Esempio n. 1
0
void ChunkManager::initTree(ChunkTree&  pChild)
{
    boost::shared_ptr<Chunk>& pChunk = pChild.getValue();
    

    AABB bounds = pChild.getParent()->getValue()->m_bounds;
    vec center = bounds.CenterPoint();
    vec c0 = bounds.CornerPoint(pChild.getCorner().index());

    AABB b0(vec(min(c0.x, center.x),
                min(c0.y, center.y),
                min(c0.z, center.z)), 
            vec(max(c0.x, center.x),
                max(c0.y, center.y),
                max(c0.z, center.z)));

    pChunk = boost::make_shared<Chunk>(b0, 1.0f/pChild.getLevel(), this);

    pChunk->m_pTree = &pChild;

    *pChunk->m_workInProgress = true;

    m_chunkGeneratorQueue.push(pChild.getValueCopy());

}
Esempio n. 2
0
File: OBB.cpp Progetto: Ilikia/naali
void OBB::SetFrom(const AABB &aabb)
{
    pos = aabb.CenterPoint();
    r = aabb.HalfSize();
    axis[0] = float3(1,0,0);
    axis[1] = float3(0,1,0);
    axis[2] = float3(0,0,1);
}
Esempio n. 3
0
File: OBB.cpp Progetto: Ilikia/naali
void OBBSetFrom(OBB &obb, const AABB &aabb, const Matrix &m)
{
    obb.pos = m.MulPos(aabb.CenterPoint());
    float3 size = aabb.HalfSize();
    obb.axis[0] = m.MulDir(float3(size.x, 0, 0));
    obb.axis[1] = m.MulDir(float3(0, size.y, 0));
    obb.axis[2] = m.MulDir(float3(0, 0, size.z));
    obb.r.x = obb.axis[0].Normalize();
    obb.r.y = obb.axis[1].Normalize();
    obb.r.z = obb.axis[2].Normalize();
}
Esempio n. 4
0
/// Set Christer Ericson's Real-Time Collision Detection, p.164.
bool Plane::Intersects(const AABB &aabb) const
{
    float3 c = aabb.CenterPoint();
    float3 e = aabb.HalfDiagonal();

    // Compute the projection interval radius of the AABB onto L(t) = aabb.center + t * plane.normal;
    float r = e[0]*Abs(normal[0]) + e[1]*Abs(normal[1]) + e[2]*Abs(normal[2]);
    // Compute the distance of the box center from plane.
    float s = Dot(normal, c) - d;
    return Abs(s) <= r;
}
Esempio n. 5
0
/// The Plane-AABB intersection is implemented according to Christer Ericson's Real-Time Collision Detection, p.164. [groupSyntax]
bool Plane::Intersects(const AABB &aabb) const
{
	vec c = aabb.CenterPoint();
	vec e = aabb.HalfDiagonal();

	// Compute the projection interval radius of the AABB onto L(t) = aabb.center + t * plane.normal;
	float r = e[0]*Abs(normal[0]) + e[1]*Abs(normal[1]) + e[2]*Abs(normal[2]);
	// Compute the distance of the box center from plane.
//	float s = Dot(normal, c) - d;
	float s = Dot(normal.xyz(), c.xyz()) - d; ///\todo Use the above form when Plane is SSE'ized.
	return Abs(s) <= r;
}
Esempio n. 6
0
File: AABB.cpp Progetto: katik/naali
void AABBTransformAsAABB(AABB &aabb, Matrix &m)
{
	float3 newCenter = m.MulPos(aabb.CenterPoint());

	float3 newDir;
	float3 h = aabb.HalfSize();
	// The following is equal to taking the absolute value of the whole matrix m.
	newDir.x = ABSDOT3(m[0], h);
	newDir.y = ABSDOT3(m[1], h);
	newDir.z = ABSDOT3(m[2], h);
	aabb.minPoint = newCenter - newDir;
	aabb.maxPoint = newCenter + newDir;
}
Esempio n. 7
0
void ChunkManager::initTree1(ChunkTree&  pChild)
{
    boost::shared_ptr<Chunk>& pChunk = pChild.getValue();

    AABB bounds = pChild.getParent()->getValue()->m_bounds;
    vec center = bounds.CenterPoint();
    vec c0 = bounds.CornerPoint(pChild.getCorner().index());

    AABB b0(vec(min(c0.x, center.x),
                min(c0.y, center.y),
                min(c0.z, center.z)), 
            vec(max(c0.x, center.x),
                max(c0.y, center.y),
                max(c0.z, center.z)));

    pChunk = boost::make_shared<Chunk>(b0, 1.0f/pChild.getLevel(), this);

    pChunk->m_pTree = &pChild;

    pChunk->generateTerrain();
    pChunk->generateMesh();

}
Esempio n. 8
0
void OBBSetFrom(OBB &obb, const AABB &aabb, const Matrix &m)
{
	assume(m.IsColOrthogonal()); // We cannot convert transform an AABB to OBB if it gets sheared in the process.
	assume(m.HasUniformScale()); // Nonuniform scale will produce shear as well.
	obb.pos = m.MulPos(aabb.CenterPoint());
	obb.r = aabb.HalfSize();
	obb.axis[0] = DIR_VEC(m.Col(0));
	obb.axis[1] = DIR_VEC(m.Col(1));
	obb.axis[2] = DIR_VEC(m.Col(2));
	// If the matrix m contains scaling, propagate the scaling from the axis vectors to the half-length vectors,
	// since we want to keep the axis vectors always normalized in our representation.
	float matrixScale = obb.axis[0].LengthSq();
	matrixScale = Sqrt(matrixScale);
	obb.r *= matrixScale;
	matrixScale = 1.f / matrixScale;
	obb.axis[0] *= matrixScale;
	obb.axis[1] *= matrixScale;
	obb.axis[2] *= matrixScale;

//	mathassert(vec::AreOrthogonal(obb.axis[0], obb.axis[1], obb.axis[2]));
//	mathassert(vec::AreOrthonormal(obb.axis[0], obb.axis[1], obb.axis[2]));
	///@todo Would like to simply do the above, but instead numerical stability requires to do the following:
	vec::Orthonormalize(obb.axis[0], obb.axis[1], obb.axis[2]);
}