Esempio n. 1
0
/* This comparison routine is what we use for comparison operations
** between numeric values in an SQL expression.  "Numeric" is a little
** bit misleading here.  What we mean is that the strings have a
** type of "numeric" from the point of view of SQL.  The strings
** do not necessarily contain numbers.  They could contain text.
**
** If the input strings both look like actual numbers then they
** compare in numerical order.  Numerical strings are always less 
** than non-numeric strings so if one input string looks like a
** number and the other does not, then the one that looks like
** a number is the smaller.  Non-numeric strings compare in 
** lexigraphical order (the same order as strcmp()).
*/
int sqliteCompare(const char *atext, const char *btext){
  int result;
  int isNumA, isNumB;
  if( atext==0 ){
    return -1;
  }else if( btext==0 ){
    return 1;
  }
  isNumA = sqliteIsNumber(atext);
  isNumB = sqliteIsNumber(btext);
  if( isNumA ){
    if( !isNumB ){
      result = -1;
    }else{
      double rA, rB;
      rA = sqliteAtoF(atext, 0);
      rB = sqliteAtoF(btext, 0);
      if( rA<rB ){
        result = -1;
      }else if( rA>rB ){
        result = +1;
      }else{
        result = 0;
      }
    }
  }else if( isNumB ){
    result = +1;
  }else {
    result = strcmp(atext, btext);
  }
  return result; 
}
Esempio n. 2
0
/*
** This routine is used for sorting.  Each key is a list of one or more
** null-terminated elements.  The list is terminated by two nulls in
** a row.  For example, the following text is a key with three elements
**
**            Aone\000Dtwo\000Athree\000\000
**
** All elements begin with one of the characters "+-AD" and end with "\000"
** with zero or more text elements in between.  Except, NULL elements
** consist of the special two-character sequence "N\000".
**
** Both arguments will have the same number of elements.  This routine
** returns negative, zero, or positive if the first argument is less
** than, equal to, or greater than the first.  (Result is a-b).
**
** Each element begins with one of the characters "+", "-", "A", "D".
** This character determines the sort order and collating sequence:
**
**     +      Sort numerically in ascending order
**     -      Sort numerically in descending order
**     A      Sort as strings in ascending order
**     D      Sort as strings in descending order.
**
** For the "+" and "-" sorting, pure numeric strings (strings for which the
** isNum() function above returns TRUE) always compare less than strings
** that are not pure numerics.  Non-numeric strings compare in memcmp()
** order.  This is the same sort order as the sqliteCompare() function
** above generates.
**
** The last point is a change from version 2.6.3 to version 2.7.0.  In
** version 2.6.3 and earlier, substrings of digits compare in numerical 
** and case was used only to break a tie.
**
** Elements that begin with 'A' or 'D' compare in memcmp() order regardless
** of whether or not they look like a number.
**
** Note that the sort order imposed by the rules above is the same
** from the ordering defined by the "<", "<=", ">", and ">=" operators
** of expressions and for indices.  This was not the case for version
** 2.6.3 and earlier.
*/
int sqliteSortCompare(const char *a, const char *b){
  int res = 0;
  int isNumA, isNumB;
  int dir = 0;

  while( res==0 && *a && *b ){
    if( a[0]=='N' || b[0]=='N' ){
      if( a[0]==b[0] ){
        a += 2;
        b += 2;
        continue;
      }
      if( a[0]=='N' ){
        dir = b[0];
        res = -1;
      }else{
        dir = a[0];
        res = +1;
      }
      break;
    }
    assert( a[0]==b[0] );
    if( (dir=a[0])=='A' || a[0]=='D' ){
      res = strcmp(&a[1],&b[1]);
      if( res ) break;
    }else{
      isNumA = sqliteIsNumber(&a[1]);
      isNumB = sqliteIsNumber(&b[1]);
      if( isNumA ){
        double rA, rB;
        if( !isNumB ){
          res = -1;
          break;
        }
        rA = sqliteAtoF(&a[1], 0);
        rB = sqliteAtoF(&b[1], 0);
        if( rA<rB ){
          res = -1;
          break;
        }
        if( rA>rB ){
          res = +1;
          break;
        }
      }else if( isNumB ){
        res = +1;
        break;
      }else{
        res = strcmp(&a[1],&b[1]);
        if( res ) break;
      }
    }
    a += strlen(&a[1]) + 2;
    b += strlen(&b[1]) + 2;
  }
  if( dir=='-' || dir=='D' ) res = -res;
  return res;
}
Esempio n. 3
0
/*
** Routines used to compute the sum or average.
*/
static void sumStep(sqlite_func *context, int argc, const char **argv){
  SumCtx *p;
  if( argc<1 ) return;
  p = sqlite_aggregate_context(context, sizeof(*p));
  if( p && argv[0] ){
    p->sum += sqliteAtoF(argv[0], 0);
    p->cnt++;
  }
}
Esempio n. 4
0
/*
** Routines used to compute the standard deviation as an aggregate.
*/
static void stdDevStep(sqlite_func *context, int argc, const char **argv){
  StdDevCtx *p;
  double x;
  if( argc<1 ) return;
  p = sqlite_aggregate_context(context, sizeof(*p));
  if( p && argv[0] ){
    x = sqliteAtoF(argv[0], 0);
    p->sum += x;
    p->sum2 += x*x;
    p->cnt++;
  }
}
Esempio n. 5
0
/*
** Implementation of the round() function
*/
static void roundFunc(sqlite_func *context, int argc, const char **argv){
  int n;
  double r;
  char zBuf[100];
  assert( argc==1 || argc==2 );
  if( argv[0]==0 || (argc==2 && argv[1]==0) ) return;
  n = argc==2 ? atoi(argv[1]) : 0;
  if( n>30 ) n = 30;
  if( n<0 ) n = 0;
  r = sqliteAtoF(argv[0], 0);
  sprintf(zBuf,"%.*f",n,r);
  sqlite_set_result_string(context, zBuf, -1);
}
Esempio n. 6
0
/*
** The following routine is a user-defined SQL function whose purpose
** is to test the sqlite_set_result() API.
*/
static void testFunc(sqlite_func *context, int argc, const char **argv){
  while( argc>=2 ){
    if( argv[0]==0 ){
      sqlite_set_result_error(context, "first argument to test function "
         "may not be NULL", -1);
    }else if( sqliteStrICmp(argv[0],"string")==0 ){
      sqlite_set_result_string(context, argv[1], -1);
    }else if( argv[1]==0 ){
      sqlite_set_result_error(context, "2nd argument may not be NULL if the "
         "first argument is not \"string\"", -1);
    }else if( sqliteStrICmp(argv[0],"int")==0 ){
      sqlite_set_result_int(context, atoi(argv[1]));
    }else if( sqliteStrICmp(argv[0],"double")==0 ){
      sqlite_set_result_double(context, sqliteAtoF(argv[1], 0));
    }else{
      sqlite_set_result_error(context,"first argument should be one of: "
          "string int double", -1);
    }
    argc -= 2;
    argv += 2;
  }
}
Esempio n. 7
0
/*
** Attempt to parse the given string into a Julian Day Number.  Return
** the number of errors.
**
** The following are acceptable forms for the input string:
**
**      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
**      DDDD.DD 
**      now
**
** In the first form, the +/-HH:MM is always optional.  The fractional
** seconds extension (the ".FFF") is optional.  The seconds portion
** (":SS.FFF") is option.  The year and date can be omitted as long
** as there is a time string.  The time string can be omitted as long
** as there is a year and date.
*/
static int parseDateOrTime(const char *zDate, DateTime *p){
  int i;
  memset(p, 0, sizeof(*p));
  for(i=0; isdigit(zDate[i]); i++){}
  if( i==4 && zDate[i]=='-' ){
    return parseYyyyMmDd(zDate, p);
  }else if( i==2 && zDate[i]==':' ){
    return parseHhMmSs(zDate, p);
    return 0;
  }else if( i==0 && sqliteStrICmp(zDate,"now")==0 ){
    double r;
    if( sqliteOsCurrentTime(&r)==0 ){
      p->rJD = r;
      p->validJD = 1;
      return 0;
    }
    return 1;
  }else if( sqliteIsNumber(zDate) ){
    p->rJD = sqliteAtoF(zDate);
    p->validJD = 1;
    return 0;
  }
  return 1;
}