_max_pulses_table[ 0 ], 8 );
            /* 2+2 -> 4 */
            scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 1 ], 4 );
            /* 4+4 -> 8 */
            scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 2 ], 2 );
            /* 8+8 -> 16 */
            scale_down += combine_and_check( &sum_pulses[ i ], pulses_comb, silk_max_pulses_table[ 3 ], 1 );

            if( scale_down ) {
                /* We need to downscale the quantization signal */
                nRshifts[ i ]++;
                for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) {
                    abs_pulses_ptr[ k ] = silk_RSHIFT( abs_pulses_ptr[ k ], 1 );
                }
            } else {
                /* Jump out of while(1) loop and go to next shell coding frame */
                break;
            }
        }
        abs_pulses_ptr += SHELL_CODEC_FRAME_LENGTH;
    }

    /**************/
    /* Rate level */
    /**************/
    /* find rate level that leads to fewest bits for coding of pulses per block info */
    minSumBits_Q5 = silk_int32_MAX;
    for( k = 0; k < N_RATE_LEVELS - 1; k++ ) {
        nBits_ptr  = silk_pulses_per_block_BITS_Q5[ k ];
        sumBits_Q5 = silk_rate_levels_BITS_Q5[ signalType >> 1 ][ k ];
        for( i = 0; i < iter; i++ ) {
            if( nRshifts[ i ] > 0 ) {
                sumBits_Q5 += nBits_ptr[ MAX_PULSES + 1 ];
            } else {
                sumBits_Q5 += nBits_ptr[ sum_pulses[ i ] ];
            }
        }
        if( sumBits_Q5 < minSumBits_Q5 ) {
            minSumBits_Q5 = sumBits_Q5;
            RateLevelIndex = k;
        }
    }
    ec_enc_icdf( psRangeEnc, RateLevelIndex, silk_rate_levels_iCDF[ signalType >> 1 ], 8 );

    /***************************************************/
    /* Sum-Weighted-Pulses Encoding                    */
    /***************************************************/
    cdf_ptr = silk_pulses_per_block_iCDF[ RateLevelIndex ];
    for( i = 0; i < iter; i++ ) {
        if( nRshifts[ i ] == 0 ) {
            ec_enc_icdf( psRangeEnc, sum_pulses[ i ], cdf_ptr, 8 );
        } else {
            ec_enc_icdf( psRangeEnc, MAX_PULSES + 1, cdf_ptr, 8 );
            for( k = 0; k < nRshifts[ i ] - 1; k++ ) {
                ec_enc_icdf( psRangeEnc, MAX_PULSES + 1, silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 );
            }
            ec_enc_icdf( psRangeEnc, sum_pulses[ i ], silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 );
        }
    }

    /******************/
    /* Shell Encoding */
    /******************/
    for( i = 0; i < iter; i++ ) {
        if( sum_pulses[ i ] > 0 ) {
            silk_shell_encoder( psRangeEnc, &abs_pulses[ i * SHELL_CODEC_FRAME_LENGTH ] );
        }
    }

    /****************/
    /* LSB Encoding */
    /****************/
    for( i = 0; i < iter; i++ ) {
        if( nRshifts[ i ] > 0 ) {
            pulses_ptr = &pulses[ i * SHELL_CODEC_FRAME_LENGTH ];
            nLS = nRshifts[ i ] - 1;
            for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) {
                abs_q = (opus_int8)silk_abs( pulses_ptr[ k ] );
                for( j = nLS; j > 0; j-- ) {
                    bit = silk_RSHIFT( abs_q, j ) & 1;
                    ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 );
                }
                bit = abs_q & 1;
                ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 );
            }
        }
    }

    /****************/
    /* Encode signs */
    /****************/
    silk_encode_signs( psRangeEnc, pulses, frame_length, signalType, quantOffsetType, sum_pulses );
}
Esempio n. 10
0
/* Find pitch lags */
void silk_find_pitch_lags_FIX(
    silk_encoder_state_FIX          *psEnc,                                 /* I/O  encoder state                                                               */
    silk_encoder_control_FIX        *psEncCtrl,                             /* I/O  encoder control                                                             */
    opus_int16                      res[],                                  /* O    residual                                                                    */
    const opus_int16                x[],                                    /* I    Speech signal                                                               */
    int                             arch                                    /* I    Run-time architecture                                                       */
)
{
    opus_int   buf_len, i, scale;
    opus_int32 thrhld_Q13, res_nrg;
    const opus_int16 *x_buf, *x_buf_ptr;
    VARDECL( opus_int16, Wsig );
    opus_int16 *Wsig_ptr;
    opus_int32 auto_corr[ MAX_FIND_PITCH_LPC_ORDER + 1 ];
    opus_int16 rc_Q15[    MAX_FIND_PITCH_LPC_ORDER ];
    opus_int32 A_Q24[     MAX_FIND_PITCH_LPC_ORDER ];
    opus_int16 A_Q12[     MAX_FIND_PITCH_LPC_ORDER ];
    SAVE_STACK;

    /******************************************/
    /* Set up buffer lengths etc based on Fs  */
    /******************************************/
    buf_len = psEnc->sCmn.la_pitch + psEnc->sCmn.frame_length + psEnc->sCmn.ltp_mem_length;

    /* Safety check */
    silk_assert( buf_len >= psEnc->sCmn.pitch_LPC_win_length );

    x_buf = x - psEnc->sCmn.ltp_mem_length;

    /*************************************/
    /* Estimate LPC AR coefficients      */
    /*************************************/

    /* Calculate windowed signal */

    ALLOC( Wsig, psEnc->sCmn.pitch_LPC_win_length, opus_int16 );

    /* First LA_LTP samples */
    x_buf_ptr = x_buf + buf_len - psEnc->sCmn.pitch_LPC_win_length;
    Wsig_ptr  = Wsig;
    silk_apply_sine_window( Wsig_ptr, x_buf_ptr, 1, psEnc->sCmn.la_pitch );

    /* Middle un - windowed samples */
    Wsig_ptr  += psEnc->sCmn.la_pitch;
    x_buf_ptr += psEnc->sCmn.la_pitch;
    silk_memcpy( Wsig_ptr, x_buf_ptr, ( psEnc->sCmn.pitch_LPC_win_length - silk_LSHIFT( psEnc->sCmn.la_pitch, 1 ) ) * sizeof( opus_int16 ) );

    /* Last LA_LTP samples */
    Wsig_ptr  += psEnc->sCmn.pitch_LPC_win_length - silk_LSHIFT( psEnc->sCmn.la_pitch, 1 );
    x_buf_ptr += psEnc->sCmn.pitch_LPC_win_length - silk_LSHIFT( psEnc->sCmn.la_pitch, 1 );
    silk_apply_sine_window( Wsig_ptr, x_buf_ptr, 2, psEnc->sCmn.la_pitch );

    /* Calculate autocorrelation sequence */
    silk_autocorr( auto_corr, &scale, Wsig, psEnc->sCmn.pitch_LPC_win_length, psEnc->sCmn.pitchEstimationLPCOrder + 1, arch );

    /* Add white noise, as fraction of energy */
    auto_corr[ 0 ] = silk_SMLAWB( auto_corr[ 0 ], auto_corr[ 0 ], SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) ) + 1;

    /* Calculate the reflection coefficients using schur */
    res_nrg = silk_schur( rc_Q15, auto_corr, psEnc->sCmn.pitchEstimationLPCOrder );

    /* Prediction gain */
    psEncCtrl->predGain_Q16 = silk_DIV32_varQ( auto_corr[ 0 ], silk_max_int( res_nrg, 1 ), 16 );

    /* Convert reflection coefficients to prediction coefficients */
    silk_k2a( A_Q24, rc_Q15, psEnc->sCmn.pitchEstimationLPCOrder );

    /* Convert From 32 bit Q24 to 16 bit Q12 coefs */
    for( i = 0; i < psEnc->sCmn.pitchEstimationLPCOrder; i++ ) {
        A_Q12[ i ] = (opus_int16)silk_SAT16( silk_RSHIFT( A_Q24[ i ], 12 ) );
    }

    /* Do BWE */
    silk_bwexpander( A_Q12, psEnc->sCmn.pitchEstimationLPCOrder, SILK_FIX_CONST( FIND_PITCH_BANDWIDTH_EXPANSION, 16 ) );

    /*****************************************/
    /* LPC analysis filtering                */
    /*****************************************/
    silk_LPC_analysis_filter( res, x_buf, A_Q12, buf_len, psEnc->sCmn.pitchEstimationLPCOrder );

    if( psEnc->sCmn.indices.signalType != TYPE_NO_VOICE_ACTIVITY && psEnc->sCmn.first_frame_after_reset == 0 ) {
        /* Threshold for pitch estimator */
        thrhld_Q13 = SILK_FIX_CONST( 0.6, 13 );
        thrhld_Q13 = silk_SMLABB( thrhld_Q13, SILK_FIX_CONST( -0.004, 13 ), psEnc->sCmn.pitchEstimationLPCOrder );
        thrhld_Q13 = silk_SMLAWB( thrhld_Q13, SILK_FIX_CONST( -0.1,   21  ), psEnc->sCmn.speech_activity_Q8 );
        thrhld_Q13 = silk_SMLABB( thrhld_Q13, SILK_FIX_CONST( -0.15,  13 ), silk_RSHIFT( psEnc->sCmn.prevSignalType, 1 ) );
        thrhld_Q13 = silk_SMLAWB( thrhld_Q13, SILK_FIX_CONST( -0.1,   14 ), psEnc->sCmn.input_tilt_Q15 );
        thrhld_Q13 = silk_SAT16(  thrhld_Q13 );

        /*****************************************/
        /* Call pitch estimator                  */
        /*****************************************/
        if( silk_pitch_analysis_core( res, psEncCtrl->pitchL, &psEnc->sCmn.indices.lagIndex, &psEnc->sCmn.indices.contourIndex,
                &psEnc->LTPCorr_Q15, psEnc->sCmn.prevLag, psEnc->sCmn.pitchEstimationThreshold_Q16,
                (opus_int)thrhld_Q13, psEnc->sCmn.fs_kHz, psEnc->sCmn.pitchEstimationComplexity, psEnc->sCmn.nb_subfr,
                psEnc->sCmn.arch) == 0 )
        {
            psEnc->sCmn.indices.signalType = TYPE_VOICED;
        } else {
            psEnc->sCmn.indices.signalType = TYPE_UNVOICED;
        }
    } else {
        silk_memset( psEncCtrl->pitchL, 0, sizeof( psEncCtrl->pitchL ) );
        psEnc->sCmn.indices.lagIndex = 0;
        psEnc->sCmn.indices.contourIndex = 0;
        psEnc->LTPCorr_Q15 = 0;
    }
    RESTORE_STACK;
}
Esempio n. 11
0
/* Compute reflection coefficients from input signal */
void silk_burg_modified(
    opus_int32                  *res_nrg,           /* O    Residual energy                                             */
    opus_int                    *res_nrg_Q,         /* O    Residual energy Q value                                     */
    opus_int32                  A_Q16[],            /* O    Prediction coefficients (length order)                      */
    const opus_int16            x[],                /* I    Input signal, length: nb_subfr * ( D + subfr_length )       */
    const opus_int              subfr_length,       /* I    Input signal subframe length (incl. D preceeding samples)   */
    const opus_int              nb_subfr,           /* I    Number of subframes stacked in x                            */
    const opus_int32            WhiteNoiseFrac_Q32, /* I    Fraction added to zero-lag autocorrelation                  */
    const opus_int              D                   /* I    Order                                                       */
)
{
    opus_int         k, n, s, lz, rshifts, rshifts_extra;
    opus_int32       C0, num, nrg, rc_Q31, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
    const opus_int16 *x_ptr;

    opus_int32       C_first_row[ SILK_MAX_ORDER_LPC ];
    opus_int32       C_last_row[  SILK_MAX_ORDER_LPC ];
    opus_int32       Af_QA[       SILK_MAX_ORDER_LPC ];

    opus_int32       CAf[ SILK_MAX_ORDER_LPC + 1 ];
    opus_int32       CAb[ SILK_MAX_ORDER_LPC + 1 ];

    silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
    silk_assert( nb_subfr <= MAX_NB_SUBFR );


    /* Compute autocorrelations, added over subframes */
    silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length );
    if( rshifts > MAX_RSHIFTS ) {
        C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS );
        silk_assert( C0 > 0 );
        rshifts = MAX_RSHIFTS;
    } else {
        lz = silk_CLZ32( C0 ) - 1;
        rshifts_extra = N_BITS_HEAD_ROOM - lz;
        if( rshifts_extra > 0 ) {
            rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts );
            C0 = silk_RSHIFT32( C0, rshifts_extra );
        } else {
            rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts );
            C0 = silk_LSHIFT32( C0, -rshifts_extra );
        }
        rshifts += rshifts_extra;
    }
    silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
    if( rshifts > 0 ) {
        for( s = 0; s < nb_subfr; s++ ) {
            x_ptr = x + s * subfr_length;
            for( n = 1; n < D + 1; n++ ) {
                C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
                    silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n ), rshifts );
            }
        }
    } else {
        for( s = 0; s < nb_subfr; s++ ) {
            x_ptr = x + s * subfr_length;
            for( n = 1; n < D + 1; n++ ) {
                C_first_row[ n - 1 ] += silk_LSHIFT32(
                    silk_inner_prod_aligned( x_ptr, x_ptr + n, subfr_length - n ), -rshifts );
            }
        }
    }
    silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );

    /* Initialize */
    CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( WhiteNoiseFrac_Q32, C0 ) + 1;                                /* Q(-rshifts)*/

    for( n = 0; n < D; n++ ) {
        /* Update first row of correlation matrix (without first element) */
        /* Update last row of correlation matrix (without last element, stored in reversed order) */
        /* Update C * Af */
        /* Update C * flipud(Af) (stored in reversed order) */
        if( rshifts > -2 ) {
            for( s = 0; s < nb_subfr; s++ ) {
                x_ptr = x + s * subfr_length;
                x1  = -silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    16 - rshifts );        /* Q(16-rshifts)*/
                x2  = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts );        /* Q(16-rshifts)*/
                tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    QA - 16 );             /* Q(QA-16)*/
                tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 );             /* Q(QA-16)*/
                for( k = 0; k < n; k++ ) {
                    C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ]            ); /* Q( -rshifts )*/
                    C_last_row[ k ]  = silk_SMLAWB( C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts )*/
                    Atmp_QA = Af_QA[ k ];
                    tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ]            );                 /* Q(QA-16)*/
                    tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] );                 /* Q(QA-16)*/
                }
                tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts );                                       /* Q(16-rshifts)*/
                tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts );                                       /* Q(16-rshifts)*/
                for( k = 0; k <= n; k++ ) {
                    CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ]                    );        /* Q( -rshift )*/
                    CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] );        /* Q( -rshift )*/
                }
            }
        } else {
            for( s = 0; s < nb_subfr; s++ ) {
                x_ptr = x + s * subfr_length;
                x1  = -silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    -rshifts );            /* Q( -rshifts )*/
                x2  = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts );            /* Q( -rshifts )*/
                tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    17 );                  /* Q17*/
                tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 );                  /* Q17*/
                for( k = 0; k < n; k++ ) {
                    C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ]            ); /* Q( -rshifts )*/
                    C_last_row[ k ]  = silk_MLA( C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts )*/
                    Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 );                                   /* Q17*/
                    tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ],            Atmp1 );                      /* Q17*/
                    tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 );                      /* Q17*/
                }
                tmp1 = -tmp1;                                                                           /* Q17*/
                tmp2 = -tmp2;                                                                           /* Q17*/
                for( k = 0; k <= n; k++ ) {
                    CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
                        silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) );                    /* Q( -rshift )*/
                    CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
                        silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift )*/
                }
            }
        }

        /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
        tmp1 = C_first_row[ n ];                                                                        /* Q( -rshifts )*/
        tmp2 = C_last_row[ n ];                                                                         /* Q( -rshifts )*/
        num  = 0;                                                                                       /* Q( -rshifts )*/
        nrg  = silk_ADD32( CAb[ 0 ], CAf[ 0 ] );                                                        /* Q( 1-rshifts )*/
        for( k = 0; k < n; k++ ) {
            Atmp_QA = Af_QA[ k ];
            lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
            lz = silk_min( 32 - QA, lz );
            Atmp1 = silk_LSHIFT32( Atmp_QA, lz );                                                       /* Q( QA + lz )*/

            tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[  n - k - 1 ], Atmp1 ), 32 - QA - lz );  /* Q( -rshifts )*/
            tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz );  /* Q( -rshifts )*/
            num  = silk_ADD_LSHIFT32( num,  silk_SMMUL( CAb[ n - k ],             Atmp1 ), 32 - QA - lz );  /* Q( -rshifts )*/
            nrg  = silk_ADD_LSHIFT32( nrg,  silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
                                                                                Atmp1 ), 32 - QA - lz );    /* Q( 1-rshifts )*/
        }
        CAf[ n + 1 ] = tmp1;                                                                            /* Q( -rshifts )*/
        CAb[ n + 1 ] = tmp2;                                                                            /* Q( -rshifts )*/
        num = silk_ADD32( num, tmp2 );                                                                  /* Q( -rshifts )*/
        num = silk_LSHIFT32( -num, 1 );                                                                 /* Q( 1-rshifts )*/

        /* Calculate the next order reflection (parcor) coefficient */
        if( silk_abs( num ) < nrg ) {
            rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
        } else {
            /* Negative energy or ratio too high; set remaining coefficients to zero and exit loop */
            silk_memset( &Af_QA[ n ], 0, ( D - n ) * sizeof( opus_int32 ) );
            silk_assert( 0 );
            break;
        }

        /* Update the AR coefficients */
        for( k = 0; k < (n + 1) >> 1; k++ ) {
            tmp1 = Af_QA[ k ];                                                                  /* QA*/
            tmp2 = Af_QA[ n - k - 1 ];                                                          /* QA*/
            Af_QA[ k ]         = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 );      /* QA*/
            Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 );      /* QA*/
        }
        Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA );                                          /* QA*/

        /* Update C * Af and C * Ab */
        for( k = 0; k <= n + 1; k++ ) {
            tmp1 = CAf[ k ];                                                                    /* Q( -rshifts )*/
            tmp2 = CAb[ n - k + 1 ];                                                            /* Q( -rshifts )*/
            CAf[ k ]         = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 );        /* Q( -rshifts )*/
            CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 );        /* Q( -rshifts )*/
        }
    }

    /* Return residual energy */
    nrg  = CAf[ 0 ];                                                                            /* Q( -rshifts )*/
    tmp1 = 1 << 16;                                                                             /* Q16*/
    for( k = 0; k < D; k++ ) {
        Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );                                       /* Q16*/
        nrg  = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 );                                         /* Q( -rshifts )*/
        tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 );                                               /* Q16*/
        A_Q16[ k ] = -Atmp1;
    }
    *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( WhiteNoiseFrac_Q32, C0 ), -tmp1 );                 /* Q( -rshifts )*/
    *res_nrg_Q = -rshifts;
}
Esempio n. 12
0
File: enc_API.c Progetto: kode54/Cog
/* encControl->payloadSize_ms is set to                                                                         */
opus_int silk_Encode(                                   /* O    Returns error code                              */
    void                            *encState,          /* I/O  State                                           */
    silk_EncControlStruct           *encControl,        /* I    Control status                                  */
    const opus_int16                *samplesIn,         /* I    Speech sample input vector                      */
    opus_int                        nSamplesIn,         /* I    Number of samples in input vector               */
    ec_enc                          *psRangeEnc,        /* I/O  Compressor data structure                       */
    opus_int32                      *nBytesOut,         /* I/O  Number of bytes in payload (input: Max bytes)   */
    const opus_int                  prefillFlag         /* I    Flag to indicate prefilling buffers no coding   */
)
{
    opus_int   n, i, nBits, flags, tmp_payloadSize_ms = 0, tmp_complexity = 0, ret = 0;
    opus_int   nSamplesToBuffer, nSamplesToBufferMax, nBlocksOf10ms;
    opus_int   nSamplesFromInput = 0, nSamplesFromInputMax;
    opus_int   speech_act_thr_for_switch_Q8;
    opus_int32 TargetRate_bps, MStargetRates_bps[ 2 ], channelRate_bps, LBRR_symbol, sum;
    silk_encoder *psEnc = ( silk_encoder * )encState;
    VARDECL( opus_int16, buf );
    opus_int transition, curr_block, tot_blocks;
    SAVE_STACK;

    if (encControl->reducedDependency)
    {
       psEnc->state_Fxx[0].sCmn.first_frame_after_reset = 1;
       psEnc->state_Fxx[1].sCmn.first_frame_after_reset = 1;
    }
    psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded = psEnc->state_Fxx[ 1 ].sCmn.nFramesEncoded = 0;

    /* Check values in encoder control structure */
    if( ( ret = check_control_input( encControl ) ) != 0 ) {
        silk_assert( 0 );
        RESTORE_STACK;
        return ret;
    }

    encControl->switchReady = 0;

    if( encControl->nChannelsInternal > psEnc->nChannelsInternal ) {
        /* Mono -> Stereo transition: init state of second channel and stereo state */
        ret += silk_init_encoder( &psEnc->state_Fxx[ 1 ], psEnc->state_Fxx[ 0 ].sCmn.arch );
        silk_memset( psEnc->sStereo.pred_prev_Q13, 0, sizeof( psEnc->sStereo.pred_prev_Q13 ) );
        silk_memset( psEnc->sStereo.sSide, 0, sizeof( psEnc->sStereo.sSide ) );
        psEnc->sStereo.mid_side_amp_Q0[ 0 ] = 0;
        psEnc->sStereo.mid_side_amp_Q0[ 1 ] = 1;
        psEnc->sStereo.mid_side_amp_Q0[ 2 ] = 0;
        psEnc->sStereo.mid_side_amp_Q0[ 3 ] = 1;
        psEnc->sStereo.width_prev_Q14 = 0;
        psEnc->sStereo.smth_width_Q14 = SILK_FIX_CONST( 1, 14 );
        if( psEnc->nChannelsAPI == 2 ) {
            silk_memcpy( &psEnc->state_Fxx[ 1 ].sCmn.resampler_state, &psEnc->state_Fxx[ 0 ].sCmn.resampler_state, sizeof( silk_resampler_state_struct ) );
            silk_memcpy( &psEnc->state_Fxx[ 1 ].sCmn.In_HP_State,     &psEnc->state_Fxx[ 0 ].sCmn.In_HP_State,     sizeof( psEnc->state_Fxx[ 1 ].sCmn.In_HP_State ) );
        }
    }

    transition = (encControl->payloadSize_ms != psEnc->state_Fxx[ 0 ].sCmn.PacketSize_ms) || (psEnc->nChannelsInternal != encControl->nChannelsInternal);

    psEnc->nChannelsAPI = encControl->nChannelsAPI;
    psEnc->nChannelsInternal = encControl->nChannelsInternal;

    nBlocksOf10ms = silk_DIV32( 100 * nSamplesIn, encControl->API_sampleRate );
    tot_blocks = ( nBlocksOf10ms > 1 ) ? nBlocksOf10ms >> 1 : 1;
    curr_block = 0;
    if( prefillFlag ) {
        /* Only accept input length of 10 ms */
        if( nBlocksOf10ms != 1 ) {
            silk_assert( 0 );
            RESTORE_STACK;
            return SILK_ENC_INPUT_INVALID_NO_OF_SAMPLES;
        }
        /* Reset Encoder */
        for( n = 0; n < encControl->nChannelsInternal; n++ ) {
            ret = silk_init_encoder( &psEnc->state_Fxx[ n ], psEnc->state_Fxx[ n ].sCmn.arch );
            silk_assert( !ret );
        }
        tmp_payloadSize_ms = encControl->payloadSize_ms;
        encControl->payloadSize_ms = 10;
        tmp_complexity = encControl->complexity;
        encControl->complexity = 0;
        for( n = 0; n < encControl->nChannelsInternal; n++ ) {
            psEnc->state_Fxx[ n ].sCmn.controlled_since_last_payload = 0;
            psEnc->state_Fxx[ n ].sCmn.prefillFlag = 1;
        }
    } else {
        /* Only accept input lengths that are a multiple of 10 ms */
        if( nBlocksOf10ms * encControl->API_sampleRate != 100 * nSamplesIn || nSamplesIn < 0 ) {
            silk_assert( 0 );
            RESTORE_STACK;
            return SILK_ENC_INPUT_INVALID_NO_OF_SAMPLES;
        }
        /* Make sure no more than one packet can be produced */
        if( 1000 * (opus_int32)nSamplesIn > encControl->payloadSize_ms * encControl->API_sampleRate ) {
            silk_assert( 0 );
            RESTORE_STACK;
            return SILK_ENC_INPUT_INVALID_NO_OF_SAMPLES;
        }
    }

    TargetRate_bps = silk_RSHIFT32( encControl->bitRate, encControl->nChannelsInternal - 1 );
    for( n = 0; n < encControl->nChannelsInternal; n++ ) {
        /* Force the side channel to the same rate as the mid */
        opus_int force_fs_kHz = (n==1) ? psEnc->state_Fxx[0].sCmn.fs_kHz : 0;
        if( ( ret = silk_control_encoder( &psEnc->state_Fxx[ n ], encControl, TargetRate_bps, psEnc->allowBandwidthSwitch, n, force_fs_kHz ) ) != 0 ) {
            silk_assert( 0 );
            RESTORE_STACK;
            return ret;
        }
        if( psEnc->state_Fxx[n].sCmn.first_frame_after_reset || transition ) {
            for( i = 0; i < psEnc->state_Fxx[ 0 ].sCmn.nFramesPerPacket; i++ ) {
                psEnc->state_Fxx[ n ].sCmn.LBRR_flags[ i ] = 0;
            }
        }
        psEnc->state_Fxx[ n ].sCmn.inDTX = psEnc->state_Fxx[ n ].sCmn.useDTX;
    }
    silk_assert( encControl->nChannelsInternal == 1 || psEnc->state_Fxx[ 0 ].sCmn.fs_kHz == psEnc->state_Fxx[ 1 ].sCmn.fs_kHz );

    /* Input buffering/resampling and encoding */
    nSamplesToBufferMax =
        10 * nBlocksOf10ms * psEnc->state_Fxx[ 0 ].sCmn.fs_kHz;
    nSamplesFromInputMax =
        silk_DIV32_16( nSamplesToBufferMax *
                           psEnc->state_Fxx[ 0 ].sCmn.API_fs_Hz,
                       psEnc->state_Fxx[ 0 ].sCmn.fs_kHz * 1000 );
    ALLOC( buf, nSamplesFromInputMax, opus_int16 );
    while( 1 ) {
        nSamplesToBuffer  = psEnc->state_Fxx[ 0 ].sCmn.frame_length - psEnc->state_Fxx[ 0 ].sCmn.inputBufIx;
        nSamplesToBuffer  = silk_min( nSamplesToBuffer, nSamplesToBufferMax );
        nSamplesFromInput = silk_DIV32_16( nSamplesToBuffer * psEnc->state_Fxx[ 0 ].sCmn.API_fs_Hz, psEnc->state_Fxx[ 0 ].sCmn.fs_kHz * 1000 );
        /* Resample and write to buffer */
        if( encControl->nChannelsAPI == 2 && encControl->nChannelsInternal == 2 ) {
            opus_int id = psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded;
            for( n = 0; n < nSamplesFromInput; n++ ) {
                buf[ n ] = samplesIn[ 2 * n ];
            }
            /* Making sure to start both resamplers from the same state when switching from mono to stereo */
            if( psEnc->nPrevChannelsInternal == 1 && id==0 ) {
               silk_memcpy( &psEnc->state_Fxx[ 1 ].sCmn.resampler_state, &psEnc->state_Fxx[ 0 ].sCmn.resampler_state, sizeof(psEnc->state_Fxx[ 1 ].sCmn.resampler_state));
            }

            ret += silk_resampler( &psEnc->state_Fxx[ 0 ].sCmn.resampler_state,
                &psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.inputBufIx + 2 ], buf, nSamplesFromInput );
            psEnc->state_Fxx[ 0 ].sCmn.inputBufIx += nSamplesToBuffer;

            nSamplesToBuffer  = psEnc->state_Fxx[ 1 ].sCmn.frame_length - psEnc->state_Fxx[ 1 ].sCmn.inputBufIx;
            nSamplesToBuffer  = silk_min( nSamplesToBuffer, 10 * nBlocksOf10ms * psEnc->state_Fxx[ 1 ].sCmn.fs_kHz );
            for( n = 0; n < nSamplesFromInput; n++ ) {
                buf[ n ] = samplesIn[ 2 * n + 1 ];
            }
            ret += silk_resampler( &psEnc->state_Fxx[ 1 ].sCmn.resampler_state,
                &psEnc->state_Fxx[ 1 ].sCmn.inputBuf[ psEnc->state_Fxx[ 1 ].sCmn.inputBufIx + 2 ], buf, nSamplesFromInput );

            psEnc->state_Fxx[ 1 ].sCmn.inputBufIx += nSamplesToBuffer;
        } else if( encControl->nChannelsAPI == 2 && encControl->nChannelsInternal == 1 ) {
            /* Combine left and right channels before resampling */
            for( n = 0; n < nSamplesFromInput; n++ ) {
                sum = samplesIn[ 2 * n ] + samplesIn[ 2 * n + 1 ];
                buf[ n ] = (opus_int16)silk_RSHIFT_ROUND( sum,  1 );
            }
            ret += silk_resampler( &psEnc->state_Fxx[ 0 ].sCmn.resampler_state,
                &psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.inputBufIx + 2 ], buf, nSamplesFromInput );
            /* On the first mono frame, average the results for the two resampler states  */
            if( psEnc->nPrevChannelsInternal == 2 && psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded == 0 ) {
               ret += silk_resampler( &psEnc->state_Fxx[ 1 ].sCmn.resampler_state,
                   &psEnc->state_Fxx[ 1 ].sCmn.inputBuf[ psEnc->state_Fxx[ 1 ].sCmn.inputBufIx + 2 ], buf, nSamplesFromInput );
               for( n = 0; n < psEnc->state_Fxx[ 0 ].sCmn.frame_length; n++ ) {
                  psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.inputBufIx+n+2 ] =
                        silk_RSHIFT(psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.inputBufIx+n+2 ]
                                  + psEnc->state_Fxx[ 1 ].sCmn.inputBuf[ psEnc->state_Fxx[ 1 ].sCmn.inputBufIx+n+2 ], 1);
               }
            }
            psEnc->state_Fxx[ 0 ].sCmn.inputBufIx += nSamplesToBuffer;
        } else {
            silk_assert( encControl->nChannelsAPI == 1 && encControl->nChannelsInternal == 1 );
            silk_memcpy(buf, samplesIn, nSamplesFromInput*sizeof(opus_int16));
            ret += silk_resampler( &psEnc->state_Fxx[ 0 ].sCmn.resampler_state,
                &psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.inputBufIx + 2 ], buf, nSamplesFromInput );
            psEnc->state_Fxx[ 0 ].sCmn.inputBufIx += nSamplesToBuffer;
        }

        samplesIn  += nSamplesFromInput * encControl->nChannelsAPI;
        nSamplesIn -= nSamplesFromInput;

        /* Default */
        psEnc->allowBandwidthSwitch = 0;

        /* Silk encoder */
        if( psEnc->state_Fxx[ 0 ].sCmn.inputBufIx >= psEnc->state_Fxx[ 0 ].sCmn.frame_length ) {
            /* Enough data in input buffer, so encode */
            silk_assert( psEnc->state_Fxx[ 0 ].sCmn.inputBufIx == psEnc->state_Fxx[ 0 ].sCmn.frame_length );
            silk_assert( encControl->nChannelsInternal == 1 || psEnc->state_Fxx[ 1 ].sCmn.inputBufIx == psEnc->state_Fxx[ 1 ].sCmn.frame_length );

            /* Deal with LBRR data */
            if( psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded == 0 && !prefillFlag ) {
                /* Create space at start of payload for VAD and FEC flags */
                opus_uint8 iCDF[ 2 ] = { 0, 0 };
                iCDF[ 0 ] = 256 - silk_RSHIFT( 256, ( psEnc->state_Fxx[ 0 ].sCmn.nFramesPerPacket + 1 ) * encControl->nChannelsInternal );
                ec_enc_icdf( psRangeEnc, 0, iCDF, 8 );

                /* Encode any LBRR data from previous packet */
                /* Encode LBRR flags */
                for( n = 0; n < encControl->nChannelsInternal; n++ ) {
                    LBRR_symbol = 0;
                    for( i = 0; i < psEnc->state_Fxx[ n ].sCmn.nFramesPerPacket; i++ ) {
                        LBRR_symbol |= silk_LSHIFT( psEnc->state_Fxx[ n ].sCmn.LBRR_flags[ i ], i );
                    }
                    psEnc->state_Fxx[ n ].sCmn.LBRR_flag = LBRR_symbol > 0 ? 1 : 0;
                    if( LBRR_symbol && psEnc->state_Fxx[ n ].sCmn.nFramesPerPacket > 1 ) {
                        ec_enc_icdf( psRangeEnc, LBRR_symbol - 1, silk_LBRR_flags_iCDF_ptr[ psEnc->state_Fxx[ n ].sCmn.nFramesPerPacket - 2 ], 8 );
                    }
                }

                /* Code LBRR indices and excitation signals */
                for( i = 0; i < psEnc->state_Fxx[ 0 ].sCmn.nFramesPerPacket; i++ ) {
                    for( n = 0; n < encControl->nChannelsInternal; n++ ) {
                        if( psEnc->state_Fxx[ n ].sCmn.LBRR_flags[ i ] ) {
                            opus_int condCoding;

                            if( encControl->nChannelsInternal == 2 && n == 0 ) {
                                silk_stereo_encode_pred( psRangeEnc, psEnc->sStereo.predIx[ i ] );
                                /* For LBRR data there's no need to code the mid-only flag if the side-channel LBRR flag is set */
                                if( psEnc->state_Fxx[ 1 ].sCmn.LBRR_flags[ i ] == 0 ) {
                                    silk_stereo_encode_mid_only( psRangeEnc, psEnc->sStereo.mid_only_flags[ i ] );
                                }
                            }
                            /* Use conditional coding if previous frame available */
                            if( i > 0 && psEnc->state_Fxx[ n ].sCmn.LBRR_flags[ i - 1 ] ) {
                                condCoding = CODE_CONDITIONALLY;
                            } else {
                                condCoding = CODE_INDEPENDENTLY;
                            }
                            silk_encode_indices( &psEnc->state_Fxx[ n ].sCmn, psRangeEnc, i, 1, condCoding );
                            silk_encode_pulses( psRangeEnc, psEnc->state_Fxx[ n ].sCmn.indices_LBRR[i].signalType, psEnc->state_Fxx[ n ].sCmn.indices_LBRR[i].quantOffsetType,
                                psEnc->state_Fxx[ n ].sCmn.pulses_LBRR[ i ], psEnc->state_Fxx[ n ].sCmn.frame_length );
                        }
                    }
                }

                /* Reset LBRR flags */
                for( n = 0; n < encControl->nChannelsInternal; n++ ) {
                    silk_memset( psEnc->state_Fxx[ n ].sCmn.LBRR_flags, 0, sizeof( psEnc->state_Fxx[ n ].sCmn.LBRR_flags ) );
                }

                psEnc->nBitsUsedLBRR = ec_tell( psRangeEnc );
            }

            silk_HP_variable_cutoff( psEnc->state_Fxx );

            /* Total target bits for packet */
            nBits = silk_DIV32_16( silk_MUL( encControl->bitRate, encControl->payloadSize_ms ), 1000 );
            /* Subtract bits used for LBRR */
            if( !prefillFlag ) {
                nBits -= psEnc->nBitsUsedLBRR;
            }
            /* Divide by number of uncoded frames left in packet */
            nBits = silk_DIV32_16( nBits, psEnc->state_Fxx[ 0 ].sCmn.nFramesPerPacket );
            /* Convert to bits/second */
            if( encControl->payloadSize_ms == 10 ) {
                TargetRate_bps = silk_SMULBB( nBits, 100 );
            } else {
                TargetRate_bps = silk_SMULBB( nBits, 50 );
            }
            /* Subtract fraction of bits in excess of target in previous frames and packets */
            TargetRate_bps -= silk_DIV32_16( silk_MUL( psEnc->nBitsExceeded, 1000 ), BITRESERVOIR_DECAY_TIME_MS );
            if( !prefillFlag && psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded > 0 ) {
                /* Compare actual vs target bits so far in this packet */
                opus_int32 bitsBalance = ec_tell( psRangeEnc ) - psEnc->nBitsUsedLBRR - nBits * psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded;
                TargetRate_bps -= silk_DIV32_16( silk_MUL( bitsBalance, 1000 ), BITRESERVOIR_DECAY_TIME_MS );
            }
            /* Never exceed input bitrate */
            TargetRate_bps = silk_LIMIT( TargetRate_bps, encControl->bitRate, 5000 );

            /* Convert Left/Right to Mid/Side */
            if( encControl->nChannelsInternal == 2 ) {
                silk_stereo_LR_to_MS( &psEnc->sStereo, &psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ 2 ], &psEnc->state_Fxx[ 1 ].sCmn.inputBuf[ 2 ],
                    psEnc->sStereo.predIx[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ], &psEnc->sStereo.mid_only_flags[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ],
                    MStargetRates_bps, TargetRate_bps, psEnc->state_Fxx[ 0 ].sCmn.speech_activity_Q8, encControl->toMono,
                    psEnc->state_Fxx[ 0 ].sCmn.fs_kHz, psEnc->state_Fxx[ 0 ].sCmn.frame_length );
                if( psEnc->sStereo.mid_only_flags[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ] == 0 ) {
                    /* Reset side channel encoder memory for first frame with side coding */
                    if( psEnc->prev_decode_only_middle == 1 ) {
                        silk_memset( &psEnc->state_Fxx[ 1 ].sShape,               0, sizeof( psEnc->state_Fxx[ 1 ].sShape ) );
                        silk_memset( &psEnc->state_Fxx[ 1 ].sPrefilt,             0, sizeof( psEnc->state_Fxx[ 1 ].sPrefilt ) );
                        silk_memset( &psEnc->state_Fxx[ 1 ].sCmn.sNSQ,            0, sizeof( psEnc->state_Fxx[ 1 ].sCmn.sNSQ ) );
                        silk_memset( psEnc->state_Fxx[ 1 ].sCmn.prev_NLSFq_Q15,   0, sizeof( psEnc->state_Fxx[ 1 ].sCmn.prev_NLSFq_Q15 ) );
                        silk_memset( &psEnc->state_Fxx[ 1 ].sCmn.sLP.In_LP_State, 0, sizeof( psEnc->state_Fxx[ 1 ].sCmn.sLP.In_LP_State ) );
                        psEnc->state_Fxx[ 1 ].sCmn.prevLag                 = 100;
                        psEnc->state_Fxx[ 1 ].sCmn.sNSQ.lagPrev            = 100;
                        psEnc->state_Fxx[ 1 ].sShape.LastGainIndex         = 10;
                        psEnc->state_Fxx[ 1 ].sCmn.prevSignalType          = TYPE_NO_VOICE_ACTIVITY;
                        psEnc->state_Fxx[ 1 ].sCmn.sNSQ.prev_gain_Q16      = 65536;
                        psEnc->state_Fxx[ 1 ].sCmn.first_frame_after_reset = 1;
                    }
                    silk_encode_do_VAD_Fxx( &psEnc->state_Fxx[ 1 ] );
                } else {
                    psEnc->state_Fxx[ 1 ].sCmn.VAD_flags[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ] = 0;
                }
                if( !prefillFlag ) {
                    silk_stereo_encode_pred( psRangeEnc, psEnc->sStereo.predIx[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ] );
                    if( psEnc->state_Fxx[ 1 ].sCmn.VAD_flags[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ] == 0 ) {
                        silk_stereo_encode_mid_only( psRangeEnc, psEnc->sStereo.mid_only_flags[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded ] );
                    }
                }
            } else {
                /* Buffering */
                silk_memcpy( psEnc->state_Fxx[ 0 ].sCmn.inputBuf, psEnc->sStereo.sMid, 2 * sizeof( opus_int16 ) );
                silk_memcpy( psEnc->sStereo.sMid, &psEnc->state_Fxx[ 0 ].sCmn.inputBuf[ psEnc->state_Fxx[ 0 ].sCmn.frame_length ], 2 * sizeof( opus_int16 ) );
            }
            silk_encode_do_VAD_Fxx( &psEnc->state_Fxx[ 0 ] );

            /* Encode */
            for( n = 0; n < encControl->nChannelsInternal; n++ ) {
                opus_int maxBits, useCBR;

                /* Handling rate constraints */
                maxBits = encControl->maxBits;
                if( tot_blocks == 2 && curr_block == 0 ) {
                    maxBits = maxBits * 3 / 5;
                } else if( tot_blocks == 3 ) {
                    if( curr_block == 0 ) {
                        maxBits = maxBits * 2 / 5;
                    } else if( curr_block == 1 ) {
                        maxBits = maxBits * 3 / 4;
                    }
                }
                useCBR = encControl->useCBR && curr_block == tot_blocks - 1;

                if( encControl->nChannelsInternal == 1 ) {
                    channelRate_bps = TargetRate_bps;
                } else {
                    channelRate_bps = MStargetRates_bps[ n ];
                    if( n == 0 && MStargetRates_bps[ 1 ] > 0 ) {
                        useCBR = 0;
                        /* Give mid up to 1/2 of the max bits for that frame */
                        maxBits -= encControl->maxBits / ( tot_blocks * 2 );
                    }
                }

                if( channelRate_bps > 0 ) {
                    opus_int condCoding;

                    silk_control_SNR( &psEnc->state_Fxx[ n ].sCmn, channelRate_bps );

                    /* Use independent coding if no previous frame available */
                    if( psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded - n <= 0 ) {
                        condCoding = CODE_INDEPENDENTLY;
                    } else if( n > 0 && psEnc->prev_decode_only_middle ) {
                        /* If we skipped a side frame in this packet, we don't
                           need LTP scaling; the LTP state is well-defined. */
                        condCoding = CODE_INDEPENDENTLY_NO_LTP_SCALING;
                    } else {
                        condCoding = CODE_CONDITIONALLY;
                    }
                    if( ( ret = silk_encode_frame_Fxx( &psEnc->state_Fxx[ n ], nBytesOut, psRangeEnc, condCoding, maxBits, useCBR ) ) != 0 ) {
                        silk_assert( 0 );
                    }
                }
                psEnc->state_Fxx[ n ].sCmn.controlled_since_last_payload = 0;
                psEnc->state_Fxx[ n ].sCmn.inputBufIx = 0;
                psEnc->state_Fxx[ n ].sCmn.nFramesEncoded++;
            }
            psEnc->prev_decode_only_middle = psEnc->sStereo.mid_only_flags[ psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded - 1 ];

            /* Insert VAD and FEC flags at beginning of bitstream */
            if( *nBytesOut > 0 && psEnc->state_Fxx[ 0 ].sCmn.nFramesEncoded == psEnc->state_Fxx[ 0 ].sCmn.nFramesPerPacket) {
                flags = 0;
                for( n = 0; n < encControl->nChannelsInternal; n++ ) {
                    for( i = 0; i < psEnc->state_Fxx[ n ].sCmn.nFramesPerPacket; i++ ) {
                        flags  = silk_LSHIFT( flags, 1 );
                        flags |= psEnc->state_Fxx[ n ].sCmn.VAD_flags[ i ];
                    }
                    flags  = silk_LSHIFT( flags, 1 );
                    flags |= psEnc->state_Fxx[ n ].sCmn.LBRR_flag;
                }
                if( !prefillFlag ) {
                    ec_enc_patch_initial_bits( psRangeEnc, flags, ( psEnc->state_Fxx[ 0 ].sCmn.nFramesPerPacket + 1 ) * encControl->nChannelsInternal );
                }

                /* Return zero bytes if all channels DTXed */
                if( psEnc->state_Fxx[ 0 ].sCmn.inDTX && ( encControl->nChannelsInternal == 1 || psEnc->state_Fxx[ 1 ].sCmn.inDTX ) ) {
                    *nBytesOut = 0;
                }

                psEnc->nBitsExceeded += *nBytesOut * 8;
                psEnc->nBitsExceeded -= silk_DIV32_16( silk_MUL( encControl->bitRate, encControl->payloadSize_ms ), 1000 );
                psEnc->nBitsExceeded  = silk_LIMIT( psEnc->nBitsExceeded, 0, 10000 );

                /* Update flag indicating if bandwidth switching is allowed */
                speech_act_thr_for_switch_Q8 = (opus_int) silk_SMLAWB( SILK_FIX_CONST( SPEECH_ACTIVITY_DTX_THRES, 8 ),
                    SILK_FIX_CONST( ( 1 - SPEECH_ACTIVITY_DTX_THRES ) / MAX_BANDWIDTH_SWITCH_DELAY_MS, 16 + 8 ), psEnc->timeSinceSwitchAllowed_ms );
                if( psEnc->state_Fxx[ 0 ].sCmn.speech_activity_Q8 < speech_act_thr_for_switch_Q8 ) {
                    psEnc->allowBandwidthSwitch = 1;
                    psEnc->timeSinceSwitchAllowed_ms = 0;
                } else {
                    psEnc->allowBandwidthSwitch = 0;
                    psEnc->timeSinceSwitchAllowed_ms += encControl->payloadSize_ms;
                }
            }

            if( nSamplesIn == 0 ) {
                break;
            }
        } else {
            break;
        }
        curr_block++;
    }

    psEnc->nPrevChannelsInternal = encControl->nChannelsInternal;

    encControl->allowBandwidthSwitch = psEnc->allowBandwidthSwitch;
    encControl->inWBmodeWithoutVariableLP = psEnc->state_Fxx[ 0 ].sCmn.fs_kHz == 16 && psEnc->state_Fxx[ 0 ].sCmn.sLP.mode == 0;
    encControl->internalSampleRate = silk_SMULBB( psEnc->state_Fxx[ 0 ].sCmn.fs_kHz, 1000 );
    encControl->stereoWidth_Q14 = encControl->toMono ? 0 : psEnc->sStereo.smth_width_Q14;
    if( prefillFlag ) {
        encControl->payloadSize_ms = tmp_payloadSize_ms;
        encControl->complexity = tmp_complexity;
        for( n = 0; n < encControl->nChannelsInternal; n++ ) {
            psEnc->state_Fxx[ n ].sCmn.controlled_since_last_payload = 0;
            psEnc->state_Fxx[ n ].sCmn.prefillFlag = 0;
        }
    }

    RESTORE_STACK;
    return ret;
}
Esempio n. 13
0
/* Compute reflection coefficients from input signal */
silk_float silk_burg_modified_FLP(          /* O    returns residual energy                                     */
    silk_float          A[],                /* O    prediction coefficients (length order)                      */
    const silk_float    x[],                /* I    input signal, length: nb_subfr*(D+L_sub)                    */
    const silk_float    minInvGain,         /* I    minimum inverse prediction gain                             */
    const opus_int      subfr_length,       /* I    input signal subframe length (incl. D preceding samples)    */
    const opus_int      nb_subfr,           /* I    number of subframes stacked in x                            */
    const opus_int      D                   /* I    order                                                       */
)
{
    opus_int         k, n, s, reached_max_gain;
    double           C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2;
    const silk_float *x_ptr;
    double           C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ];
    double           CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ];
    double           Af[ SILK_MAX_ORDER_LPC ];

    silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );

    /* Compute autocorrelations, added over subframes */
    C0 = silk_energy_FLP( x, nb_subfr * subfr_length );
    silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) );
    for( s = 0; s < nb_subfr; s++ ) {
        x_ptr = x + s * subfr_length;
        for( n = 1; n < D + 1; n++ ) {
            C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n );
        }
    }
    silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) );

    /* Initialize */
    CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f;
    invGain = 1.0f;
    reached_max_gain = 0;
    for( n = 0; n < D; n++ ) {
        /* Update first row of correlation matrix (without first element) */
        /* Update last row of correlation matrix (without last element, stored in reversed order) */
        /* Update C * Af */
        /* Update C * flipud(Af) (stored in reversed order) */
        for( s = 0; s < nb_subfr; s++ ) {
            x_ptr = x + s * subfr_length;
            tmp1 = x_ptr[ n ];
            tmp2 = x_ptr[ subfr_length - n - 1 ];
            for( k = 0; k < n; k++ ) {
                C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ];
                C_last_row[ k ]  -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ];
                Atmp = Af[ k ];
                tmp1 += x_ptr[ n - k - 1 ] * Atmp;
                tmp2 += x_ptr[ subfr_length - n + k ] * Atmp;
            }
            for( k = 0; k <= n; k++ ) {
                CAf[ k ] -= tmp1 * x_ptr[ n - k ];
                CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ];
            }
        }
        tmp1 = C_first_row[ n ];
        tmp2 = C_last_row[ n ];
        for( k = 0; k < n; k++ ) {
            Atmp = Af[ k ];
            tmp1 += C_last_row[  n - k - 1 ] * Atmp;
            tmp2 += C_first_row[ n - k - 1 ] * Atmp;
        }
        CAf[ n + 1 ] = tmp1;
        CAb[ n + 1 ] = tmp2;

        /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
        num = CAb[ n + 1 ];
        nrg_b = CAb[ 0 ];
        nrg_f = CAf[ 0 ];
        for( k = 0; k < n; k++ ) {
            Atmp = Af[ k ];
            num   += CAb[ n - k ] * Atmp;
            nrg_b += CAb[ k + 1 ] * Atmp;
            nrg_f += CAf[ k + 1 ] * Atmp;
        }
        silk_assert( nrg_f > 0.0 );
        silk_assert( nrg_b > 0.0 );

        /* Calculate the next order reflection (parcor) coefficient */
        rc = -2.0 * num / ( nrg_f + nrg_b );
        silk_assert( rc > -1.0 && rc < 1.0 );

        /* Update inverse prediction gain */
        tmp1 = invGain * ( 1.0 - rc * rc );
        if( tmp1 <= minInvGain ) {
            /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
            rc = sqrt( 1.0 - minInvGain / invGain );
            if( num > 0 ) {
                /* Ensure adjusted reflection coefficients has the original sign */
                rc = -rc;
            }
            invGain = minInvGain;
            reached_max_gain = 1;
        } else {
            invGain = tmp1;
        }

        /* Update the AR coefficients */
        for( k = 0; k < (n + 1) >> 1; k++ ) {
            tmp1 = Af[ k ];
            tmp2 = Af[ n - k - 1 ];
            Af[ k ]         = tmp1 + rc * tmp2;
            Af[ n - k - 1 ] = tmp2 + rc * tmp1;
        }
        Af[ n ] = rc;

        if( reached_max_gain ) {
            /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
            for( k = n + 1; k < D; k++ ) {
                Af[ k ] = 0.0;
            }
            break;
        }

        /* Update C * Af and C * Ab */
        for( k = 0; k <= n + 1; k++ ) {
            tmp1 = CAf[ k ];
            CAf[ k ]          += rc * CAb[ n - k + 1 ];
            CAb[ n - k + 1  ] += rc * tmp1;
        }
    }

    if( reached_max_gain ) {
        /* Convert to silk_float */
        for( k = 0; k < D; k++ ) {
            A[ k ] = (silk_float)( -Af[ k ] );
        }
        /* Subtract energy of preceding samples from C0 */
        for( s = 0; s < nb_subfr; s++ ) {
            C0 -= silk_energy_FLP( x + s * subfr_length, D );
        }
        /* Approximate residual energy */
        nrg_f = C0 * invGain;
    } else {
        /* Compute residual energy and store coefficients as silk_float */
        nrg_f = CAf[ 0 ];
        tmp1 = 1.0;
        for( k = 0; k < D; k++ ) {
            Atmp = Af[ k ];
            nrg_f += CAf[ k + 1 ] * Atmp;
            tmp1  += Atmp * Atmp;
            A[ k ] = (silk_float)(-Atmp);
        }
        nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1;
    }

    /* Return residual energy */
    return (silk_float)nrg_f;
}
Esempio n. 14
0
void silk_find_pred_coefs_FIX(
    silk_encoder_state_FIX          *psEnc,                                 /* I/O  encoder state                                                               */
    silk_encoder_control_FIX        *psEncCtrl,                             /* I/O  encoder control                                                             */
    const opus_int16                res_pitch[],                            /* I    Residual from pitch analysis                                                */
    const opus_int16                x[],                                    /* I    Speech signal                                                               */
    opus_int                        condCoding                              /* I    The type of conditional coding to use                                       */
)
{
    opus_int         i;
    opus_int32       invGains_Q16[ MAX_NB_SUBFR ], local_gains[ MAX_NB_SUBFR ], Wght_Q15[ MAX_NB_SUBFR ];
    opus_int16       NLSF_Q15[ MAX_LPC_ORDER ];
    const opus_int16 *x_ptr;
    opus_int16       *x_pre_ptr;
    VARDECL( opus_int16, LPC_in_pre );
    opus_int32       tmp, min_gain_Q16, minInvGain_Q30;
    opus_int         LTP_corrs_rshift[ MAX_NB_SUBFR ];
    SAVE_STACK;

    /* weighting for weighted least squares */
    min_gain_Q16 = silk_int32_MAX >> 6;
    for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
        min_gain_Q16 = silk_min( min_gain_Q16, psEncCtrl->Gains_Q16[ i ] );
    }
    for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
        /* Divide to Q16 */
        silk_assert( psEncCtrl->Gains_Q16[ i ] > 0 );
        /* Invert and normalize gains, and ensure that maximum invGains_Q16 is within range of a 16 bit int */
        invGains_Q16[ i ] = silk_DIV32_varQ( min_gain_Q16, psEncCtrl->Gains_Q16[ i ], 16 - 2 );

        /* Ensure Wght_Q15 a minimum value 1 */
        invGains_Q16[ i ] = silk_max( invGains_Q16[ i ], 363 );

        /* Square the inverted gains */
        silk_assert( invGains_Q16[ i ] == silk_SAT16( invGains_Q16[ i ] ) );
        tmp = silk_SMULWB( invGains_Q16[ i ], invGains_Q16[ i ] );
        Wght_Q15[ i ] = silk_RSHIFT( tmp, 1 );

        /* Invert the inverted and normalized gains */
        local_gains[ i ] = silk_DIV32( ( (opus_int32)1 << 16 ), invGains_Q16[ i ] );
    }

    ALLOC( LPC_in_pre,
           psEnc->sCmn.nb_subfr * psEnc->sCmn.predictLPCOrder
               + psEnc->sCmn.frame_length, opus_int16 );
    if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
        VARDECL( opus_int32, WLTP );

        /**********/
        /* VOICED */
        /**********/
        silk_assert( psEnc->sCmn.ltp_mem_length - psEnc->sCmn.predictLPCOrder >= psEncCtrl->pitchL[ 0 ] + LTP_ORDER / 2 );

        ALLOC( WLTP, psEnc->sCmn.nb_subfr * LTP_ORDER * LTP_ORDER, opus_int32 );

        /* LTP analysis */
        silk_find_LTP_FIX( psEncCtrl->LTPCoef_Q14, WLTP, &psEncCtrl->LTPredCodGain_Q7,
            res_pitch, psEncCtrl->pitchL, Wght_Q15, psEnc->sCmn.subfr_length,
            psEnc->sCmn.nb_subfr, psEnc->sCmn.ltp_mem_length, LTP_corrs_rshift );

        /* Quantize LTP gain parameters */
        silk_quant_LTP_gains( psEncCtrl->LTPCoef_Q14, psEnc->sCmn.indices.LTPIndex, &psEnc->sCmn.indices.PERIndex,
            &psEnc->sCmn.sum_log_gain_Q7, WLTP, psEnc->sCmn.mu_LTP_Q9, psEnc->sCmn.LTPQuantLowComplexity, psEnc->sCmn.nb_subfr);

        /* Control LTP scaling */
        silk_LTP_scale_ctrl_FIX( psEnc, psEncCtrl, condCoding );

        /* Create LTP residual */
        silk_LTP_analysis_filter_FIX( LPC_in_pre, x - psEnc->sCmn.predictLPCOrder, psEncCtrl->LTPCoef_Q14,
            psEncCtrl->pitchL, invGains_Q16, psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.predictLPCOrder );

    } else {
        /************/
        /* UNVOICED */
        /************/
        /* Create signal with prepended subframes, scaled by inverse gains */
        x_ptr     = x - psEnc->sCmn.predictLPCOrder;
        x_pre_ptr = LPC_in_pre;
        for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
            silk_scale_copy_vector16( x_pre_ptr, x_ptr, invGains_Q16[ i ],
                psEnc->sCmn.subfr_length + psEnc->sCmn.predictLPCOrder );
            x_pre_ptr += psEnc->sCmn.subfr_length + psEnc->sCmn.predictLPCOrder;
            x_ptr     += psEnc->sCmn.subfr_length;
        }

        silk_memset( psEncCtrl->LTPCoef_Q14, 0, psEnc->sCmn.nb_subfr * LTP_ORDER * sizeof( opus_int16 ) );
        psEncCtrl->LTPredCodGain_Q7 = 0;
		psEnc->sCmn.sum_log_gain_Q7 = 0;
    }

    /* Limit on total predictive coding gain */
    if( psEnc->sCmn.first_frame_after_reset ) {
        minInvGain_Q30 = SILK_FIX_CONST( 1.0f / MAX_PREDICTION_POWER_GAIN_AFTER_RESET, 30 );
    } else {        
        minInvGain_Q30 = silk_log2lin( silk_SMLAWB( 16 << 7, (opus_int32)psEncCtrl->LTPredCodGain_Q7, SILK_FIX_CONST( 1.0 / 3, 16 ) ) );      /* Q16 */
        minInvGain_Q30 = silk_DIV32_varQ( minInvGain_Q30, 
            silk_SMULWW( SILK_FIX_CONST( MAX_PREDICTION_POWER_GAIN, 0 ), 
                silk_SMLAWB( SILK_FIX_CONST( 0.25, 18 ), SILK_FIX_CONST( 0.75, 18 ), psEncCtrl->coding_quality_Q14 ) ), 14 );
    }

    /* LPC_in_pre contains the LTP-filtered input for voiced, and the unfiltered input for unvoiced */
    silk_find_LPC_FIX( &psEnc->sCmn, NLSF_Q15, LPC_in_pre, minInvGain_Q30 );

    /* Quantize LSFs */
    silk_process_NLSFs( &psEnc->sCmn, psEncCtrl->PredCoef_Q12, NLSF_Q15, psEnc->sCmn.prev_NLSFq_Q15 );

    /* Calculate residual energy using quantized LPC coefficients */
    silk_residual_energy_FIX( psEncCtrl->ResNrg, psEncCtrl->ResNrgQ, LPC_in_pre, psEncCtrl->PredCoef_Q12, local_gains,
        psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.predictLPCOrder );

    /* Copy to prediction struct for use in next frame for interpolation */
    silk_memcpy( psEnc->sCmn.prev_NLSFq_Q15, NLSF_Q15, sizeof( psEnc->sCmn.prev_NLSFq_Q15 ) );
    RESTORE_STACK;
}
Esempio n. 15
0
/* Decode parameters from payload */
void silk_decode_parameters(
    silk_decoder_state          *psDec,                         /* I/O  State                                       */
    silk_decoder_control        *psDecCtrl,                     /* I/O  Decoder control                             */
    opus_int                    condCoding                      /* I    The type of conditional coding to use       */
)
{
    opus_int   i, k, Ix;
    opus_int16 pNLSF_Q15[ MAX_LPC_ORDER ], pNLSF0_Q15[ MAX_LPC_ORDER ];
    const opus_int8 *cbk_ptr_Q7;

    /* Dequant Gains */
    silk_gains_dequant( psDecCtrl->Gains_Q16, psDec->indices.GainsIndices,
        &psDec->LastGainIndex, condCoding == CODE_CONDITIONALLY, psDec->nb_subfr );

    /****************/
    /* Decode NLSFs */
    /****************/
    silk_NLSF_decode( pNLSF_Q15, psDec->indices.NLSFIndices, psDec->psNLSF_CB );

    /* Convert NLSF parameters to AR prediction filter coefficients */
    silk_NLSF2A( psDecCtrl->PredCoef_Q12[ 1 ], pNLSF_Q15, psDec->LPC_order );

    /* If just reset, e.g., because internal Fs changed, do not allow interpolation */
    /* improves the case of packet loss in the first frame after a switch           */
    if( psDec->first_frame_after_reset == 1 ) {
        psDec->indices.NLSFInterpCoef_Q2 = 4;
    }

    if( psDec->indices.NLSFInterpCoef_Q2 < 4 ) {
        /* Calculation of the interpolated NLSF0 vector from the interpolation factor, */
        /* the previous NLSF1, and the current NLSF1                                   */
        for( i = 0; i < psDec->LPC_order; i++ ) {
            pNLSF0_Q15[ i ] = psDec->prevNLSF_Q15[ i ] + silk_RSHIFT( silk_MUL( psDec->indices.NLSFInterpCoef_Q2,
                pNLSF_Q15[ i ] - psDec->prevNLSF_Q15[ i ] ), 2 );
        }

        /* Convert NLSF parameters to AR prediction filter coefficients */
        silk_NLSF2A( psDecCtrl->PredCoef_Q12[ 0 ], pNLSF0_Q15, psDec->LPC_order );
    } else {
        /* Copy LPC coefficients for first half from second half */
        silk_memcpy( psDecCtrl->PredCoef_Q12[ 0 ], psDecCtrl->PredCoef_Q12[ 1 ],
            psDec->LPC_order * sizeof( opus_int16 ) );
    }

    silk_memcpy( psDec->prevNLSF_Q15, pNLSF_Q15, psDec->LPC_order * sizeof( opus_int16 ) );

    /* After a packet loss do BWE of LPC coefs */
    if( psDec->lossCnt ) {
        silk_bwexpander( psDecCtrl->PredCoef_Q12[ 0 ], psDec->LPC_order, BWE_AFTER_LOSS_Q16 );
        silk_bwexpander( psDecCtrl->PredCoef_Q12[ 1 ], psDec->LPC_order, BWE_AFTER_LOSS_Q16 );
    }

    if( psDec->indices.signalType == TYPE_VOICED ) {
        /*********************/
        /* Decode pitch lags */
        /*********************/

        /* Decode pitch values */
        silk_decode_pitch( psDec->indices.lagIndex, psDec->indices.contourIndex, psDecCtrl->pitchL, psDec->fs_kHz, psDec->nb_subfr );

        /* Decode Codebook Index */
        cbk_ptr_Q7 = silk_LTP_vq_ptrs_Q7[ psDec->indices.PERIndex ]; /* set pointer to start of codebook */

        for( k = 0; k < psDec->nb_subfr; k++ ) {
            Ix = psDec->indices.LTPIndex[ k ];
            for( i = 0; i < LTP_ORDER; i++ ) {
                psDecCtrl->LTPCoef_Q14[ k * LTP_ORDER + i ] = silk_LSHIFT( cbk_ptr_Q7[ Ix * LTP_ORDER + i ], 7 );
            }
        }

        /**********************/
        /* Decode LTP scaling */
        /**********************/
        Ix = psDec->indices.LTP_scaleIndex;
        psDecCtrl->LTP_scale_Q14 = silk_LTPScales_table_Q14[ Ix ];
    } else {
        silk_memset( psDecCtrl->pitchL,      0,             psDec->nb_subfr * sizeof( opus_int   ) );
        silk_memset( psDecCtrl->LTPCoef_Q14, 0, LTP_ORDER * psDec->nb_subfr * sizeof( opus_int16 ) );
        psDec->indices.PERIndex  = 0;
        psDecCtrl->LTP_scale_Q14 = 0;
    }
}
/* Compute reflection coefficients from input signal */
void silk_burg_modified_sse4_1(
    opus_int32                  *res_nrg,           /* O    Residual energy                                             */
    opus_int                    *res_nrg_Q,         /* O    Residual energy Q value                                     */
    opus_int32                  A_Q16[],            /* O    Prediction coefficients (length order)                      */
    const opus_int16            x[],                /* I    Input signal, length: nb_subfr * (D + subfr_length)       */
    const opus_int32            minInvGain_Q30,     /* I    Inverse of max prediction gain                              */
    const opus_int              subfr_length,       /* I    Input signal subframe length (incl. D preceding samples)    */
    const opus_int              nb_subfr,           /* I    Number of subframes stacked in x                            */
    const opus_int              D,                  /* I    Order                                                       */
    int                         arch                /* I    Run-time architecture                                       */
)
{
    opus_int         k, n, s, lz, rshifts, rshifts_extra, reached_max_gain;
    opus_int32       C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
    const opus_int16 *x_ptr;
    opus_int32       C_first_row[ SILK_MAX_ORDER_LPC ];
    opus_int32       C_last_row[  SILK_MAX_ORDER_LPC ];
    opus_int32       Af_QA[       SILK_MAX_ORDER_LPC ];
    opus_int32       CAf[ SILK_MAX_ORDER_LPC + 1 ];
    opus_int32       CAb[ SILK_MAX_ORDER_LPC + 1 ];
    opus_int32       xcorr[ SILK_MAX_ORDER_LPC ];

    __m128i FIRST_3210, LAST_3210, ATMP_3210, TMP1_3210, TMP2_3210, T1_3210, T2_3210, PTR_3210, SUBFR_3210, X1_3210, X2_3210;
    __m128i CONST1 = _mm_set1_epi32(1);

    silk_assert(subfr_length * nb_subfr <= MAX_FRAME_SIZE);

    /* Compute autocorrelations, added over subframes */
    silk_sum_sqr_shift(&C0, &rshifts, x, nb_subfr * subfr_length);
    if(rshifts > MAX_RSHIFTS) {
        C0 = silk_LSHIFT32(C0, rshifts - MAX_RSHIFTS);
        silk_assert(C0 > 0);
        rshifts = MAX_RSHIFTS;
    } else {
        lz = silk_CLZ32(C0) - 1;
        rshifts_extra = N_BITS_HEAD_ROOM - lz;
        if(rshifts_extra > 0) {
            rshifts_extra = silk_min(rshifts_extra, MAX_RSHIFTS - rshifts);
            C0 = silk_RSHIFT32(C0, rshifts_extra);
        } else {
            rshifts_extra = silk_max(rshifts_extra, MIN_RSHIFTS - rshifts);
            C0 = silk_LSHIFT32(C0, -rshifts_extra);
        }
        rshifts += rshifts_extra;
    }
    CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL(SILK_FIX_CONST(FIND_LPC_COND_FAC, 32), C0) + 1;                                /* Q(-rshifts) */
    silk_memset(C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof(opus_int32));
    if(rshifts > 0) {
        for(s = 0; s < nb_subfr; s++) {
            x_ptr = x + s * subfr_length;
            for(n = 1; n < D + 1; n++) {
                C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
                    silk_inner_prod16_aligned_64(x_ptr, x_ptr + n, subfr_length - n, arch), rshifts);
            }
        }
    } else {
        for(s = 0; s < nb_subfr; s++) {
            int i;
            opus_int32 d;
            x_ptr = x + s * subfr_length;
            celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch);
            for(n = 1; n < D + 1; n++) {
               for (i = n + subfr_length - D, d = 0; i < subfr_length; i++)
                  d = MAC16_16(d, x_ptr[ i ], x_ptr[ i - n ]);
               xcorr[ n - 1 ] += d;
            }
            for(n = 1; n < D + 1; n++) {
                C_first_row[ n - 1 ] += silk_LSHIFT32(xcorr[ n - 1 ], -rshifts);
            }
        }
    }
    silk_memcpy(C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof(opus_int32));

    /* Initialize */
    CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL(SILK_FIX_CONST(FIND_LPC_COND_FAC, 32), C0) + 1;                                /* Q(-rshifts) */

    invGain_Q30 = (opus_int32)1 << 30;
    reached_max_gain = 0;
    for(n = 0; n < D; n++) {
        /* Update first row of correlation matrix (without first element) */
        /* Update last row of correlation matrix (without last element, stored in reversed order) */
        /* Update C * Af */
        /* Update C * flipud(Af) (stored in reversed order) */
        if(rshifts > -2) {
            for(s = 0; s < nb_subfr; s++) {
                x_ptr = x + s * subfr_length;
                x1  = -silk_LSHIFT32((opus_int32)x_ptr[ n ],                    16 - rshifts);        /* Q(16-rshifts) */
                x2  = -silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts);        /* Q(16-rshifts) */
                tmp1 = silk_LSHIFT32((opus_int32)x_ptr[ n ],                    QA - 16);             /* Q(QA-16) */
                tmp2 = silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16);             /* Q(QA-16) */
                for(k = 0; k < n; k++) {
                    C_first_row[ k ] = silk_SMLAWB(C_first_row[ k ], x1, x_ptr[ n - k - 1 ]           ); /* Q(-rshifts) */
                    C_last_row[ k ]  = silk_SMLAWB(C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ]); /* Q(-rshifts) */
                    Atmp_QA = Af_QA[ k ];
                    tmp1 = silk_SMLAWB(tmp1, Atmp_QA, x_ptr[ n - k - 1 ]           );                 /* Q(QA-16) */
                    tmp2 = silk_SMLAWB(tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ]);                 /* Q(QA-16) */
                }
                tmp1 = silk_LSHIFT32(-tmp1, 32 - QA - rshifts);                                       /* Q(16-rshifts) */
                tmp2 = silk_LSHIFT32(-tmp2, 32 - QA - rshifts);                                       /* Q(16-rshifts) */
                for(k = 0; k <= n; k++) {
                    CAf[ k ] = silk_SMLAWB(CAf[ k ], tmp1, x_ptr[ n - k ]                   );        /* Q(-rshift) */
                    CAb[ k ] = silk_SMLAWB(CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ]);        /* Q(-rshift) */
                }
            }
        } else {
            for(s = 0; s < nb_subfr; s++) {
                x_ptr = x + s * subfr_length;
                x1  = -silk_LSHIFT32((opus_int32)x_ptr[ n ],                    -rshifts);            /* Q(-rshifts) */
                x2  = -silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts);            /* Q(-rshifts) */
                tmp1 = silk_LSHIFT32((opus_int32)x_ptr[ n ],                    17);                  /* Q17 */
                tmp2 = silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n - 1 ], 17);                  /* Q17 */

                X1_3210 = _mm_set1_epi32(x1);
                X2_3210 = _mm_set1_epi32(x2);
                TMP1_3210 = _mm_setzero_si128();
                TMP2_3210 = _mm_setzero_si128();
                for(k = 0; k < n - 3; k += 4) {
                    PTR_3210   = OP_CVTEPI16_EPI32_M64(&x_ptr[ n - k - 1 - 3 ]);
                    SUBFR_3210 = OP_CVTEPI16_EPI32_M64(&x_ptr[ subfr_length - n + k ]);
                    FIRST_3210 = _mm_loadu_si128((__m128i *)&C_first_row[ k ]);
                    PTR_3210   = _mm_shuffle_epi32(PTR_3210,  _MM_SHUFFLE(0, 1, 2, 3));
                    LAST_3210  = _mm_loadu_si128((__m128i *)&C_last_row[ k ]);
                    ATMP_3210  = _mm_loadu_si128((__m128i *)&Af_QA[ k ]);

                    T1_3210 = _mm_mullo_epi32(PTR_3210, X1_3210);
                    T2_3210 = _mm_mullo_epi32(SUBFR_3210, X2_3210);

                    ATMP_3210 = _mm_srai_epi32(ATMP_3210, 7);
                    ATMP_3210 = _mm_add_epi32(ATMP_3210, CONST1);
                    ATMP_3210 = _mm_srai_epi32(ATMP_3210, 1);

                    FIRST_3210 = _mm_add_epi32(FIRST_3210, T1_3210);
                    LAST_3210 = _mm_add_epi32(LAST_3210, T2_3210);

                    PTR_3210   = _mm_mullo_epi32(ATMP_3210, PTR_3210);
                    SUBFR_3210   = _mm_mullo_epi32(ATMP_3210, SUBFR_3210);

                    _mm_storeu_si128((__m128i *)&C_first_row[ k ], FIRST_3210);
                    _mm_storeu_si128((__m128i *)&C_last_row[ k ], LAST_3210);

                    TMP1_3210 = _mm_add_epi32(TMP1_3210, PTR_3210);
                    TMP2_3210 = _mm_add_epi32(TMP2_3210, SUBFR_3210);
                }

                TMP1_3210 = _mm_add_epi32(TMP1_3210, _mm_unpackhi_epi64(TMP1_3210, TMP1_3210));
                TMP2_3210 = _mm_add_epi32(TMP2_3210, _mm_unpackhi_epi64(TMP2_3210, TMP2_3210));
                TMP1_3210 = _mm_add_epi32(TMP1_3210, _mm_shufflelo_epi16(TMP1_3210, 0x0E));
                TMP2_3210 = _mm_add_epi32(TMP2_3210, _mm_shufflelo_epi16(TMP2_3210, 0x0E));

                tmp1 += _mm_cvtsi128_si32(TMP1_3210);
                tmp2 += _mm_cvtsi128_si32(TMP2_3210);

                for(; k < n; k++) {
                    C_first_row[ k ] = silk_MLA(C_first_row[ k ], x1, x_ptr[ n - k - 1 ]           ); /* Q(-rshifts) */
                    C_last_row[ k ]  = silk_MLA(C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ]); /* Q(-rshifts) */
                    Atmp1 = silk_RSHIFT_ROUND(Af_QA[ k ], QA - 17);                                   /* Q17 */
                    tmp1 = silk_MLA(tmp1, x_ptr[ n - k - 1 ],            Atmp1);                      /* Q17 */
                    tmp2 = silk_MLA(tmp2, x_ptr[ subfr_length - n + k ], Atmp1);                      /* Q17 */
                }

                tmp1 = -tmp1;                /* Q17 */
                tmp2 = -tmp2;                /* Q17 */

                {
                    __m128i xmm_tmp1, xmm_tmp2;
                    __m128i xmm_x_ptr_n_k_x2x0, xmm_x_ptr_n_k_x3x1;
                    __m128i xmm_x_ptr_sub_x2x0, xmm_x_ptr_sub_x3x1;

                    xmm_tmp1 = _mm_set1_epi32(tmp1);
                    xmm_tmp2 = _mm_set1_epi32(tmp2);

                    for(k = 0; k <= n - 3; k += 4) {
                        xmm_x_ptr_n_k_x2x0 = OP_CVTEPI16_EPI32_M64(&x_ptr[ n - k - 3 ]);
                        xmm_x_ptr_sub_x2x0 = OP_CVTEPI16_EPI32_M64(&x_ptr[ subfr_length - n + k - 1 ]);

                        xmm_x_ptr_n_k_x2x0 = _mm_shuffle_epi32(xmm_x_ptr_n_k_x2x0, _MM_SHUFFLE(0, 1, 2, 3));

                        xmm_x_ptr_n_k_x2x0 = _mm_slli_epi32(xmm_x_ptr_n_k_x2x0, -rshifts - 1);
                        xmm_x_ptr_sub_x2x0 = _mm_slli_epi32(xmm_x_ptr_sub_x2x0, -rshifts - 1);

                        /* equal shift right 4 bytes, xmm_x_ptr_n_k_x3x1 = _mm_srli_si128(xmm_x_ptr_n_k_x2x0, 4)*/
                        xmm_x_ptr_n_k_x3x1 = _mm_shuffle_epi32(xmm_x_ptr_n_k_x2x0, _MM_SHUFFLE(0, 3, 2, 1));
                        xmm_x_ptr_sub_x3x1 = _mm_shuffle_epi32(xmm_x_ptr_sub_x2x0, _MM_SHUFFLE(0, 3, 2, 1));

                        xmm_x_ptr_n_k_x2x0 = _mm_mul_epi32(xmm_x_ptr_n_k_x2x0, xmm_tmp1);
                        xmm_x_ptr_n_k_x3x1 = _mm_mul_epi32(xmm_x_ptr_n_k_x3x1, xmm_tmp1);
                        xmm_x_ptr_sub_x2x0 = _mm_mul_epi32(xmm_x_ptr_sub_x2x0, xmm_tmp2);
                        xmm_x_ptr_sub_x3x1 = _mm_mul_epi32(xmm_x_ptr_sub_x3x1, xmm_tmp2);

                        xmm_x_ptr_n_k_x2x0 = _mm_srli_epi64(xmm_x_ptr_n_k_x2x0, 16);
                        xmm_x_ptr_n_k_x3x1 = _mm_slli_epi64(xmm_x_ptr_n_k_x3x1, 16);
                        xmm_x_ptr_sub_x2x0 = _mm_srli_epi64(xmm_x_ptr_sub_x2x0, 16);
                        xmm_x_ptr_sub_x3x1 = _mm_slli_epi64(xmm_x_ptr_sub_x3x1, 16);

                        xmm_x_ptr_n_k_x2x0 = _mm_blend_epi16(xmm_x_ptr_n_k_x2x0, xmm_x_ptr_n_k_x3x1, 0xCC);
                        xmm_x_ptr_sub_x2x0 = _mm_blend_epi16(xmm_x_ptr_sub_x2x0, xmm_x_ptr_sub_x3x1, 0xCC);

                        X1_3210  = _mm_loadu_si128((__m128i *)&CAf[ k ]);
                        PTR_3210 = _mm_loadu_si128((__m128i *)&CAb[ k ]);

                        X1_3210  = _mm_add_epi32(X1_3210, xmm_x_ptr_n_k_x2x0);
                        PTR_3210 = _mm_add_epi32(PTR_3210, xmm_x_ptr_sub_x2x0);

                        _mm_storeu_si128((__m128i *)&CAf[ k ], X1_3210);
                        _mm_storeu_si128((__m128i *)&CAb[ k ], PTR_3210);
                    }

                    for(; k <= n; k++) {
                        CAf[ k ] = silk_SMLAWW(CAf[ k ], tmp1,
                            silk_LSHIFT32((opus_int32)x_ptr[ n - k ], -rshifts - 1));                    /* Q(-rshift) */
                        CAb[ k ] = silk_SMLAWW(CAb[ k ], tmp2,
                            silk_LSHIFT32((opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1)); /* Q(-rshift) */
                    }
                }
            }
        }

        /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
        tmp1 = C_first_row[ n ];                                                                        /* Q(-rshifts) */
        tmp2 = C_last_row[ n ];                                                                         /* Q(-rshifts) */
        num  = 0;                                                                                       /* Q(-rshifts) */
        nrg  = silk_ADD32(CAb[ 0 ], CAf[ 0 ]);                                                        /* Q(1-rshifts) */
        for(k = 0; k < n; k++) {
            Atmp_QA = Af_QA[ k ];
            lz = silk_CLZ32(silk_abs(Atmp_QA)) - 1;
            lz = silk_min(32 - QA, lz);
            Atmp1 = silk_LSHIFT32(Atmp_QA, lz);                                                       /* Q(QA + lz) */

            tmp1 = silk_ADD_LSHIFT32(tmp1, silk_SMMUL(C_last_row[  n - k - 1 ], Atmp1), 32 - QA - lz);  /* Q(-rshifts) */
            tmp2 = silk_ADD_LSHIFT32(tmp2, silk_SMMUL(C_first_row[ n - k - 1 ], Atmp1), 32 - QA - lz);  /* Q(-rshifts) */
            num  = silk_ADD_LSHIFT32(num,  silk_SMMUL(CAb[ n - k ],             Atmp1), 32 - QA - lz);  /* Q(-rshifts) */
            nrg  = silk_ADD_LSHIFT32(nrg,  silk_SMMUL(silk_ADD32(CAb[ k + 1 ], CAf[ k + 1 ]),
                                                                                Atmp1), 32 - QA - lz);    /* Q(1-rshifts) */
        }
        CAf[ n + 1 ] = tmp1;                                                                            /* Q(-rshifts) */
        CAb[ n + 1 ] = tmp2;                                                                            /* Q(-rshifts) */
        num = silk_ADD32(num, tmp2);                                                                  /* Q(-rshifts) */
        num = silk_LSHIFT32(-num, 1);                                                                 /* Q(1-rshifts) */

        /* Calculate the next order reflection (parcor) coefficient */
        if(silk_abs(num) < nrg) {
            rc_Q31 = silk_DIV32_varQ(num, nrg, 31);
        } else {
            rc_Q31 = (num > 0) ? silk_int32_MAX : silk_int32_MIN;
        }

        /* Update inverse prediction gain */
        tmp1 = ((opus_int32)1 << 30) - silk_SMMUL(rc_Q31, rc_Q31);
        tmp1 = silk_LSHIFT(silk_SMMUL(invGain_Q30, tmp1), 2);
        if(tmp1 <= minInvGain_Q30) {
            /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
            tmp2 = ((opus_int32)1 << 30) - silk_DIV32_varQ(minInvGain_Q30, invGain_Q30, 30);            /* Q30 */
            rc_Q31 = silk_SQRT_APPROX(tmp2);                                                  /* Q15 */
            /* Newton-Raphson iteration */
            rc_Q31 = silk_RSHIFT32(rc_Q31 + silk_DIV32(tmp2, rc_Q31), 1);                   /* Q15 */
            rc_Q31 = silk_LSHIFT32(rc_Q31, 16);                                               /* Q31 */
            if(num < 0) {
                /* Ensure adjusted reflection coefficients has the original sign */
                rc_Q31 = -rc_Q31;
            }
            invGain_Q30 = minInvGain_Q30;
            reached_max_gain = 1;
        } else {
            invGain_Q30 = tmp1;
        }

        /* Update the AR coefficients */
        for(k = 0; k < (n + 1) >> 1; k++) {
            tmp1 = Af_QA[ k ];                                                                  /* QA */
            tmp2 = Af_QA[ n - k - 1 ];                                                          /* QA */
            Af_QA[ k ]         = silk_ADD_LSHIFT32(tmp1, silk_SMMUL(tmp2, rc_Q31), 1);      /* QA */
            Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32(tmp2, silk_SMMUL(tmp1, rc_Q31), 1);      /* QA */
        }
        Af_QA[ n ] = silk_RSHIFT32(rc_Q31, 31 - QA);                                          /* QA */

        if(reached_max_gain) {
            /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
            for(k = n + 1; k < D; k++) {
                Af_QA[ k ] = 0;
            }
            break;
        }

        /* Update C * Af and C * Ab */
        for(k = 0; k <= n + 1; k++) {
            tmp1 = CAf[ k ];                                                                    /* Q(-rshifts) */
            tmp2 = CAb[ n - k + 1 ];                                                            /* Q(-rshifts) */
            CAf[ k ]         = silk_ADD_LSHIFT32(tmp1, silk_SMMUL(tmp2, rc_Q31), 1);        /* Q(-rshifts) */
            CAb[ n - k + 1 ] = silk_ADD_LSHIFT32(tmp2, silk_SMMUL(tmp1, rc_Q31), 1);        /* Q(-rshifts) */
        }
    }

    if(reached_max_gain) {
        for(k = 0; k < D; k++) {
            /* Scale coefficients */
            A_Q16[ k ] = -silk_RSHIFT_ROUND(Af_QA[ k ], QA - 16);
        }
        /* Subtract energy of preceding samples from C0 */
        if(rshifts > 0) {
            for(s = 0; s < nb_subfr; s++) {
                x_ptr = x + s * subfr_length;
                C0 -= (opus_int32)silk_RSHIFT64(silk_inner_prod16_aligned_64(x_ptr, x_ptr, D, arch), rshifts);
            }
        } else {
            for(s = 0; s < nb_subfr; s++) {
                x_ptr = x + s * subfr_length;
                C0 -= silk_LSHIFT32(silk_inner_prod_aligned(x_ptr, x_ptr, D, arch), -rshifts);
            }
        }
        /* Approximate residual energy */
        *res_nrg = silk_LSHIFT(silk_SMMUL(invGain_Q30, C0), 2);
        *res_nrg_Q = -rshifts;
    } else {
        /* Return residual energy */
        nrg  = CAf[ 0 ];                                                                            /* Q(-rshifts) */
        tmp1 = (opus_int32)1 << 16;                                                                             /* Q16 */
        for(k = 0; k < D; k++) {
            Atmp1 = silk_RSHIFT_ROUND(Af_QA[ k ], QA - 16);                                       /* Q16 */
            nrg  = silk_SMLAWW(nrg, CAf[ k + 1 ], Atmp1);                                         /* Q(-rshifts) */
            tmp1 = silk_SMLAWW(tmp1, Atmp1, Atmp1);                                               /* Q16 */
            A_Q16[ k ] = -Atmp1;
        }
        *res_nrg = silk_SMLAWW(nrg, silk_SMMUL(SILK_FIX_CONST(FIND_LPC_COND_FAC, 32), C0), -tmp1);/* Q(-rshifts) */
        *res_nrg_Q = -rshifts;
    }
}
/* Compute reflection coefficients from input signal */
void silk_burg_modified(
    opus_int32                  *res_nrg,           /* O    Residual energy                                             */
    opus_int                    *res_nrg_Q,         /* O    Residual energy Q value                                     */
    opus_int32                  A_Q16[],            /* O    Prediction coefficients (length order)                      */
    const opus_int16            x[],                /* I    Input signal, length: nb_subfr * ( D + subfr_length )       */
    const opus_int32            minInvGain_Q30,     /* I    Inverse of max prediction gain                              */
    const opus_int              subfr_length,       /* I    Input signal subframe length (incl. D preceding samples)    */
    const opus_int              nb_subfr,           /* I    Number of subframes stacked in x                            */
    const opus_int              D                   /* I    Order                                                       */
)
{
    opus_int         k, n, s, lz, rshifts, rshifts_extra, reached_max_gain;
    opus_int32       C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
    const opus_int16 *x_ptr;
    opus_int32       C_first_row[ SILK_MAX_ORDER_LPC ];
    opus_int32       C_last_row[  SILK_MAX_ORDER_LPC ];
    opus_int32       Af_QA[       SILK_MAX_ORDER_LPC ];
    opus_int32       CAf[ SILK_MAX_ORDER_LPC + 1 ];
    opus_int32       CAb[ SILK_MAX_ORDER_LPC + 1 ];

    silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );

    /* Compute autocorrelations, added over subframes */
    silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length );
    if( rshifts > MAX_RSHIFTS ) {
        C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS );
        silk_assert( C0 > 0 );
        rshifts = MAX_RSHIFTS;
    } else {
        lz = silk_CLZ32( C0 ) - 1;
        rshifts_extra = N_BITS_HEAD_ROOM - lz;
        if( rshifts_extra > 0 ) {
            rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts );
            C0 = silk_RSHIFT32( C0, rshifts_extra );
        } else {
            rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts );
            C0 = silk_LSHIFT32( C0, -rshifts_extra );
        }
        rshifts += rshifts_extra;
    }
    CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1;                                /* Q(-rshifts) */
    silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
    if( rshifts > 0 ) {
        for( s = 0; s < nb_subfr; s++ ) {
            x_ptr = x + s * subfr_length;
            for( n = 1; n < D + 1; n++ ) {
                C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
                    silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n ), rshifts );
            }
        }
    } else {
        for( s = 0; s < nb_subfr; s++ ) {
            x_ptr = x + s * subfr_length;
            for( n = 1; n < D + 1; n++ ) {
                C_first_row[ n - 1 ] += silk_LSHIFT32(
                    silk_inner_prod_aligned( x_ptr, x_ptr + n, subfr_length - n ), -rshifts );
            }
        }
    }
    silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );

    /* Initialize */
    CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1;                                /* Q(-rshifts) */

    invGain_Q30 = (opus_int32)1 << 30;
    reached_max_gain = 0;
    for( n = 0; n < D; n++ ) {
        /* Update first row of correlation matrix (without first element) */
        /* Update last row of correlation matrix (without last element, stored in reversed order) */
        /* Update C * Af */
        /* Update C * flipud(Af) (stored in reversed order) */
        if( rshifts > -2 ) {
            for( s = 0; s < nb_subfr; s++ ) {
                x_ptr = x + s * subfr_length;
                x1  = -silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    16 - rshifts );        /* Q(16-rshifts) */
                x2  = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts );        /* Q(16-rshifts) */
                tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    QA - 16 );             /* Q(QA-16) */
                tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 );             /* Q(QA-16) */
                for( k = 0; k < n; k++ ) {
                    C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ]            ); /* Q( -rshifts ) */
                    C_last_row[ k ]  = silk_SMLAWB( C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
                    Atmp_QA = Af_QA[ k ];
                    tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ]            );                 /* Q(QA-16) */
                    tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] );                 /* Q(QA-16) */
                }
                tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts );                                       /* Q(16-rshifts) */
                tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts );                                       /* Q(16-rshifts) */
                for( k = 0; k <= n; k++ ) {
                    CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ]                    );        /* Q( -rshift ) */
                    CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] );        /* Q( -rshift ) */
                }
            }
        } else {
            for( s = 0; s < nb_subfr; s++ ) {
                x_ptr = x + s * subfr_length;
                x1  = -silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    -rshifts );            /* Q( -rshifts ) */
                x2  = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts );            /* Q( -rshifts ) */
                tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    17 );                  /* Q17 */
                tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 );                  /* Q17 */
                for( k = 0; k < n; k++ ) {
                    C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ]            ); /* Q( -rshifts ) */
                    C_last_row[ k ]  = silk_MLA( C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
                    Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 );                                   /* Q17 */
                    tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ],            Atmp1 );                      /* Q17 */
                    tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 );                      /* Q17 */
                }
                tmp1 = -tmp1;                                                                           /* Q17 */
                tmp2 = -tmp2;                                                                           /* Q17 */
                for( k = 0; k <= n; k++ ) {
                    CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
                        silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) );                    /* Q( -rshift ) */
                    CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
                        silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
                }
            }
        }

        /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
        tmp1 = C_first_row[ n ];                                                                        /* Q( -rshifts ) */
        tmp2 = C_last_row[ n ];                                                                         /* Q( -rshifts ) */
        num  = 0;                                                                                       /* Q( -rshifts ) */
        nrg  = silk_ADD32( CAb[ 0 ], CAf[ 0 ] );                                                        /* Q( 1-rshifts ) */
        for( k = 0; k < n; k++ ) {
            Atmp_QA = Af_QA[ k ];
            lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
            lz = silk_min( 32 - QA, lz );
            Atmp1 = silk_LSHIFT32( Atmp_QA, lz );                                                       /* Q( QA + lz ) */

            tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[  n - k - 1 ], Atmp1 ), 32 - QA - lz );  /* Q( -rshifts ) */
            tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz );  /* Q( -rshifts ) */
            num  = silk_ADD_LSHIFT32( num,  silk_SMMUL( CAb[ n - k ],             Atmp1 ), 32 - QA - lz );  /* Q( -rshifts ) */
            nrg  = silk_ADD_LSHIFT32( nrg,  silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
                                                                                Atmp1 ), 32 - QA - lz );    /* Q( 1-rshifts ) */
        }
        CAf[ n + 1 ] = tmp1;                                                                            /* Q( -rshifts ) */
        CAb[ n + 1 ] = tmp2;                                                                            /* Q( -rshifts ) */
        num = silk_ADD32( num, tmp2 );                                                                  /* Q( -rshifts ) */
        num = silk_LSHIFT32( -num, 1 );                                                                 /* Q( 1-rshifts ) */

        /* Calculate the next order reflection (parcor) coefficient */
        if( silk_abs( num ) < nrg ) {
            rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
        } else {
            rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
        }

        /* Update inverse prediction gain */
        tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
        tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
        if( tmp1 <= minInvGain_Q30 ) {
            /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
            tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 );            /* Q30 */
            rc_Q31 = silk_SQRT_APPROX( tmp2 );                                                  /* Q15 */
            /* Newton-Raphson iteration */
            rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 );                   /* Q15 */
            rc_Q31 = silk_LSHIFT32( rc_Q31, 16 );                                               /* Q31 */
            if( num < 0 ) {
                /* Ensure adjusted reflection coefficients has the original sign */
                rc_Q31 = -rc_Q31;
            }
            invGain_Q30 = minInvGain_Q30;
            reached_max_gain = 1;
        } else {
            invGain_Q30 = tmp1;
        }

        /* Update the AR coefficients */
        for( k = 0; k < (n + 1) >> 1; k++ ) {
            tmp1 = Af_QA[ k ];                                                                  /* QA */
            tmp2 = Af_QA[ n - k - 1 ];                                                          /* QA */
            Af_QA[ k ]         = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 );      /* QA */
            Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 );      /* QA */
        }
        Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA );                                          /* QA */

        if( reached_max_gain ) {
            /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
            for( k = n + 1; k < D; k++ ) {
                Af_QA[ k ] = 0;
            }
            break;
        }

        /* Update C * Af and C * Ab */
        for( k = 0; k <= n + 1; k++ ) {
            tmp1 = CAf[ k ];                                                                    /* Q( -rshifts ) */
            tmp2 = CAb[ n - k + 1 ];                                                            /* Q( -rshifts ) */
            CAf[ k ]         = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 );        /* Q( -rshifts ) */
            CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 );        /* Q( -rshifts ) */
        }
    }

    if( reached_max_gain ) {
        for( k = 0; k < D; k++ ) {
            /* Scale coefficients */
            A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
        }
        /* Subtract energy of preceding samples from C0 */
        if( rshifts > 0 ) {
            for( s = 0; s < nb_subfr; s++ ) {
                x_ptr = x + s * subfr_length;
                C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D ), rshifts );
            }
        } else {
            for( s = 0; s < nb_subfr; s++ ) {
                x_ptr = x + s * subfr_length;
                C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D ), -rshifts );
            }
        }
        /* Approximate residual energy */
        *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
        *res_nrg_Q = -rshifts;
    } else {
        /* Return residual energy */
        nrg  = CAf[ 0 ];                                                                            /* Q( -rshifts ) */
        tmp1 = (opus_int32)1 << 16;                                                                             /* Q16 */
        for( k = 0; k < D; k++ ) {
            Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );                                       /* Q16 */
            nrg  = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 );                                         /* Q( -rshifts ) */
            tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 );                                               /* Q16 */
            A_Q16[ k ] = -Atmp1;
        }
        *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( FIND_LPC_COND_FAC, C0 ), -tmp1 );                  /* Q( -rshifts ) */
        *res_nrg_Q = -rshifts;
    }   
}
Esempio n. 18
0
/* Set decoder sampling rate */
opus_int silk_decoder_set_fs(
    silk_decoder_state          *psDec,                         /* I/O  Decoder state pointer                       */
    opus_int                    fs_kHz,                         /* I    Sampling frequency (kHz)                    */
    opus_int                    fs_API_Hz                       /* I    API Sampling frequency (Hz)                 */
)
{
    opus_int frame_length, ret = 0;

    silk_assert( fs_kHz == 8 || fs_kHz == 12 || fs_kHz == 16 );
    silk_assert( psDec->nb_subfr == MAX_NB_SUBFR || psDec->nb_subfr == MAX_NB_SUBFR/2 );

    /* New (sub)frame length */
    psDec->subfr_length = silk_SMULBB( SUB_FRAME_LENGTH_MS, fs_kHz );
    frame_length = silk_SMULBB( psDec->nb_subfr, psDec->subfr_length );

    /* Initialize resampler when switching internal or external sampling frequency */
    if( psDec->fs_kHz != fs_kHz || psDec->fs_API_hz != fs_API_Hz ) {
        /* Initialize the resampler for dec_API.c preparing resampling from fs_kHz to API_fs_Hz */
        ret += silk_resampler_init( &psDec->resampler_state, silk_SMULBB( fs_kHz, 1000 ), fs_API_Hz, 0 );

        psDec->fs_API_hz = fs_API_Hz;
    }

    if( psDec->fs_kHz != fs_kHz || frame_length != psDec->frame_length ) {
        if( fs_kHz == 8 ) {
            if( psDec->nb_subfr == MAX_NB_SUBFR ) {
                psDec->pitch_contour_iCDF = silk_pitch_contour_NB_iCDF;
            } else {
                psDec->pitch_contour_iCDF = silk_pitch_contour_10_ms_NB_iCDF;
            }
        } else {
            if( psDec->nb_subfr == MAX_NB_SUBFR ) {
                psDec->pitch_contour_iCDF = silk_pitch_contour_iCDF;
            } else {
                psDec->pitch_contour_iCDF = silk_pitch_contour_10_ms_iCDF;
            }
        }
        if( psDec->fs_kHz != fs_kHz ) {
            psDec->ltp_mem_length = silk_SMULBB( LTP_MEM_LENGTH_MS, fs_kHz );
            if( fs_kHz == 8 || fs_kHz == 12 ) {
                psDec->LPC_order = MIN_LPC_ORDER;
                psDec->psNLSF_CB = &silk_NLSF_CB_NB_MB;
            } else {
                psDec->LPC_order = MAX_LPC_ORDER;
                psDec->psNLSF_CB = &silk_NLSF_CB_WB;
            }
            if( fs_kHz == 16 ) {
                psDec->pitch_lag_low_bits_iCDF = silk_uniform8_iCDF;
            } else if( fs_kHz == 12 ) {
                psDec->pitch_lag_low_bits_iCDF = silk_uniform6_iCDF;
            } else if( fs_kHz == 8 ) {
                psDec->pitch_lag_low_bits_iCDF = silk_uniform4_iCDF;
            } else {
                /* unsupported sampling rate */
                silk_assert( 0 );
            }
            psDec->first_frame_after_reset = 1;
            psDec->lagPrev                 = 100;
            psDec->LastGainIndex           = 10;
            psDec->prevSignalType          = TYPE_NO_VOICE_ACTIVITY;
            silk_memset( psDec->outBuf, 0, sizeof(psDec->outBuf));
            silk_memset( psDec->sLPC_Q14_buf, 0, sizeof(psDec->sLPC_Q14_buf) );
        }

        psDec->fs_kHz       = fs_kHz;
        psDec->frame_length = frame_length;
    }

    /* Check that settings are valid */
    silk_assert( psDec->frame_length > 0 && psDec->frame_length <= MAX_FRAME_LENGTH );

    return ret;
}
Esempio n. 19
0
/* Initialize/reset the resampler state for a given pair of input/output sampling rates */
opus_int silk_resampler_init(
    silk_resampler_state_struct *S,                 /* I/O   Resampler state                                            */
    opus_int32                  Fs_Hz_in,           /* I     Input sampling rate (Hz)                                   */
    opus_int32                  Fs_Hz_out           /* I     Output sampling rate (Hz)                                  */
)
{
    opus_int32 up2 = 0, down2 = 0;

    /* Clear state */
    silk_memset( S, 0, sizeof( silk_resampler_state_struct ) );

    /* Input checking */
    if( ( Fs_Hz_in  != 8000 && Fs_Hz_in  != 12000 && Fs_Hz_in  != 16000 && Fs_Hz_in  != 24000 && Fs_Hz_in  != 48000 ) ||
            ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 && Fs_Hz_out != 24000 && Fs_Hz_out != 48000 ) ) {
        silk_assert( 0 );
        return -1;
    }

    /* Number of samples processed per batch */
    S->batchSize = silk_DIV32_16( Fs_Hz_in, 100 );

    /* Find resampler with the right sampling ratio */
    if( Fs_Hz_out > Fs_Hz_in ) {
        /* Upsample */
        if( Fs_Hz_out == silk_MUL( Fs_Hz_in, 2 ) ) {                            /* Fs_out : Fs_in = 2 : 1 */
            /* Special case: directly use 2x upsampler */
            S->resampler_function = USE_silk_resampler_private_up2_HQ_wrapper;
        } else {
            /* Default resampler */
            S->resampler_function = USE_silk_resampler_private_IIR_FIR;
            up2 = 1;
        }
    } else if ( Fs_Hz_out < Fs_Hz_in ) {
        /* Downsample */
        if( silk_MUL( Fs_Hz_out, 4 ) == silk_MUL( Fs_Hz_in, 3 ) ) {             /* Fs_out : Fs_in = 3 : 4 */
            S->FIR_Fracs = 3;
            S->Coefs = silk_Resampler_3_4_COEFS;
            S->resampler_function = USE_silk_resampler_private_down_FIR;
        } else if( silk_MUL( Fs_Hz_out, 3 ) == silk_MUL( Fs_Hz_in, 2 ) ) {      /* Fs_out : Fs_in = 2 : 3 */
            S->FIR_Fracs = 2;
            S->Coefs = silk_Resampler_2_3_COEFS;
            S->resampler_function = USE_silk_resampler_private_down_FIR;
        } else if( silk_MUL( Fs_Hz_out, 2 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 2 */
            S->FIR_Fracs = 1;
            S->Coefs = silk_Resampler_1_2_COEFS;
            S->resampler_function = USE_silk_resampler_private_down_FIR;
        } else if( silk_MUL( Fs_Hz_out, 3 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 3 */
            S->FIR_Fracs = 1;
            S->Coefs = silk_Resampler_1_3_COEFS;
            S->resampler_function = USE_silk_resampler_private_down_FIR;
        } else if( silk_MUL( Fs_Hz_out, 4 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 4 */
            S->FIR_Fracs = 1;
            down2 = 1;
            S->Coefs = silk_Resampler_1_2_COEFS;
            S->resampler_function = USE_silk_resampler_private_down_FIR;
        } else if( silk_MUL( Fs_Hz_out, 6 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 6 */
            S->FIR_Fracs = 1;
            down2 = 1;
            S->Coefs = silk_Resampler_1_3_COEFS;
            S->resampler_function = USE_silk_resampler_private_down_FIR;
        } else {
            /* None available */
            silk_assert( 0 );
            return -1;
        }
    } else {
        /* Input and output sampling rates are equal: copy */
        S->resampler_function = USE_silk_resampler_copy;
    }

    S->input2x = up2 | down2;

    /* Ratio of input/output samples */
    S->invRatio_Q16 = silk_LSHIFT32( silk_DIV32( silk_LSHIFT32( Fs_Hz_in, 14 + up2 - down2 ), Fs_Hz_out ), 2 );
    /* Make sure the ratio is rounded up */
    while( silk_SMULWW( S->invRatio_Q16, silk_LSHIFT32( Fs_Hz_out, down2 ) ) < silk_LSHIFT32( Fs_Hz_in, up2 ) ) {
        S->invRatio_Q16++;
    }

    return 0;
}
Esempio n. 20
0
static OPUS_INLINE void silk_PLC_conceal(
    silk_decoder_state                  *psDec,             /* I/O Decoder state        */
    silk_decoder_control                *psDecCtrl,         /* I/O Decoder control      */
    opus_int16                          frame[],            /* O LPC residual signal    */
    int                                 arch                /* I Run-time architecture  */
)
{
    opus_int   i, j, k;
    opus_int   lag, idx, sLTP_buf_idx, shift1, shift2;
    opus_int32 rand_seed, harm_Gain_Q15, rand_Gain_Q15, inv_gain_Q30;
    opus_int32 energy1, energy2, *rand_ptr, *pred_lag_ptr;
    opus_int32 LPC_pred_Q10, LTP_pred_Q12;
    opus_int16 rand_scale_Q14;
    opus_int16 *B_Q14;
    opus_int32 *sLPC_Q14_ptr;
    opus_int16 A_Q12[ MAX_LPC_ORDER ];
#ifdef SMALL_FOOTPRINT
    opus_int16 *sLTP;
#else
    VARDECL( opus_int16, sLTP );
#endif
    VARDECL( opus_int32, sLTP_Q14 );
    silk_PLC_struct *psPLC = &psDec->sPLC;
    opus_int32 prevGain_Q10[2];
    SAVE_STACK;

    ALLOC( sLTP_Q14, psDec->ltp_mem_length + psDec->frame_length, opus_int32 );
#ifdef SMALL_FOOTPRINT
    /* Ugly hack that breaks aliasing rules to save stack: put sLTP at the very end of sLTP_Q14. */
    sLTP = ((opus_int16*)&sLTP_Q14[psDec->ltp_mem_length + psDec->frame_length])-psDec->ltp_mem_length;
#else
    ALLOC( sLTP, psDec->ltp_mem_length, opus_int16 );
#endif

    prevGain_Q10[0] = silk_RSHIFT( psPLC->prevGain_Q16[ 0 ], 6);
    prevGain_Q10[1] = silk_RSHIFT( psPLC->prevGain_Q16[ 1 ], 6);

    if( psDec->first_frame_after_reset ) {
       silk_memset( psPLC->prevLPC_Q12, 0, sizeof( psPLC->prevLPC_Q12 ) );
    }

    silk_PLC_energy(&energy1, &shift1, &energy2, &shift2, psDec->exc_Q14, prevGain_Q10, psDec->subfr_length, psDec->nb_subfr);

    if( silk_RSHIFT( energy1, shift2 ) < silk_RSHIFT( energy2, shift1 ) ) {
        /* First sub-frame has lowest energy */
        rand_ptr = &psDec->exc_Q14[ silk_max_int( 0, ( psPLC->nb_subfr - 1 ) * psPLC->subfr_length - RAND_BUF_SIZE ) ];
    } else {
        /* Second sub-frame has lowest energy */
        rand_ptr = &psDec->exc_Q14[ silk_max_int( 0, psPLC->nb_subfr * psPLC->subfr_length - RAND_BUF_SIZE ) ];
    }

    /* Set up Gain to random noise component */
    B_Q14          = psPLC->LTPCoef_Q14;
    rand_scale_Q14 = psPLC->randScale_Q14;

    /* Set up attenuation gains */
    harm_Gain_Q15 = HARM_ATT_Q15[ silk_min_int( NB_ATT - 1, psDec->lossCnt ) ];
    if( psDec->prevSignalType == TYPE_VOICED ) {
        rand_Gain_Q15 = PLC_RAND_ATTENUATE_V_Q15[  silk_min_int( NB_ATT - 1, psDec->lossCnt ) ];
    } else {
        rand_Gain_Q15 = PLC_RAND_ATTENUATE_UV_Q15[ silk_min_int( NB_ATT - 1, psDec->lossCnt ) ];
    }

    /* LPC concealment. Apply BWE to previous LPC */
    silk_bwexpander( psPLC->prevLPC_Q12, psDec->LPC_order, SILK_FIX_CONST( BWE_COEF, 16 ) );

    /* Preload LPC coeficients to array on stack. Gives small performance gain */
    silk_memcpy( A_Q12, psPLC->prevLPC_Q12, psDec->LPC_order * sizeof( opus_int16 ) );

    /* First Lost frame */
    if( psDec->lossCnt == 0 ) {
        rand_scale_Q14 = 1 << 14;

        /* Reduce random noise Gain for voiced frames */
        if( psDec->prevSignalType == TYPE_VOICED ) {
            for( i = 0; i < LTP_ORDER; i++ ) {
                rand_scale_Q14 -= B_Q14[ i ];
            }
            rand_scale_Q14 = silk_max_16( 3277, rand_scale_Q14 ); /* 0.2 */
            rand_scale_Q14 = (opus_int16)silk_RSHIFT( silk_SMULBB( rand_scale_Q14, psPLC->prevLTP_scale_Q14 ), 14 );
        } else {
            /* Reduce random noise for unvoiced frames with high LPC gain */
            opus_int32 invGain_Q30, down_scale_Q30;

            invGain_Q30 = silk_LPC_inverse_pred_gain( psPLC->prevLPC_Q12, psDec->LPC_order, arch );

            down_scale_Q30 = silk_min_32( silk_RSHIFT( (opus_int32)1 << 30, LOG2_INV_LPC_GAIN_HIGH_THRES ), invGain_Q30 );
            down_scale_Q30 = silk_max_32( silk_RSHIFT( (opus_int32)1 << 30, LOG2_INV_LPC_GAIN_LOW_THRES ), down_scale_Q30 );
            down_scale_Q30 = silk_LSHIFT( down_scale_Q30, LOG2_INV_LPC_GAIN_HIGH_THRES );

            rand_Gain_Q15 = silk_RSHIFT( silk_SMULWB( down_scale_Q30, rand_Gain_Q15 ), 14 );
        }
    }

    rand_seed    = psPLC->rand_seed;
    lag          = silk_RSHIFT_ROUND( psPLC->pitchL_Q8, 8 );
    sLTP_buf_idx = psDec->ltp_mem_length;

    /* Rewhiten LTP state */
    idx = psDec->ltp_mem_length - lag - psDec->LPC_order - LTP_ORDER / 2;
    silk_assert( idx > 0 );
    silk_LPC_analysis_filter( &sLTP[ idx ], &psDec->outBuf[ idx ], A_Q12, psDec->ltp_mem_length - idx, psDec->LPC_order, arch );
    /* Scale LTP state */
    inv_gain_Q30 = silk_INVERSE32_varQ( psPLC->prevGain_Q16[ 1 ], 46 );
    inv_gain_Q30 = silk_min( inv_gain_Q30, silk_int32_MAX >> 1 );
    for( i = idx + psDec->LPC_order; i < psDec->ltp_mem_length; i++ ) {
        sLTP_Q14[ i ] = silk_SMULWB( inv_gain_Q30, sLTP[ i ] );
    }

    /***************************/
    /* LTP synthesis filtering */
    /***************************/
    for( k = 0; k < psDec->nb_subfr; k++ ) {
        /* Set up pointer */
        pred_lag_ptr = &sLTP_Q14[ sLTP_buf_idx - lag + LTP_ORDER / 2 ];
        for( i = 0; i < psDec->subfr_length; i++ ) {
            /* Unrolled loop */
            /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
            LTP_pred_Q12 = 2;
            LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[  0 ], B_Q14[ 0 ] );
            LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[ -1 ], B_Q14[ 1 ] );
            LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[ -2 ], B_Q14[ 2 ] );
            LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[ -3 ], B_Q14[ 3 ] );
            LTP_pred_Q12 = silk_SMLAWB( LTP_pred_Q12, pred_lag_ptr[ -4 ], B_Q14[ 4 ] );
            pred_lag_ptr++;

            /* Generate LPC excitation */
            rand_seed = silk_RAND( rand_seed );
            idx = silk_RSHIFT( rand_seed, 25 ) & RAND_BUF_MASK;
            sLTP_Q14[ sLTP_buf_idx ] = silk_LSHIFT32( silk_SMLAWB( LTP_pred_Q12, rand_ptr[ idx ], rand_scale_Q14 ), 2 );
            sLTP_buf_idx++;
        }

        /* Gradually reduce LTP gain */
        for( j = 0; j < LTP_ORDER; j++ ) {
            B_Q14[ j ] = silk_RSHIFT( silk_SMULBB( harm_Gain_Q15, B_Q14[ j ] ), 15 );
        }
        if ( psDec->indices.signalType != TYPE_NO_VOICE_ACTIVITY ) {
            /* Gradually reduce excitation gain */
            rand_scale_Q14 = silk_RSHIFT( silk_SMULBB( rand_scale_Q14, rand_Gain_Q15 ), 15 );
        }

        /* Slowly increase pitch lag */
        psPLC->pitchL_Q8 = silk_SMLAWB( psPLC->pitchL_Q8, psPLC->pitchL_Q8, PITCH_DRIFT_FAC_Q16 );
        psPLC->pitchL_Q8 = silk_min_32( psPLC->pitchL_Q8, silk_LSHIFT( silk_SMULBB( MAX_PITCH_LAG_MS, psDec->fs_kHz ), 8 ) );
        lag = silk_RSHIFT_ROUND( psPLC->pitchL_Q8, 8 );
    }

    /***************************/
    /* LPC synthesis filtering */
    /***************************/
    sLPC_Q14_ptr = &sLTP_Q14[ psDec->ltp_mem_length - MAX_LPC_ORDER ];

    /* Copy LPC state */
    silk_memcpy( sLPC_Q14_ptr, psDec->sLPC_Q14_buf, MAX_LPC_ORDER * sizeof( opus_int32 ) );

    silk_assert( psDec->LPC_order >= 10 ); /* check that unrolling works */
    for( i = 0; i < psDec->frame_length; i++ ) {
        /* partly unrolled */
        /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
        LPC_pred_Q10 = silk_RSHIFT( psDec->LPC_order, 1 );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  1 ], A_Q12[ 0 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  2 ], A_Q12[ 1 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  3 ], A_Q12[ 2 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  4 ], A_Q12[ 3 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  5 ], A_Q12[ 4 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  6 ], A_Q12[ 5 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  7 ], A_Q12[ 6 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  8 ], A_Q12[ 7 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i -  9 ], A_Q12[ 8 ] );
        LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - 10 ], A_Q12[ 9 ] );
        for( j = 10; j < psDec->LPC_order; j++ ) {
            LPC_pred_Q10 = silk_SMLAWB( LPC_pred_Q10, sLPC_Q14_ptr[ MAX_LPC_ORDER + i - j - 1 ], A_Q12[ j ] );
        }

        /* Add prediction to LPC excitation */
        sLPC_Q14_ptr[ MAX_LPC_ORDER + i ] = silk_ADD_SAT32( sLPC_Q14_ptr[ MAX_LPC_ORDER + i ],
                                            silk_LSHIFT_SAT32( LPC_pred_Q10, 4 ));

        /* Scale with Gain */
        frame[ i ] = (opus_int16)silk_SAT16( silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( sLPC_Q14_ptr[ MAX_LPC_ORDER + i ], prevGain_Q10[ 1 ] ), 8 ) ) );
    }

    /* Save LPC state */
    silk_memcpy( psDec->sLPC_Q14_buf, &sLPC_Q14_ptr[ psDec->frame_length ], MAX_LPC_ORDER * sizeof( opus_int32 ) );

    /**************************************/
    /* Update states                      */
    /**************************************/
    psPLC->rand_seed     = rand_seed;
    psPLC->randScale_Q14 = rand_scale_Q14;
    for( i = 0; i < MAX_NB_SUBFR; i++ ) {
        psDecCtrl->pitchL[ i ] = lag;
    }
    RESTORE_STACK;
}
/* Find LPC and LTP coefficients */
void silk_find_pred_coefs_FLP(
    silk_encoder_state_FLP          *psEnc,                             /* I/O  Encoder state FLP                           */
    silk_encoder_control_FLP        *psEncCtrl,                         /* I/O  Encoder control FLP                         */
    const silk_float                res_pitch[],                        /* I    Residual from pitch analysis                */
    const silk_float                x[],                                /* I    Speech signal                               */
    opus_int                        condCoding                          /* I    The type of conditional coding to use       */
)
{
    opus_int         i;
    silk_float       WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ];
    silk_float       invGains[ MAX_NB_SUBFR ], Wght[ MAX_NB_SUBFR ];
    opus_int16       NLSF_Q15[ MAX_LPC_ORDER ];
    const silk_float *x_ptr;
    silk_float       *x_pre_ptr, LPC_in_pre[ MAX_NB_SUBFR * MAX_LPC_ORDER + MAX_FRAME_LENGTH ];
    silk_float       minInvGain;

    /* Weighting for weighted least squares */
    for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
        silk_assert( psEncCtrl->Gains[ i ] > 0.0f );
        invGains[ i ] = 1.0f / psEncCtrl->Gains[ i ];
        Wght[ i ]     = invGains[ i ] * invGains[ i ];
    }

    if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
        /**********/
        /* VOICED */
        /**********/
        silk_assert( psEnc->sCmn.ltp_mem_length - psEnc->sCmn.predictLPCOrder >= psEncCtrl->pitchL[ 0 ] + LTP_ORDER / 2 );

        /* LTP analysis */
        silk_find_LTP_FLP( psEncCtrl->LTPCoef, WLTP, &psEncCtrl->LTPredCodGain, res_pitch,
            psEncCtrl->pitchL, Wght, psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.ltp_mem_length );

        /* Quantize LTP gain parameters */
        silk_quant_LTP_gains_FLP( psEncCtrl->LTPCoef, psEnc->sCmn.indices.LTPIndex, &psEnc->sCmn.indices.PERIndex,
            WLTP, psEnc->sCmn.mu_LTP_Q9, psEnc->sCmn.LTPQuantLowComplexity, psEnc->sCmn.nb_subfr );

        /* Control LTP scaling */
        silk_LTP_scale_ctrl_FLP( psEnc, psEncCtrl, condCoding );

        /* Create LTP residual */
        silk_LTP_analysis_filter_FLP( LPC_in_pre, x - psEnc->sCmn.predictLPCOrder, psEncCtrl->LTPCoef,
            psEncCtrl->pitchL, invGains, psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.predictLPCOrder );
    } else {
        /************/
        /* UNVOICED */
        /************/
        /* Create signal with prepended subframes, scaled by inverse gains */
        x_ptr     = x - psEnc->sCmn.predictLPCOrder;
        x_pre_ptr = LPC_in_pre;
        for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
            silk_scale_copy_vector_FLP( x_pre_ptr, x_ptr, invGains[ i ],
                psEnc->sCmn.subfr_length + psEnc->sCmn.predictLPCOrder );
            x_pre_ptr += psEnc->sCmn.subfr_length + psEnc->sCmn.predictLPCOrder;
            x_ptr     += psEnc->sCmn.subfr_length;
        }
        silk_memset( psEncCtrl->LTPCoef, 0, psEnc->sCmn.nb_subfr * LTP_ORDER * sizeof( silk_float ) );
        psEncCtrl->LTPredCodGain = 0.0f;
    }

    /* Limit on total predictive coding gain */
    if( psEnc->sCmn.first_frame_after_reset ) {
        minInvGain = 1.0f / MAX_PREDICTION_POWER_GAIN_AFTER_RESET;
    } else {        
        minInvGain = (silk_float)pow( 2, psEncCtrl->LTPredCodGain / 3 ) /  MAX_PREDICTION_POWER_GAIN;
        minInvGain /= 0.25f + 0.75f * psEncCtrl->coding_quality;
    }

    /* LPC_in_pre contains the LTP-filtered input for voiced, and the unfiltered input for unvoiced */
    silk_find_LPC_FLP( &psEnc->sCmn, NLSF_Q15, LPC_in_pre, minInvGain );

    /* Quantize LSFs */
    silk_process_NLSFs_FLP( &psEnc->sCmn, psEncCtrl->PredCoef, NLSF_Q15, psEnc->sCmn.prev_NLSFq_Q15 );

    /* Calculate residual energy using quantized LPC coefficients */
    silk_residual_energy_FLP( psEncCtrl->ResNrg, LPC_in_pre, psEncCtrl->PredCoef, psEncCtrl->Gains,
        psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.predictLPCOrder );

    /* Copy to prediction struct for use in next frame for interpolation */
    silk_memcpy( psEnc->sCmn.prev_NLSFq_Q15, NLSF_Q15, sizeof( psEnc->sCmn.prev_NLSFq_Q15 ) );
}
Esempio n. 22
0
void silk_find_pred_coefs_FIX(
    silk_encoder_state_FIX          *psEnc,                                 /* I/O  encoder state                                                               */
    silk_encoder_control_FIX        *psEncCtrl,                             /* I/O  encoder control                                                             */
    const opus_int16                res_pitch[],                            /* I    Residual from pitch analysis                                                */
    const opus_int16                x[],                                    /* I    Speech signal                                                               */
    opus_int                        condCoding                              /* I    The type of conditional coding to use                                       */
)
{
    opus_int         i;
    opus_int32       WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ];
    opus_int32       invGains_Q16[ MAX_NB_SUBFR ], local_gains[ MAX_NB_SUBFR ], Wght_Q15[ MAX_NB_SUBFR ];
    opus_int16       NLSF_Q15[ MAX_LPC_ORDER ];
    const opus_int16 *x_ptr;
    opus_int16       *x_pre_ptr, LPC_in_pre[ MAX_NB_SUBFR * MAX_LPC_ORDER + MAX_FRAME_LENGTH ];
    opus_int32       tmp, min_gain_Q16;
    opus_int         LTP_corrs_rshift[ MAX_NB_SUBFR ];

    /* weighting for weighted least squares */
    min_gain_Q16 = silk_int32_MAX >> 6;
    for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
        min_gain_Q16 = silk_min( min_gain_Q16, psEncCtrl->Gains_Q16[ i ] );
    }
    for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
        /* Divide to Q16 */
        silk_assert( psEncCtrl->Gains_Q16[ i ] > 0 );
        /* Invert and normalize gains, and ensure that maximum invGains_Q16 is within range of a 16 bit int */
        invGains_Q16[ i ] = silk_DIV32_varQ( min_gain_Q16, psEncCtrl->Gains_Q16[ i ], 16 - 2 );

        /* Ensure Wght_Q15 a minimum value 1 */
        invGains_Q16[ i ] = silk_max( invGains_Q16[ i ], 363 );

        /* Square the inverted gains */
        silk_assert( invGains_Q16[ i ] == silk_SAT16( invGains_Q16[ i ] ) );
        tmp = silk_SMULWB( invGains_Q16[ i ], invGains_Q16[ i ] );
        Wght_Q15[ i ] = silk_RSHIFT( tmp, 1 );

        /* Invert the inverted and normalized gains */
        local_gains[ i ] = silk_DIV32( ( 1 << 16 ), invGains_Q16[ i ] );
    }

    if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
        /**********/
        /* VOICED */
        /**********/
        silk_assert( psEnc->sCmn.ltp_mem_length - psEnc->sCmn.predictLPCOrder >= psEncCtrl->pitchL[ 0 ] + LTP_ORDER / 2 );

        /* LTP analysis */
        silk_find_LTP_FIX( psEncCtrl->LTPCoef_Q14, WLTP, &psEncCtrl->LTPredCodGain_Q7,
            res_pitch, psEncCtrl->pitchL, Wght_Q15, psEnc->sCmn.subfr_length,
            psEnc->sCmn.nb_subfr, psEnc->sCmn.ltp_mem_length, LTP_corrs_rshift );

        /* Quantize LTP gain parameters */
        silk_quant_LTP_gains( psEncCtrl->LTPCoef_Q14, psEnc->sCmn.indices.LTPIndex, &psEnc->sCmn.indices.PERIndex,
            WLTP, psEnc->sCmn.mu_LTP_Q9, psEnc->sCmn.LTPQuantLowComplexity, psEnc->sCmn.nb_subfr);

        /* Control LTP scaling */
        silk_LTP_scale_ctrl_FIX( psEnc, psEncCtrl, condCoding );

        /* Create LTP residual */
        silk_LTP_analysis_filter_FIX( LPC_in_pre, x - psEnc->sCmn.predictLPCOrder, psEncCtrl->LTPCoef_Q14,
            psEncCtrl->pitchL, invGains_Q16, psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.predictLPCOrder );

    } else {
        /************/
        /* UNVOICED */
        /************/
        /* Create signal with prepended subframes, scaled by inverse gains */
        x_ptr     = x - psEnc->sCmn.predictLPCOrder;
        x_pre_ptr = LPC_in_pre;
        for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
            silk_scale_copy_vector16( x_pre_ptr, x_ptr, invGains_Q16[ i ],
                psEnc->sCmn.subfr_length + psEnc->sCmn.predictLPCOrder );
            x_pre_ptr += psEnc->sCmn.subfr_length + psEnc->sCmn.predictLPCOrder;
            x_ptr     += psEnc->sCmn.subfr_length;
        }

        silk_memset( psEncCtrl->LTPCoef_Q14, 0, psEnc->sCmn.nb_subfr * LTP_ORDER * sizeof( opus_int16 ) );
        psEncCtrl->LTPredCodGain_Q7 = 0;
    }

    /* LPC_in_pre contains the LTP-filtered input for voiced, and the unfiltered input for unvoiced */
    silk_find_LPC_FIX( NLSF_Q15, &psEnc->sCmn.indices.NLSFInterpCoef_Q2, psEnc->sCmn.prev_NLSFq_Q15,
        psEnc->sCmn.useInterpolatedNLSFs, psEnc->sCmn.first_frame_after_reset, psEnc->sCmn.predictLPCOrder,
        LPC_in_pre, psEnc->sCmn.subfr_length + psEnc->sCmn.predictLPCOrder, psEnc->sCmn.nb_subfr );

    /* Quantize LSFs */
    silk_process_NLSFs( &psEnc->sCmn, psEncCtrl->PredCoef_Q12, NLSF_Q15, psEnc->sCmn.prev_NLSFq_Q15 );

    /* Calculate residual energy using quantized LPC coefficients */
    silk_residual_energy_FIX( psEncCtrl->ResNrg, psEncCtrl->ResNrgQ, LPC_in_pre, psEncCtrl->PredCoef_Q12, local_gains,
        psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr, psEnc->sCmn.predictLPCOrder );

    /* Copy to prediction struct for use in next frame for interpolation */
    silk_memcpy( psEnc->sCmn.prev_NLSFq_Q15, NLSF_Q15, sizeof( psEnc->sCmn.prev_NLSFq_Q15 ) );
}
/* Control internal sampling rate */
opus_int silk_control_audio_bandwidth(
    silk_encoder_state          *psEncC,                        /* I/O  Pointer to Silk encoder state               */
    silk_EncControlStruct       *encControl                     /* I    Control structure                           */
)
{
    opus_int   fs_kHz;
    opus_int32 fs_Hz;

    fs_kHz = psEncC->fs_kHz;
    fs_Hz = silk_SMULBB( fs_kHz, 1000 );
    if( fs_Hz == 0 ) {
        /* Encoder has just been initialized */
        fs_Hz  = silk_min( psEncC->desiredInternal_fs_Hz, psEncC->API_fs_Hz );
        fs_kHz = silk_DIV32_16( fs_Hz, 1000 );
    } else if( fs_Hz > psEncC->API_fs_Hz || fs_Hz > psEncC->maxInternal_fs_Hz || fs_Hz < psEncC->minInternal_fs_Hz ) {
        /* Make sure internal rate is not higher than external rate or maximum allowed, or lower than minimum allowed */
        fs_Hz  = psEncC->API_fs_Hz;
        fs_Hz  = silk_min( fs_Hz, psEncC->maxInternal_fs_Hz );
        fs_Hz  = silk_max( fs_Hz, psEncC->minInternal_fs_Hz );
        fs_kHz = silk_DIV32_16( fs_Hz, 1000 );
    } else {
        /* State machine for the internal sampling rate switching */
        if( psEncC->sLP.transition_frame_no >= TRANSITION_FRAMES ) {
            /* Stop transition phase */
            psEncC->sLP.mode = 0;
        }
        if( psEncC->allow_bandwidth_switch || encControl->opusCanSwitch ) {
            /* Check if we should switch down */
            if( silk_SMULBB( psEncC->fs_kHz, 1000 ) > psEncC->desiredInternal_fs_Hz )
            {
                /* Switch down */
                if( psEncC->sLP.mode == 0 ) {
                    /* New transition */
                    psEncC->sLP.transition_frame_no = TRANSITION_FRAMES;

                    /* Reset transition filter state */
                    silk_memset( psEncC->sLP.In_LP_State, 0, sizeof( psEncC->sLP.In_LP_State ) );
                }
                if( encControl->opusCanSwitch ) {
                    /* Stop transition phase */
                    psEncC->sLP.mode = 0;

                    /* Switch to a lower sample frequency */
                    fs_kHz = psEncC->fs_kHz == 16 ? 12 : 8;
                } else {
                   if( psEncC->sLP.transition_frame_no <= 0 ) {
                       encControl->switchReady = 1;
                   } else {
                       /* Direction: down (at double speed) */
                       psEncC->sLP.mode = -2;
                   }
                }
            }
            else
            /* Check if we should switch up */
            if( silk_SMULBB( psEncC->fs_kHz, 1000 ) < psEncC->desiredInternal_fs_Hz )
            {
                /* Switch up */
                if( encControl->opusCanSwitch ) {
                    /* Switch to a higher sample frequency */
                    fs_kHz = psEncC->fs_kHz == 8 ? 12 : 16;

                    /* New transition */
                    psEncC->sLP.transition_frame_no = 0;

                    /* Reset transition filter state */
                    silk_memset( psEncC->sLP.In_LP_State, 0, sizeof( psEncC->sLP.In_LP_State ) );

                    /* Direction: up */
                    psEncC->sLP.mode = 1;
                } else {
                   if( psEncC->sLP.mode == 0 ) {
                       encControl->switchReady = 1;
                   } else {
                       /* Direction: up */
                       psEncC->sLP.mode = 1;
                   }
                }
            }
        }
    }

    return fs_kHz;
}
Esempio n. 24
0
void silk_decode_pulses(
    ec_dec                      *psRangeDec,                    /* I/O  Compressor data structure                   */
    opus_int                    pulses[],                       /* O    Excitation signal                           */
    const opus_int              signalType,                     /* I    Sigtype                                     */
    const opus_int              quantOffsetType,                /* I    quantOffsetType                             */
    const opus_int              frame_length                    /* I    Frame length                                */
)
{
    opus_int   i, j, k, iter, abs_q, nLS, RateLevelIndex;
    opus_int   sum_pulses[ MAX_NB_SHELL_BLOCKS ], nLshifts[ MAX_NB_SHELL_BLOCKS ];
    opus_int   *pulses_ptr;
    const opus_uint8 *cdf_ptr;

    /*********************/
    /* Decode rate level */
    /*********************/
    RateLevelIndex = ec_dec_icdf( psRangeDec, silk_rate_levels_iCDF[ signalType >> 1 ], 8 );

    /* Calculate number of shell blocks */
    silk_assert( 1 << LOG2_SHELL_CODEC_FRAME_LENGTH == SHELL_CODEC_FRAME_LENGTH );
    iter = silk_RSHIFT( frame_length, LOG2_SHELL_CODEC_FRAME_LENGTH );
    if( iter * SHELL_CODEC_FRAME_LENGTH < frame_length ) {
        silk_assert( frame_length == 12 * 10 ); /* Make sure only happens for 10 ms @ 12 kHz */
        iter++;
    }

    /***************************************************/
    /* Sum-Weighted-Pulses Decoding                    */
    /***************************************************/
    cdf_ptr = silk_pulses_per_block_iCDF[ RateLevelIndex ];
    for( i = 0; i < iter; i++ ) {
        nLshifts[ i ] = 0;
        sum_pulses[ i ] = ec_dec_icdf( psRangeDec, cdf_ptr, 8 );

        /* LSB indication */
        while( sum_pulses[ i ] == MAX_PULSES + 1 ) {
            nLshifts[ i ]++;
            /* When we've already got 10 LSBs, we shift the table to not allow (MAX_PULSES + 1) */
            sum_pulses[ i ] = ec_dec_icdf( psRangeDec,
                    silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1] + ( nLshifts[ i ] == 10 ), 8 );
        }
    }

    /***************************************************/
    /* Shell decoding                                  */
    /***************************************************/
    for( i = 0; i < iter; i++ ) {
        if( sum_pulses[ i ] > 0 ) {
            silk_shell_decoder( &pulses[ silk_SMULBB( i, SHELL_CODEC_FRAME_LENGTH ) ], psRangeDec, sum_pulses[ i ] );
        } else {
            silk_memset( &pulses[ silk_SMULBB( i, SHELL_CODEC_FRAME_LENGTH ) ], 0, SHELL_CODEC_FRAME_LENGTH * sizeof( opus_int ) );
        }
    }

    /***************************************************/
    /* LSB Decoding                                    */
    /***************************************************/
    for( i = 0; i < iter; i++ ) {
        if( nLshifts[ i ] > 0 ) {
            nLS = nLshifts[ i ];
            pulses_ptr = &pulses[ silk_SMULBB( i, SHELL_CODEC_FRAME_LENGTH ) ];
            for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) {
                abs_q = pulses_ptr[ k ];
                for( j = 0; j < nLS; j++ ) {
                    abs_q = silk_LSHIFT( abs_q, 1 );
                    abs_q += ec_dec_icdf( psRangeDec, silk_lsb_iCDF, 8 );
                }
                pulses_ptr[ k ] = abs_q;
            }
            /* Mark the number of pulses non-zero for sign decoding. */
            sum_pulses[ i ] |= nLS << 5;
        }
    }

    /****************************************/
    /* Decode and add signs to pulse signal */
    /****************************************/
    silk_decode_signs( psRangeDec, pulses, frame_length, signalType, quantOffsetType, sum_pulses );
}
Esempio n. 25
0
opus_int silk_setup_fs(
    silk_encoder_state_Fxx          *psEnc,             /* I/O                      */
    opus_int                        fs_kHz,             /* I                        */
    opus_int                        PacketSize_ms       /* I                        */
)
{
    opus_int ret = SILK_NO_ERROR;

    /* Set packet size */
    if( PacketSize_ms != psEnc->sCmn.PacketSize_ms ) {
        if( ( PacketSize_ms !=  10 ) &&
            ( PacketSize_ms !=  20 ) &&
            ( PacketSize_ms !=  40 ) &&
            ( PacketSize_ms !=  60 ) ) {
            ret = SILK_ENC_PACKET_SIZE_NOT_SUPPORTED;
        }
        if( PacketSize_ms <= 10 ) {
            psEnc->sCmn.nFramesPerPacket = 1;
            psEnc->sCmn.nb_subfr = PacketSize_ms == 10 ? 2 : 1;
            psEnc->sCmn.frame_length = silk_SMULBB( PacketSize_ms, fs_kHz );
            psEnc->sCmn.pitch_LPC_win_length = silk_SMULBB( FIND_PITCH_LPC_WIN_MS_2_SF, fs_kHz );
            if( psEnc->sCmn.fs_kHz == 8 ) {
                psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_10_ms_NB_iCDF;
            } else {
                psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_10_ms_iCDF;
            }
        } else {
            psEnc->sCmn.nFramesPerPacket = silk_DIV32_16( PacketSize_ms, MAX_FRAME_LENGTH_MS );
            psEnc->sCmn.nb_subfr = MAX_NB_SUBFR;
            psEnc->sCmn.frame_length = silk_SMULBB( 20, fs_kHz );
            psEnc->sCmn.pitch_LPC_win_length = silk_SMULBB( FIND_PITCH_LPC_WIN_MS, fs_kHz );
            if( psEnc->sCmn.fs_kHz == 8 ) {
                psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_NB_iCDF;
            } else {
                psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_iCDF;
            }
        }
        psEnc->sCmn.PacketSize_ms  = PacketSize_ms;
        psEnc->sCmn.TargetRate_bps = 0;         /* trigger new SNR computation */
    }

    /* Set internal sampling frequency */
    silk_assert( fs_kHz == 8 || fs_kHz == 12 || fs_kHz == 16 );
    silk_assert( psEnc->sCmn.nb_subfr == 2 || psEnc->sCmn.nb_subfr == 4 );
    if( psEnc->sCmn.fs_kHz != fs_kHz ) {
        /* reset part of the state */
        silk_memset( &psEnc->sShape,               0, sizeof( psEnc->sShape ) );
        silk_memset( &psEnc->sPrefilt,             0, sizeof( psEnc->sPrefilt ) );
        silk_memset( &psEnc->sCmn.sNSQ,            0, sizeof( psEnc->sCmn.sNSQ ) );
        silk_memset( psEnc->sCmn.prev_NLSFq_Q15,   0, sizeof( psEnc->sCmn.prev_NLSFq_Q15 ) );
        silk_memset( &psEnc->sCmn.sLP.In_LP_State, 0, sizeof( psEnc->sCmn.sLP.In_LP_State ) );
        psEnc->sCmn.inputBufIx                  = 0;
        psEnc->sCmn.nFramesEncoded              = 0;
        psEnc->sCmn.TargetRate_bps              = 0;     /* trigger new SNR computation */

        /* Initialize non-zero parameters */
        psEnc->sCmn.prevLag                     = 100;
        psEnc->sCmn.first_frame_after_reset     = 1;
        psEnc->sPrefilt.lagPrev                 = 100;
        psEnc->sShape.LastGainIndex             = 10;
        psEnc->sCmn.sNSQ.lagPrev                = 100;
        psEnc->sCmn.sNSQ.prev_gain_Q16          = 65536;
        psEnc->sCmn.prevSignalType              = TYPE_NO_VOICE_ACTIVITY;

        psEnc->sCmn.fs_kHz = fs_kHz;
        if( psEnc->sCmn.fs_kHz == 8 ) {
            if( psEnc->sCmn.nb_subfr == MAX_NB_SUBFR ) {
                psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_NB_iCDF;
            } else {
                psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_10_ms_NB_iCDF;
            }
        } else {
            if( psEnc->sCmn.nb_subfr == MAX_NB_SUBFR ) {
                psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_iCDF;
            } else {
                psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_10_ms_iCDF;
            }
        }
        if( psEnc->sCmn.fs_kHz == 8 || psEnc->sCmn.fs_kHz == 12 ) {
            psEnc->sCmn.predictLPCOrder = MIN_LPC_ORDER;
            psEnc->sCmn.psNLSF_CB  = &silk_NLSF_CB_NB_MB;
        } else {
            psEnc->sCmn.predictLPCOrder = MAX_LPC_ORDER;
            psEnc->sCmn.psNLSF_CB  = &silk_NLSF_CB_WB;
        }
        psEnc->sCmn.subfr_length   = SUB_FRAME_LENGTH_MS * fs_kHz;
        psEnc->sCmn.frame_length   = silk_SMULBB( psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr );
        psEnc->sCmn.ltp_mem_length = silk_SMULBB( LTP_MEM_LENGTH_MS, fs_kHz );
        psEnc->sCmn.la_pitch       = silk_SMULBB( LA_PITCH_MS, fs_kHz );
        psEnc->sCmn.max_pitch_lag  = silk_SMULBB( 18, fs_kHz );
        if( psEnc->sCmn.nb_subfr == MAX_NB_SUBFR ) {
            psEnc->sCmn.pitch_LPC_win_length = silk_SMULBB( FIND_PITCH_LPC_WIN_MS, fs_kHz );
        } else {
            psEnc->sCmn.pitch_LPC_win_length = silk_SMULBB( FIND_PITCH_LPC_WIN_MS_2_SF, fs_kHz );
        }
        if( psEnc->sCmn.fs_kHz == 16 ) {
            psEnc->sCmn.mu_LTP_Q9 = SILK_FIX_CONST( MU_LTP_QUANT_WB, 9 );
            psEnc->sCmn.pitch_lag_low_bits_iCDF = silk_uniform8_iCDF;
        } else if( psEnc->sCmn.fs_kHz == 12 ) {
            psEnc->sCmn.mu_LTP_Q9 = SILK_FIX_CONST( MU_LTP_QUANT_MB, 9 );
            psEnc->sCmn.pitch_lag_low_bits_iCDF = silk_uniform6_iCDF;
        } else {
            psEnc->sCmn.mu_LTP_Q9 = SILK_FIX_CONST( MU_LTP_QUANT_NB, 9 );
            psEnc->sCmn.pitch_lag_low_bits_iCDF = silk_uniform4_iCDF;
        }
    }

    /* Check that settings are valid */
    silk_assert( ( psEnc->sCmn.subfr_length * psEnc->sCmn.nb_subfr ) == psEnc->sCmn.frame_length );

    return ret;
}
Esempio n. 26
0
/* Initialize/reset the resampler state for a given pair of input/output sampling rates */
opus_int silk_resampler_init(
    silk_resampler_state_struct *S,                 /* I/O  Resampler state                                             */
    opus_int32                  Fs_Hz_in,           /* I    Input sampling rate (Hz)                                    */
    opus_int32                  Fs_Hz_out,          /* I    Output sampling rate (Hz)                                   */
    opus_int                    forEnc              /* I    If 1: encoder; if 0: decoder                                */
)
{
    opus_int up2x;

    /* Clear state */
    silk_memset( S, 0, sizeof( silk_resampler_state_struct ) );

    /* Input checking */
    if( forEnc ) {
        if( ( Fs_Hz_in  != 8000 && Fs_Hz_in  != 12000 && Fs_Hz_in  != 16000 && Fs_Hz_in  != 24000 && Fs_Hz_in  != 48000 ) ||
            ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 ) ) {
            silk_assert( 0 );
            return -1;
        }
        S->inputDelay = delay_matrix_enc[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_out ) ];
    } else {
        if( ( Fs_Hz_in  != 8000 && Fs_Hz_in  != 12000 && Fs_Hz_in  != 16000 ) ||
            ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 && Fs_Hz_out != 24000 && Fs_Hz_out != 48000 ) ) {
            silk_assert( 0 );
            return -1;
        }
        S->inputDelay = delay_matrix_dec[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_out ) ];
    }

    S->Fs_in_kHz  = silk_DIV32_16( Fs_Hz_in,  1000 );
    S->Fs_out_kHz = silk_DIV32_16( Fs_Hz_out, 1000 );

    /* Number of samples processed per batch */
    S->batchSize = S->Fs_in_kHz * RESAMPLER_MAX_BATCH_SIZE_MS;

    /* Find resampler with the right sampling ratio */
    up2x = 0;
    if( Fs_Hz_out > Fs_Hz_in ) {
        /* Upsample */
        if( Fs_Hz_out == silk_MUL( Fs_Hz_in, 2 ) ) {                            /* Fs_out : Fs_in = 2 : 1 */
            /* Special case: directly use 2x upsampler */
            S->resampler_function = USE_silk_resampler_private_up2_HQ_wrapper;
        } else {
            /* Default resampler */
            S->resampler_function = USE_silk_resampler_private_IIR_FIR;
            up2x = 1;
        }
    } else if ( Fs_Hz_out < Fs_Hz_in ) {
        /* Downsample */
         S->resampler_function = USE_silk_resampler_private_down_FIR;
        if( silk_MUL( Fs_Hz_out, 4 ) == silk_MUL( Fs_Hz_in, 3 ) ) {             /* Fs_out : Fs_in = 3 : 4 */
            S->FIR_Fracs = 3;
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR0;
            S->Coefs = silk_Resampler_3_4_COEFS;
        } else if( silk_MUL( Fs_Hz_out, 3 ) == silk_MUL( Fs_Hz_in, 2 ) ) {      /* Fs_out : Fs_in = 2 : 3 */
            S->FIR_Fracs = 2;
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR0;
            S->Coefs = silk_Resampler_2_3_COEFS;
        } else if( silk_MUL( Fs_Hz_out, 2 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 2 */
            S->FIR_Fracs = 1;
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR1;
            S->Coefs = silk_Resampler_1_2_COEFS;
        } else if( silk_MUL( Fs_Hz_out, 3 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 3 */
            S->FIR_Fracs = 1;
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2;
            S->Coefs = silk_Resampler_1_3_COEFS;
        } else if( silk_MUL( Fs_Hz_out, 4 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 4 */
            S->FIR_Fracs = 1;
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2;
            S->Coefs = silk_Resampler_1_4_COEFS;
        } else if( silk_MUL( Fs_Hz_out, 6 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 6 */
            S->FIR_Fracs = 1;
            S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2;
            S->Coefs = silk_Resampler_1_6_COEFS;
        } else {
            /* None available */
            silk_assert( 0 );
            return -1;
        }
    } else {
        /* Input and output sampling rates are equal: copy */
        S->resampler_function = USE_silk_resampler_copy;
    }

    /* Ratio of input/output samples */
    S->invRatio_Q16 = silk_LSHIFT32( silk_DIV32( silk_LSHIFT32( Fs_Hz_in, 14 + up2x ), Fs_Hz_out ), 2 );
    /* Make sure the ratio is rounded up */
    while( silk_SMULWW( S->invRatio_Q16, Fs_Hz_out ) < silk_LSHIFT32( Fs_Hz_in, up2x ) ) {
        S->invRatio_Q16++;
    }

    return 0;
}
Esempio n. 27
0
static OPUS_INLINE void silk_PLC_update(
    silk_decoder_state                  *psDec,             /* I/O Decoder state        */
    silk_decoder_control                *psDecCtrl          /* I/O Decoder control      */
)
{
    opus_int32 LTP_Gain_Q14, temp_LTP_Gain_Q14;
    opus_int   i, j;
    silk_PLC_struct *psPLC;

    psPLC = &psDec->sPLC;

    /* Update parameters used in case of packet loss */
    psDec->prevSignalType = psDec->indices.signalType;
    LTP_Gain_Q14 = 0;
    if( psDec->indices.signalType == TYPE_VOICED ) {
        /* Find the parameters for the last subframe which contains a pitch pulse */
        for( j = 0; j * psDec->subfr_length < psDecCtrl->pitchL[ psDec->nb_subfr - 1 ]; j++ ) {
            if( j == psDec->nb_subfr ) {
                break;
            }
            temp_LTP_Gain_Q14 = 0;
            for( i = 0; i < LTP_ORDER; i++ ) {
                temp_LTP_Gain_Q14 += psDecCtrl->LTPCoef_Q14[ ( psDec->nb_subfr - 1 - j ) * LTP_ORDER  + i ];
            }
            if( temp_LTP_Gain_Q14 > LTP_Gain_Q14 ) {
                LTP_Gain_Q14 = temp_LTP_Gain_Q14;
                silk_memcpy( psPLC->LTPCoef_Q14,
                    &psDecCtrl->LTPCoef_Q14[ silk_SMULBB( psDec->nb_subfr - 1 - j, LTP_ORDER ) ],
                    LTP_ORDER * sizeof( opus_int16 ) );

                psPLC->pitchL_Q8 = silk_LSHIFT( psDecCtrl->pitchL[ psDec->nb_subfr - 1 - j ], 8 );
            }
        }

        silk_memset( psPLC->LTPCoef_Q14, 0, LTP_ORDER * sizeof( opus_int16 ) );
        psPLC->LTPCoef_Q14[ LTP_ORDER / 2 ] = LTP_Gain_Q14;

        /* Limit LT coefs */
        if( LTP_Gain_Q14 < V_PITCH_GAIN_START_MIN_Q14 ) {
            opus_int   scale_Q10;
            opus_int32 tmp;

            tmp = silk_LSHIFT( V_PITCH_GAIN_START_MIN_Q14, 10 );
            scale_Q10 = silk_DIV32( tmp, silk_max( LTP_Gain_Q14, 1 ) );
            for( i = 0; i < LTP_ORDER; i++ ) {
                psPLC->LTPCoef_Q14[ i ] = silk_RSHIFT( silk_SMULBB( psPLC->LTPCoef_Q14[ i ], scale_Q10 ), 10 );
            }
        } else if( LTP_Gain_Q14 > V_PITCH_GAIN_START_MAX_Q14 ) {
            opus_int   scale_Q14;
            opus_int32 tmp;

            tmp = silk_LSHIFT( V_PITCH_GAIN_START_MAX_Q14, 14 );
            scale_Q14 = silk_DIV32( tmp, silk_max( LTP_Gain_Q14, 1 ) );
            for( i = 0; i < LTP_ORDER; i++ ) {
                psPLC->LTPCoef_Q14[ i ] = silk_RSHIFT( silk_SMULBB( psPLC->LTPCoef_Q14[ i ], scale_Q14 ), 14 );
            }
        }
    } else {
        psPLC->pitchL_Q8 = silk_LSHIFT( silk_SMULBB( psDec->fs_kHz, 18 ), 8 );
        silk_memset( psPLC->LTPCoef_Q14, 0, LTP_ORDER * sizeof( opus_int16 ));
    }

    /* Save LPC coeficients */
    silk_memcpy( psPLC->prevLPC_Q12, psDecCtrl->PredCoef_Q12[ 1 ], psDec->LPC_order * sizeof( opus_int16 ) );
    psPLC->prevLTP_scale_Q14 = psDecCtrl->LTP_scale_Q14;

    /* Save last two gains */
    silk_memcpy( psPLC->prevGain_Q16, &psDecCtrl->Gains_Q16[ psDec->nb_subfr - 2 ], 2 * sizeof( opus_int32 ) );

    psPLC->subfr_length = psDec->subfr_length;
    psPLC->nb_subfr = psDec->nb_subfr;
}
Esempio n. 28
0
/* Compute reflection coefficients from input signal */
silk_float silk_burg_modified_FLP(          /* O    returns residual energy                                     */
    silk_float          A[],                /* O    prediction coefficients (length order)                      */
    const silk_float    x[],                /* I    input signal, length: nb_subfr*(D+L_sub)                    */
    const opus_int      subfr_length,       /* I    input signal subframe length (incl. D preceeding samples)   */
    const opus_int      nb_subfr,           /* I    number of subframes stacked in x                            */
    const silk_float    WhiteNoiseFrac,     /* I    fraction added to zero-lag autocorrelation                  */
    const opus_int      D                   /* I    order                                                       */
)
{
    opus_int         k, n, s;
    double          C0, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2;
    const silk_float *x_ptr;
    double          C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ];
    double          CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ];
    double          Af[ SILK_MAX_ORDER_LPC ];

    silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
    silk_assert( nb_subfr <= MAX_NB_SUBFR );

    /* Compute autocorrelations, added over subframes */
    C0 = silk_energy_FLP( x, nb_subfr * subfr_length );
    silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) );
    for( s = 0; s < nb_subfr; s++ ) {
        x_ptr = x + s * subfr_length;
        for( n = 1; n < D + 1; n++ ) {
            C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n );
        }
    }
    silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) );

    /* Initialize */
    CAb[ 0 ] = CAf[ 0 ] = C0 + WhiteNoiseFrac * C0 + 1e-9f;

    for( n = 0; n < D; n++ ) {
        /* Update first row of correlation matrix (without first element) */
        /* Update last row of correlation matrix (without last element, stored in reversed order) */
        /* Update C * Af */
        /* Update C * flipud(Af) (stored in reversed order) */
        for( s = 0; s < nb_subfr; s++ ) {
            x_ptr = x + s * subfr_length;
            tmp1 = x_ptr[ n ];
            tmp2 = x_ptr[ subfr_length - n - 1 ];
            for( k = 0; k < n; k++ ) {
                C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ];
                C_last_row[ k ]  -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ];
                Atmp = Af[ k ];
                tmp1 += x_ptr[ n - k - 1 ] * Atmp;
                tmp2 += x_ptr[ subfr_length - n + k ] * Atmp;
            }
            for( k = 0; k <= n; k++ ) {
                CAf[ k ] -= tmp1 * x_ptr[ n - k ];
                CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ];
            }
        }
        tmp1 = C_first_row[ n ];
        tmp2 = C_last_row[ n ];
        for( k = 0; k < n; k++ ) {
            Atmp = Af[ k ];
            tmp1 += C_last_row[ n - k - 1 ]  * Atmp;
            tmp2 += C_first_row[ n - k - 1 ] * Atmp;
        }
        CAf[ n + 1 ] = tmp1;
        CAb[ n + 1 ] = tmp2;

        /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
        num = CAb[ n + 1 ];
        nrg_b = CAb[ 0 ];
        nrg_f = CAf[ 0 ];
        for( k = 0; k < n; k++ ) {
            Atmp = Af[ k ];
            num   += CAb[ n - k ] * Atmp;
            nrg_b += CAb[ k + 1 ] * Atmp;
            nrg_f += CAf[ k + 1 ] * Atmp;
        }
        silk_assert( nrg_f > 0.0 );
        silk_assert( nrg_b > 0.0 );

        /* Calculate the next order reflection (parcor) coefficient */
        rc = -2.0 * num / ( nrg_f + nrg_b );
        silk_assert( rc > -1.0 && rc < 1.0 );

        /* Update the AR coefficients */
        for( k = 0; k < (n + 1) >> 1; k++ ) {
            tmp1 = Af[ k ];
            tmp2 = Af[ n - k - 1 ];
            Af[ k ]         = tmp1 + rc * tmp2;
            Af[ n - k - 1 ] = tmp2 + rc * tmp1;
        }
        Af[ n ] = rc;

        /* Update C * Af and C * Ab */
        for( k = 0; k <= n + 1; k++ ) {
            tmp1 = CAf[ k ];
            CAf[ k ]          += rc * CAb[ n - k + 1 ];
            CAb[ n - k + 1  ] += rc * tmp1;
        }
    }

    /* Return residual energy */
    nrg_f = CAf[ 0 ];
    tmp1 = 1.0;
    for( k = 0; k < D; k++ ) {
        Atmp = Af[ k ];
        nrg_f += CAf[ k + 1 ] * Atmp;
        tmp1  += Atmp * Atmp;
        A[ k ] = (silk_float)(-Atmp);
    }
    nrg_f -= WhiteNoiseFrac * C0 * tmp1;

    return (silk_float)nrg_f;
}