Esempio n. 1
0
void HeightMapShapeSW::_setup(DVector<real_t> p_heights,int p_width,int p_depth,real_t p_cell_size) {

	heights=p_heights;
	width=p_width;
	depth=p_depth;;
	cell_size=p_cell_size;

	DVector<real_t>::Read r = heights. read();

	AABB aabb;

	for(int i=0;i<depth;i++) {

		for(int j=0;j<width;j++) {

			float h = r[i*width+j];

			Vector3 pos( j*cell_size, h, i*cell_size );
			if (i==0 || j==0)
				aabb.pos=pos;
			else
				aabb.expand_to(pos);

		}
	}


	configure(aabb);
}
Esempio n. 2
0
void ArrayMesh::add_surface_from_mesh_data(const Geometry::MeshData &p_mesh_data) {

	VisualServer::get_singleton()->mesh_add_surface_from_mesh_data(mesh, p_mesh_data);
	AABB aabb;
	for (int i = 0; i < p_mesh_data.vertices.size(); i++) {

		if (i == 0)
			aabb.position = p_mesh_data.vertices[i];
		else
			aabb.expand_to(p_mesh_data.vertices[i]);
	}

	Surface s;
	s.aabb = aabb;
	if (surfaces.size() == 0)
		aabb = s.aabb;
	else
		aabb.merge_with(s.aabb);

	_clear_triangle_mesh();

	surfaces.push_back(s);
	_change_notify();

	emit_changed();
}
Esempio n. 3
0
void Mesh::add_surface(PrimitiveType p_primitive,const Array& p_arrays,const Array& p_blend_shapes,bool p_alphasort) {


	ERR_FAIL_COND(p_arrays.size()!=ARRAY_MAX);

	Surface s;

	VisualServer::get_singleton()->mesh_add_surface(mesh,(VisualServer::PrimitiveType)p_primitive, p_arrays,p_blend_shapes,p_alphasort);
	surfaces.push_back(s);



	/* make aABB? */ {

		DVector<Vector3> vertices=p_arrays[ARRAY_VERTEX];
		int len=vertices.size();
		ERR_FAIL_COND(len==0);
		DVector<Vector3>::Read r=vertices.read();
		const Vector3 *vtx=r.ptr();

		// check AABB
		AABB aabb;
		for (int i=0;i<len;i++) {

			if (i==0)
				aabb.pos=vtx[i];
			else
				aabb.expand_to(vtx[i]);
		}

		surfaces[surfaces.size()-1].aabb=aabb;
		surfaces[surfaces.size()-1].alphasort=p_alphasort;

		_recompute_aabb();

	}

	triangle_mesh=Ref<TriangleMesh>();
	_change_notify();

}
Esempio n. 4
0
void ArrayMesh::add_surface_from_arrays(PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, uint32_t p_flags) {

	ERR_FAIL_COND(p_arrays.size() != ARRAY_MAX);

	Surface s;

	VisualServer::get_singleton()->mesh_add_surface_from_arrays(mesh, (VisualServer::PrimitiveType)p_primitive, p_arrays, p_blend_shapes, p_flags);
	surfaces.push_back(s);

	/* make aABB? */ {

		Variant arr = p_arrays[ARRAY_VERTEX];
		PoolVector<Vector3> vertices = arr;
		int len = vertices.size();
		ERR_FAIL_COND(len == 0);
		PoolVector<Vector3>::Read r = vertices.read();
		const Vector3 *vtx = r.ptr();

		// check AABB
		AABB aabb;
		for (int i = 0; i < len; i++) {

			if (i == 0)
				aabb.position = vtx[i];
			else
				aabb.expand_to(vtx[i]);
		}

		surfaces[surfaces.size() - 1].aabb = aabb;
		surfaces[surfaces.size() - 1].is_2d = arr.get_type() == Variant::POOL_VECTOR2_ARRAY;

		_recompute_aabb();
	}

	_clear_triangle_mesh();
	_change_notify();
	emit_changed();
}
Esempio n. 5
0
void AnimatedSprite3D::_draw() {

	RID immediate = get_immediate();
	VS::get_singleton()->immediate_clear(immediate);

	if (!frames.is_valid() || !frames->get_frame_count(animation) || frame<0 || frame>=frames->get_frame_count(animation)) {
		return;
	}

	Ref<Texture> texture = frames->get_frame(animation,frame);
	if (!texture.is_valid())
		return; //no texuture no life
	Vector2 tsize = texture->get_size();
	if (tsize.x==0 || tsize.y==0)
		return;

	Size2i s=tsize;
	Rect2i src_rect;

	src_rect.size=s;

	Point2i ofs=get_offset();
	if (is_centered())
		ofs-=s/2;

	Rect2i dst_rect(ofs,s);


	Rect2 final_rect;
	Rect2 final_src_rect;
	if (!texture->get_rect_region(dst_rect,src_rect,final_rect,final_src_rect))
		return;


	if (final_rect.size.x==0 || final_rect.size.y==0)
		return;

	Color color=_get_color_accum();
	color.a*=get_opacity();

	float pixel_size=get_pixel_size();

	Vector2 vertices[4]={

		(final_rect.pos+Vector2(0,final_rect.size.y)) * pixel_size,
		(final_rect.pos+final_rect.size) * pixel_size,
		(final_rect.pos+Vector2(final_rect.size.x,0)) * pixel_size,
		final_rect.pos * pixel_size,


	};
	Vector2 uvs[4]={
		final_src_rect.pos / tsize,
		(final_src_rect.pos+Vector2(final_src_rect.size.x,0)) / tsize,
		(final_src_rect.pos+final_src_rect.size) / tsize,
		(final_src_rect.pos+Vector2(0,final_src_rect.size.y)) / tsize,
	};

	if (is_flipped_h()) {
		SWAP(uvs[0],uvs[1]);
		SWAP(uvs[2],uvs[3]);
	}
	if (is_flipped_v()) {

		SWAP(uvs[0],uvs[3]);
		SWAP(uvs[1],uvs[2]);
	}


	Vector3 normal;
	int axis = get_axis();
	normal[axis]=1.0;

	RID mat = VS::get_singleton()->material_2d_get(get_draw_flag(FLAG_SHADED),get_draw_flag(FLAG_TRANSPARENT),get_alpha_cut_mode()==ALPHA_CUT_DISCARD,get_alpha_cut_mode()==ALPHA_CUT_OPAQUE_PREPASS);
	VS::get_singleton()->immediate_set_material(immediate,mat);

	VS::get_singleton()->immediate_begin(immediate,VS::PRIMITIVE_TRIANGLE_FAN,texture->get_rid());

	int x_axis = ((axis + 1) % 3);
	int y_axis = ((axis + 2) % 3);

	if (axis!=Vector3::AXIS_Z) {
		SWAP(x_axis,y_axis);

		for(int i=0;i<4;i++) {
			//uvs[i] = Vector2(1.0,1.0)-uvs[i];
			//SWAP(vertices[i].x,vertices[i].y);
			if (axis==Vector3::AXIS_Y) {
				vertices[i].y = - vertices[i].y;
			} else if (axis==Vector3::AXIS_X) {
				vertices[i].x = - vertices[i].x;
			}
		}
	}

	AABB aabb;

	for(int i=0;i<4;i++) {
		VS::get_singleton()->immediate_normal(immediate,normal);
		VS::get_singleton()->immediate_color(immediate,color);
		VS::get_singleton()->immediate_uv(immediate,uvs[i]);

		Vector3 vtx;
		vtx[x_axis]=vertices[i][0];
		vtx[y_axis]=vertices[i][1];
		VS::get_singleton()->immediate_vertex(immediate,vtx);
		if (i==0) {
			aabb.pos=vtx;
			aabb.size=Vector3();
		} else {
			aabb.expand_to(vtx);
		}
	}
	set_aabb(aabb);
	VS::get_singleton()->immediate_end(immediate);

}
Esempio n. 6
0
void Sprite3D::_draw() {

	RID immediate = get_immediate();

	VS::get_singleton()->immediate_clear(immediate);
	if (!texture.is_valid())
		return; //no texuture no life
	Vector2 tsize = texture->get_size();
	if (tsize.x==0 || tsize.y==0)
		return;

	Size2i s;
	Rect2i src_rect;

	if (region) {

		s=region_rect.size;
		src_rect=region_rect;
	} else {
		s = texture->get_size();
		s=s/Size2i(hframes,vframes);

		src_rect.size=s;
		src_rect.pos.x+=(frame%hframes)*s.x;
		src_rect.pos.y+=(frame/hframes)*s.y;

	}

	Point2i ofs=get_offset();
	if (is_centered())
		ofs-=s/2;

	Rect2i dst_rect(ofs,s);


	Rect2 final_rect;
	Rect2 final_src_rect;
	if (!texture->get_rect_region(dst_rect,src_rect,final_rect,final_src_rect))
		return;


	if (final_rect.size.x==0 || final_rect.size.y==0)
		return;

	Color color=_get_color_accum();
	color.a*=get_opacity();

	float pixel_size=get_pixel_size();

	Vector2 vertices[4]={

		(final_rect.pos+Vector2(0,final_rect.size.y)) * pixel_size,
		(final_rect.pos+final_rect.size) * pixel_size,
		(final_rect.pos+Vector2(final_rect.size.x,0)) * pixel_size,
		final_rect.pos * pixel_size,


	};
	Vector2 uvs[4]={
		final_src_rect.pos / tsize,
		(final_src_rect.pos+Vector2(final_src_rect.size.x,0)) / tsize,
		(final_src_rect.pos+final_src_rect.size) / tsize,
		(final_src_rect.pos+Vector2(0,final_src_rect.size.y)) / tsize,
	};

	if (is_flipped_h()) {
		SWAP(uvs[0],uvs[1]);
		SWAP(uvs[2],uvs[3]);
	}
	if (is_flipped_v()) {

		SWAP(uvs[0],uvs[3]);
		SWAP(uvs[1],uvs[2]);
	}


	Vector3 normal;
	int axis = get_axis();
	normal[axis]=1.0;

	RID mat = VS::get_singleton()->material_2d_get(get_draw_flag(FLAG_SHADED),get_draw_flag(FLAG_TRANSPARENT),get_alpha_cut_mode()==ALPHA_CUT_DISCARD,get_alpha_cut_mode()==ALPHA_CUT_OPAQUE_PREPASS);
	VS::get_singleton()->immediate_set_material(immediate,mat);

	VS::get_singleton()->immediate_begin(immediate,VS::PRIMITIVE_TRIANGLE_FAN,texture->get_rid());

	int x_axis = ((axis + 1) % 3);
	int y_axis = ((axis + 2) % 3);

	AABB aabb;

	for(int i=0;i<4;i++) {
		VS::get_singleton()->immediate_normal(immediate,normal);
		VS::get_singleton()->immediate_color(immediate,color);
		VS::get_singleton()->immediate_uv(immediate,uvs[i]);

		Vector3 vtx;
		vtx[x_axis]=vertices[i][x_axis];
		vtx[y_axis]=vertices[i][y_axis];
		VS::get_singleton()->immediate_vertex(immediate,vtx);
		if (i==0) {
			aabb.pos=vtx;
			aabb.size=Vector3();
		} else {
			aabb.expand_to(vtx);
		}
	}
	set_aabb(aabb);
	VS::get_singleton()->immediate_end(immediate);


}
Esempio n. 7
0
void Sprite3D::_draw() {

	RID immediate = get_immediate();

	VS::get_singleton()->immediate_clear(immediate);
	if (!texture.is_valid())
		return; //no texuture no life
	Vector2 tsize = texture->get_size();
	if (tsize.x == 0 || tsize.y == 0)
		return;

	Size2i s;
	Rect2i src_rect;

	if (region) {

		s = region_rect.size;
		src_rect = region_rect;
	} else {
		s = texture->get_size();
		s = s / Size2i(hframes, vframes);

		src_rect.size = s;
		src_rect.position.x += (frame % hframes) * s.x;
		src_rect.position.y += (frame / hframes) * s.y;
	}

	Point2i ofs = get_offset();
	if (is_centered())
		ofs -= s / 2;

	Rect2i dst_rect(ofs, s);

	Rect2 final_rect;
	Rect2 final_src_rect;
	if (!texture->get_rect_region(dst_rect, src_rect, final_rect, final_src_rect))
		return;

	if (final_rect.size.x == 0 || final_rect.size.y == 0)
		return;

	Color color = _get_color_accum();
	color.a *= get_opacity();

	float pixel_size = get_pixel_size();

	Vector2 vertices[4] = {

		(final_rect.position + Vector2(0, final_rect.size.y)) * pixel_size,
		(final_rect.position + final_rect.size) * pixel_size,
		(final_rect.position + Vector2(final_rect.size.x, 0)) * pixel_size,
		final_rect.position * pixel_size,

	};

	Vector2 src_tsize = tsize;

	// Properly setup UVs for impostor textures (AtlasTexture).
	Ref<AtlasTexture> atlas_tex = texture;
	if (atlas_tex != NULL) {
		src_tsize[0] = atlas_tex->get_atlas()->get_width();
		src_tsize[1] = atlas_tex->get_atlas()->get_height();
	}

	Vector2 uvs[4] = {
		final_src_rect.position / src_tsize,
		(final_src_rect.position + Vector2(final_src_rect.size.x, 0)) / src_tsize,
		(final_src_rect.position + final_src_rect.size) / src_tsize,
		(final_src_rect.position + Vector2(0, final_src_rect.size.y)) / src_tsize,
	};

	if (is_flipped_h()) {
		SWAP(uvs[0], uvs[1]);
		SWAP(uvs[2], uvs[3]);
	}
	if (is_flipped_v()) {

		SWAP(uvs[0], uvs[3]);
		SWAP(uvs[1], uvs[2]);
	}

	Vector3 normal;
	int axis = get_axis();
	normal[axis] = 1.0;

	RID mat = SpatialMaterial::get_material_rid_for_2d(get_draw_flag(FLAG_SHADED), get_draw_flag(FLAG_TRANSPARENT), get_draw_flag(FLAG_DOUBLE_SIDED), get_alpha_cut_mode() == ALPHA_CUT_DISCARD, get_alpha_cut_mode() == ALPHA_CUT_OPAQUE_PREPASS);
	VS::get_singleton()->immediate_set_material(immediate, mat);

	VS::get_singleton()->immediate_begin(immediate, VS::PRIMITIVE_TRIANGLE_FAN, texture->get_rid());

	int x_axis = ((axis + 1) % 3);
	int y_axis = ((axis + 2) % 3);

	if (axis != Vector3::AXIS_Z) {
		SWAP(x_axis, y_axis);

		for (int i = 0; i < 4; i++) {
			//uvs[i] = Vector2(1.0,1.0)-uvs[i];
			//SWAP(vertices[i].x,vertices[i].y);
			if (axis == Vector3::AXIS_Y) {
				vertices[i].y = -vertices[i].y;
			} else if (axis == Vector3::AXIS_X) {
				vertices[i].x = -vertices[i].x;
			}
		}
	}

	AABB aabb;

	for (int i = 0; i < 4; i++) {
		VS::get_singleton()->immediate_normal(immediate, normal);
		VS::get_singleton()->immediate_color(immediate, color);
		VS::get_singleton()->immediate_uv(immediate, uvs[i]);

		Vector3 vtx;
		vtx[x_axis] = vertices[i][0];
		vtx[y_axis] = vertices[i][1];
		VS::get_singleton()->immediate_vertex(immediate, vtx);
		if (i == 0) {
			aabb.position = vtx;
			aabb.size = Vector3();
		} else {
			aabb.expand_to(vtx);
		}
	}
	set_aabb(aabb);
	VS::get_singleton()->immediate_end(immediate);
}
Esempio n. 8
0
Error QuickHull::build(const Vector<Vector3> &p_points, Geometry::MeshData &r_mesh) {

	static const real_t over_tolerance = 0.0001;

	/* CREATE AABB VOLUME */

	AABB aabb;
	for (int i = 0; i < p_points.size(); i++) {

		if (i == 0) {
			aabb.pos = p_points[i];
		} else {
			aabb.expand_to(p_points[i]);
		}
	}

	if (aabb.size == Vector3()) {
		return ERR_CANT_CREATE;
	}

	Vector<bool> valid_points;
	valid_points.resize(p_points.size());
	Set<Vector3> valid_cache;

	for (int i = 0; i < p_points.size(); i++) {

		Vector3 sp = p_points[i].snapped(0.0001);
		if (valid_cache.has(sp)) {
			valid_points[i] = false;
			//print_line("INVALIDATED: "+itos(i));
		} else {
			valid_points[i] = true;
			valid_cache.insert(sp);
		}
	}

	/* CREATE INITIAL SIMPLEX */

	int longest_axis = aabb.get_longest_axis_index();

	//first two vertices are the most distant
	int simplex[4];

	{
		real_t max, min;

		for (int i = 0; i < p_points.size(); i++) {

			if (!valid_points[i])
				continue;
			float d = p_points[i][longest_axis];
			if (i == 0 || d < min) {

				simplex[0] = i;
				min = d;
			}

			if (i == 0 || d > max) {
				simplex[1] = i;
				max = d;
			}
		}
	}

	//third vertex is one most further away from the line

	{
		float maxd;
		Vector3 rel12 = p_points[simplex[0]] - p_points[simplex[1]];

		for (int i = 0; i < p_points.size(); i++) {

			if (!valid_points[i])
				continue;

			Vector3 n = rel12.cross(p_points[simplex[0]] - p_points[i]).cross(rel12).normalized();
			real_t d = Math::abs(n.dot(p_points[simplex[0]]) - n.dot(p_points[i]));

			if (i == 0 || d > maxd) {

				maxd = d;
				simplex[2] = i;
			}
		}
	}

	//fourth vertex is the one  most further away from the plane

	{
		float maxd;
		Plane p(p_points[simplex[0]], p_points[simplex[1]], p_points[simplex[2]]);

		for (int i = 0; i < p_points.size(); i++) {

			if (!valid_points[i])
				continue;

			real_t d = Math::abs(p.distance_to(p_points[i]));

			if (i == 0 || d > maxd) {

				maxd = d;
				simplex[3] = i;
			}
		}
	}

	//compute center of simplex, this is a point always warranted to be inside
	Vector3 center;

	for (int i = 0; i < 4; i++) {
		center += p_points[simplex[i]];
	}

	center /= 4.0;

	//add faces

	List<Face> faces;

	for (int i = 0; i < 4; i++) {

		static const int face_order[4][3] = {
			{ 0, 1, 2 },
			{ 0, 1, 3 },
			{ 0, 2, 3 },
			{ 1, 2, 3 }
		};

		Face f;
		for (int j = 0; j < 3; j++) {
			f.vertices[j] = simplex[face_order[i][j]];
		}

		Plane p(p_points[f.vertices[0]], p_points[f.vertices[1]], p_points[f.vertices[2]]);

		if (p.is_point_over(center)) {
			//flip face to clockwise if facing inwards
			SWAP(f.vertices[0], f.vertices[1]);
			p = -p;
		}

		f.plane = p;

		faces.push_back(f);
	}

	/* COMPUTE AVAILABLE VERTICES */

	for (int i = 0; i < p_points.size(); i++) {

		if (i == simplex[0])
			continue;
		if (i == simplex[1])
			continue;
		if (i == simplex[2])
			continue;
		if (i == simplex[3])
			continue;
		if (!valid_points[i])
			continue;

		for (List<Face>::Element *E = faces.front(); E; E = E->next()) {

			if (E->get().plane.distance_to(p_points[i]) > over_tolerance) {

				E->get().points_over.push_back(i);
				break;
			}
		}
	}

	faces.sort(); // sort them, so the ones with points are in the back

	/* BUILD HULL */

	//poop face (while still remain)
	//find further away point
	//find lit faces
	//determine horizon edges
	//build new faces with horizon edges, them assign points side from all lit faces
	//remove lit faces

	uint32_t debug_stop = debug_stop_after;

	while (debug_stop > 0 && faces.back()->get().points_over.size()) {

		debug_stop--;
		Face &f = faces.back()->get();

		//find vertex most outside
		int next = -1;
		real_t next_d = 0;

		for (int i = 0; i < f.points_over.size(); i++) {

			real_t d = f.plane.distance_to(p_points[f.points_over[i]]);

			if (d > next_d) {
				next_d = d;
				next = i;
			}
		}

		ERR_FAIL_COND_V(next == -1, ERR_BUG);

		Vector3 v = p_points[f.points_over[next]];

		//find lit faces and lit edges
		List<List<Face>::Element *> lit_faces; //lit face is a death sentence

		Map<Edge, FaceConnect> lit_edges; //create this on the flight, should not be that bad for performance and simplifies code a lot

		for (List<Face>::Element *E = faces.front(); E; E = E->next()) {

			if (E->get().plane.distance_to(v) > 0) {

				lit_faces.push_back(E);

				for (int i = 0; i < 3; i++) {
					uint32_t a = E->get().vertices[i];
					uint32_t b = E->get().vertices[(i + 1) % 3];
					Edge e(a, b);

					Map<Edge, FaceConnect>::Element *F = lit_edges.find(e);
					if (!F) {
						F = lit_edges.insert(e, FaceConnect());
					}
					if (e.vertices[0] == a) {
						//left
						F->get().left = E;
					} else {

						F->get().right = E;
					}
				}
			}
		}

		//create new faces from horizon edges
		List<List<Face>::Element *> new_faces; //new faces

		for (Map<Edge, FaceConnect>::Element *E = lit_edges.front(); E; E = E->next()) {

			FaceConnect &fc = E->get();
			if (fc.left && fc.right) {
				continue; //edge is uninteresting, not on horizont
			}

			//create new face!

			Face face;
			face.vertices[0] = f.points_over[next];
			face.vertices[1] = E->key().vertices[0];
			face.vertices[2] = E->key().vertices[1];

			Plane p(p_points[face.vertices[0]], p_points[face.vertices[1]], p_points[face.vertices[2]]);

			if (p.is_point_over(center)) {
				//flip face to clockwise if facing inwards
				SWAP(face.vertices[0], face.vertices[1]);
				p = -p;
			}

			face.plane = p;
			new_faces.push_back(faces.push_back(face));
		}

		//distribute points into new faces

		for (List<List<Face>::Element *>::Element *F = lit_faces.front(); F; F = F->next()) {

			Face &lf = F->get()->get();

			for (int i = 0; i < lf.points_over.size(); i++) {

				if (lf.points_over[i] == f.points_over[next]) //do not add current one
					continue;

				Vector3 p = p_points[lf.points_over[i]];
				for (List<List<Face>::Element *>::Element *E = new_faces.front(); E; E = E->next()) {

					Face &f2 = E->get()->get();
					if (f2.plane.distance_to(p) > over_tolerance) {
						f2.points_over.push_back(lf.points_over[i]);
						break;
					}
				}
			}
		}

		//erase lit faces

		while (lit_faces.size()) {

			faces.erase(lit_faces.front()->get());
			lit_faces.pop_front();
		}

		//put faces that contain no points on the front

		for (List<List<Face>::Element *>::Element *E = new_faces.front(); E; E = E->next()) {

			Face &f2 = E->get()->get();
			if (f2.points_over.size() == 0) {
				faces.move_to_front(E->get());
			}
		}

		//whew, done with iteration, go next
	}

	/* CREATE MESHDATA */

	//make a map of edges again
	Map<Edge, RetFaceConnect> ret_edges;
	List<Geometry::MeshData::Face> ret_faces;

	for (List<Face>::Element *E = faces.front(); E; E = E->next()) {

		Geometry::MeshData::Face f;
		f.plane = E->get().plane;

		for (int i = 0; i < 3; i++) {
			f.indices.push_back(E->get().vertices[i]);
		}

		List<Geometry::MeshData::Face>::Element *F = ret_faces.push_back(f);

		for (int i = 0; i < 3; i++) {

			uint32_t a = E->get().vertices[i];
			uint32_t b = E->get().vertices[(i + 1) % 3];
			Edge e(a, b);

			Map<Edge, RetFaceConnect>::Element *G = ret_edges.find(e);
			if (!G) {
				G = ret_edges.insert(e, RetFaceConnect());
			}
			if (e.vertices[0] == a) {
				//left
				G->get().left = F;
			} else {

				G->get().right = F;
			}
		}
	}

	//fill faces

	for (List<Geometry::MeshData::Face>::Element *E = ret_faces.front(); E; E = E->next()) {

		Geometry::MeshData::Face &f = E->get();

		for (int i = 0; i < f.indices.size(); i++) {

			uint32_t a = E->get().indices[i];
			uint32_t b = E->get().indices[(i + 1) % f.indices.size()];
			Edge e(a, b);

			Map<Edge, RetFaceConnect>::Element *F = ret_edges.find(e);

			ERR_CONTINUE(!F);

			List<Geometry::MeshData::Face>::Element *O = F->get().left == E ? F->get().right : F->get().left;
			ERR_CONTINUE(O == E);
			ERR_CONTINUE(O == NULL);

			if (O->get().plane.is_almost_like(f.plane)) {
				//merge and delete edge and contiguous face, while repointing edges (uuugh!)
				int ois = O->get().indices.size();
				int merged = 0;

				for (int j = 0; j < ois; j++) {
					//search a
					if (O->get().indices[j] == a) {
						//append the rest
						for (int k = 0; k < ois; k++) {

							int idx = O->get().indices[(k + j) % ois];
							int idxn = O->get().indices[(k + j + 1) % ois];
							if (idx == b && idxn == a) { //already have b!
								break;
							}
							if (idx != a) {
								f.indices.insert(i + 1, idx);
								i++;
								merged++;
							}
							Edge e2(idx, idxn);

							Map<Edge, RetFaceConnect>::Element *F2 = ret_edges.find(e2);

							ERR_CONTINUE(!F2);
							//change faceconnect, point to this face instead
							if (F2->get().left == O)
								F2->get().left = E;
							else if (F2->get().right == O)
								F2->get().right = E;
						}

						break;
					}
				}

				ret_edges.erase(F); //remove the edge
				ret_faces.erase(O); //remove the face
			}
		}
	}

	//fill mesh
	r_mesh.faces.clear();
	r_mesh.faces.resize(ret_faces.size());
	//	print_line("FACECOUNT: "+itos(r_mesh.faces.size()));

	int idx = 0;
	for (List<Geometry::MeshData::Face>::Element *E = ret_faces.front(); E; E = E->next()) {
		r_mesh.faces[idx++] = E->get();
	}
	r_mesh.edges.resize(ret_edges.size());
	idx = 0;
	for (Map<Edge, RetFaceConnect>::Element *E = ret_edges.front(); E; E = E->next()) {

		Geometry::MeshData::Edge e;
		e.a = E->key().vertices[0];
		e.b = E->key().vertices[1];
		r_mesh.edges[idx++] = e;
	}

	r_mesh.vertices = p_points;

	//r_mesh.optimize_vertices();
	/*
	print_line("FACES: "+itos(r_mesh.faces.size()));
	print_line("EDGES: "+itos(r_mesh.edges.size()));
	print_line("VERTICES: "+itos(r_mesh.vertices.size()));
*/

	return OK;
}