void CBayesLearningEngine::Learn()
{
    if(!m_pGrModel)
    {
        PNL_THROW( CNULLPointer, "no graphical model")
    }
    CStaticGraphicalModel *grmodel = this->GetStaticModel();
    CFactor *factor = NULL;
    int numberOfFactors = grmodel->GetNumberOfFactors();
    int domainNodes;
    
    if(m_numberOfLearnedEvidences == m_numberOfAllEvidences)
    {
        PNL_THROW(COutOfRange, "number of unlearned evidences must be positive")
    }
    int currentEvidNumber;
    const CEvidence* pCurrentEvid;
    
    //below code is intended to work on tabular CPD and gaussian CPD
    //later we will generalize it for other distribution types
    if ((grmodel->GetFactor(0))->GetDistributionType() == dtTabular)
    {
        for( int ev = m_numberOfLearnedEvidences; ev < m_numberOfAllEvidences; ev++)
        {
            currentEvidNumber = ev;
            pCurrentEvid = m_Vector_pEvidences[currentEvidNumber];
        
            if( !pCurrentEvid)
            {
                PNL_THROW(CNULLPointer, "evidence")
            }
        
            for( domainNodes = 0; domainNodes < numberOfFactors; domainNodes++ )
            {
                factor = grmodel->GetFactor( domainNodes );
                int DomainSize;
                const int *domain;
                factor->GetDomain( &DomainSize, &domain );
                const CEvidence *pEvidences[] = { pCurrentEvid };
                CTabularDistribFun* pDistribFun = (CTabularDistribFun*)(factor->GetDistribFun());
                pDistribFun->BayesUpdateFactor(pEvidences, 1, domain);
            }
        }
    }
    else 
    {
        for( domainNodes = 0; domainNodes < numberOfFactors; domainNodes++ )
void CParEMLearningEngine::Learn()
{
    CStaticGraphicalModel *pGrModel =  this->GetStaticModel();
    PNL_CHECK_IS_NULL_POINTER(pGrModel);
    PNL_CHECK_LEFT_BORDER(GetNumEv() - GetNumberProcEv() , 1);

    CJtreeInfEngine *pCurrentInfEng = NULL;

    CFactor *parameter = NULL;
    int exit = 0;
    int numberOfParameters = pGrModel->GetNumberOfParameters();
    int domainNodes;
    int infIsNeed = 0;
    int itsML = 0;

    // !!!
    float loglik = -FLT_MAX;
    float loglikOld = -FLT_MAX;
    float epsilon = GetPrecisionEM();
    float stopExpression = epsilon + 1.0f;
    int iteration = 0;
    int currentEvidNumber;
    int bMaximize = 0;
    int bSumOnMixtureNode = 0;
    const CEvidence* pCurrentEvid;
    int start_mpi, finish_mpi;
    int NumberOfProcesses, MyRank;
    int numSelfEvidences;
    
    MPI_Comm_size(MPI_COMM_WORLD, &NumberOfProcesses);
    MPI_Comm_rank(MPI_COMM_WORLD, &MyRank);

    int d = 0;
    do
    {
        iteration++;

        numSelfEvidences = (GetNumEv() - GetNumberProcEv()) / NumberOfProcesses;
        start_mpi = GetNumberProcEv() + numSelfEvidences * MyRank; // !!!
        if (MyRank < NumberOfProcesses - 1)
            finish_mpi = start_mpi + numSelfEvidences; // !!!
        else
            finish_mpi = GetNumEv(); // !!!        

        for(int ev = start_mpi; ev < finish_mpi; ev++)
        {
            infIsNeed = 0;
            currentEvidNumber = ev; // !!!

            pCurrentEvid = m_Vector_pEvidences[currentEvidNumber];
            if( !pCurrentEvid)
            {
                PNL_THROW(CNULLPointer, "evidence")
            }

            infIsNeed = !GetObsFlags(ev)->empty(); // !!!

            if(infIsNeed)
            {
                // create inference engine
                if(!pCurrentInfEng)
                {
                    pCurrentInfEng = CJtreeInfEngine::Create(pGrModel);
                }
                pCurrentInfEng->EnterEvidence(pCurrentEvid, bMaximize,
                    bSumOnMixtureNode);
            }

            for(domainNodes = 0; domainNodes < numberOfParameters; domainNodes++)
            {
                parameter = pGrModel->GetFactor(domainNodes);
                if(infIsNeed)
                {
                    int DomainSize;
                    const int *domain;
                    parameter->GetDomain(&DomainSize, &domain);
                    if (IsDomainObserved(DomainSize, domain, currentEvidNumber))
                    {
                        const CEvidence *pEvidences[] = { pCurrentEvid };
                        parameter->UpdateStatisticsML(pEvidences, 1);
                    }
                    else
                    {
                        pCurrentInfEng->MarginalNodes(domain, DomainSize, 1);
                        const CPotential * pMargPot = pCurrentInfEng->GetQueryJPD();
                        parameter ->UpdateStatisticsEM(pMargPot, pCurrentEvid);
                    }
                }
                else
                {
                    const CEvidence *pEvidences[] = { pCurrentEvid };
                    parameter->UpdateStatisticsML(pEvidences, 1);
                }
            }
            itsML = itsML || !infIsNeed;
        }

        for(domainNodes = 0; domainNodes < numberOfParameters; domainNodes++ )
        {
            parameter = pGrModel->GetFactor(domainNodes);
            
            CNumericDenseMatrix<float> *matForSending;
            int matDim;
            const int *pMatRanges;
            int dataLength;
            const float *pDataForSending;

            matForSending = static_cast<CNumericDenseMatrix<float>*>
                ((parameter->GetDistribFun())->GetStatisticalMatrix(stMatTable));

            matForSending->GetRanges(&matDim, &pMatRanges);
            matForSending->GetRawData(&dataLength, &pDataForSending);
            float *pDataRecv = new float[dataLength];
            float *pDataRecv_copy = new float[dataLength];
            MPI_Status status;

            MPI_Allreduce((void*)pDataForSending, pDataRecv, dataLength, MPI_FLOAT, MPI_SUM,
                MPI_COMM_WORLD);

            CNumericDenseMatrix<float> *RecvMatrix =
                static_cast<CNumericDenseMatrix<float>*>
                (parameter->GetDistribFun()->GetStatisticalMatrix(stMatTable));
            int dataLength_new;
            float *pData_new;
            RecvMatrix->GetRawData(&dataLength_new, (const float**)(&pData_new));
            for(int t=0;t<dataLength_new;t++)
                pData_new[t]=pDataRecv[t];
        }
        switch (pGrModel->GetModelType())
        {
        case mtBNet:
            {
                loglikOld = loglik;
                loglik = 0.0f;
                for(domainNodes = 0; domainNodes < numberOfParameters; domainNodes++)
                {
                    parameter = pGrModel->GetFactor(domainNodes);
                    loglik += parameter->ProcessingStatisticalData(m_numberOfAllEvidences);
                }
                break;
            }
        case mtMRF2:
        case mtMNet:
            {
                loglikOld = loglik;
                loglik = _LearnPotentials();
                break;
            }
        default:
            {
                PNL_THROW(CBadConst, "model type")
                    break;
            }
        }

        stopExpression = 
            float(fabs(2 * (loglikOld - loglik) / (loglikOld + loglik)));
        exit = ((stopExpression > epsilon) && (iteration <= GetMaxIterEM())) && !itsML;
        if(exit)
        {
            ClearStatisticData();
        }

        delete pCurrentInfEng;
        pCurrentInfEng = NULL;
    }while(exit);

    if(iteration > GetMaxIterEM())
    {
        PNL_THROW(CNotConverged, "maximum number of iterations")
    }

    SetNumProcEv( GetNumEv() );
}
void CParEMLearningEngine::LearnOMP()
{
    CStaticGraphicalModel *pGrModel =  this->GetStaticModel();
    PNL_CHECK_IS_NULL_POINTER(pGrModel);
    PNL_CHECK_LEFT_BORDER(GetNumEv() - GetNumberProcEv() , 1);

    //omp_set_num_threads(2);
    int numberOfThreads = omp_get_num_procs();
    //CParPearlInfEngine **pCurrentInfEng = new CParPearlInfEngine*[numberOfThreads];
    CJtreeInfEngine **pCurrentInfEng = new CJtreeInfEngine*[numberOfThreads];
    for (int i = 0; i < numberOfThreads; i++)
        pCurrentInfEng[i] = NULL;
    CFactor *parameter1 = NULL;

    int exit = 0;
    int numberOfParameters = pGrModel->GetNumberOfParameters();
    int domainNodes;
    //int itsML = 0;

    // !!!
    float loglik = -FLT_MAX;
    float loglikOld = -FLT_MAX;
    float epsilon = GetPrecisionEM();
    float stopExpression = epsilon + 1.0f;
    int iteration = 0;

    int ev;

    // to create additional factors
    CFactor **ppAllFactors = new CFactor*[numberOfParameters*numberOfThreads];
    bool *was_updated = new bool[numberOfParameters*numberOfThreads];
    int factor;

#pragma omp parallel for private(factor) default(shared)
    for (factor = 0; factor < numberOfParameters; factor++)
    {
        ppAllFactors[factor] = pGrModel->GetFactor(factor);
        ppAllFactors[factor]->GetDistribFun()->ClearStatisticalData();
        was_updated[factor] = false;
        for (int proc = 1; proc < numberOfThreads; proc++)
        {
            ppAllFactors[factor + proc * numberOfParameters] =
                ppAllFactors[factor]->Clone();
            ppAllFactors[factor + proc * numberOfParameters]->GetDistribFun()->
                ClearStatisticalData();
            was_updated[factor + proc * numberOfParameters]= false;
        };
    };

    int* itsML = new int[numberOfThreads];  
    for (int delta = 0; delta < numberOfThreads; delta++)
    {
        itsML[delta] = 0;
    };

    int start_ev, end_ev;
    do
    {
        iteration++;

        start_ev = GetNumberProcEv();
        end_ev = GetNumEv();

#pragma omp parallel for schedule(dynamic) private(ev)
        for (ev = start_ev; ev < end_ev ; ev++)
        {  
            CFactor *parameter = NULL;
            int DomainNodes_new; 
            int bMaximize = 0;
            int bSumOnMixtureNode = 0;
            int infIsNeed = 0;
            int currentEvidNumber = ev; // !!!

            const CEvidence* pCurrentEvid = m_Vector_pEvidences[currentEvidNumber];

            infIsNeed = !GetObsFlags(ev)->empty(); // !!!

            int Num_thread = omp_get_thread_num();

            if (infIsNeed)
            {
                if (!pCurrentInfEng[Num_thread])
                {
                    pCurrentInfEng[Num_thread] = CJtreeInfEngine::Create(
                        (const CStaticGraphicalModel *)pGrModel);
                }
                pCurrentInfEng[Num_thread]->EnterEvidence(pCurrentEvid, bMaximize,
                    bSumOnMixtureNode);
            }
            for (DomainNodes_new = 0; DomainNodes_new < numberOfParameters; 
            DomainNodes_new++)
            {
                parameter = ppAllFactors[DomainNodes_new + 
                    Num_thread * numberOfParameters];
                if (infIsNeed)
                {
                    int DomainSize;
                    const int *domain;
                    parameter->GetDomain(&DomainSize, &domain);
                    if (IsDomainObserved(DomainSize, domain, currentEvidNumber))
                    {
                        const CEvidence *pEvidences[] = { pCurrentEvid };
                        parameter->UpdateStatisticsML(pEvidences, 1);
                        was_updated[DomainNodes_new+Num_thread*numberOfParameters]= true;
                    }
                    else
                    {
                        pCurrentInfEng[Num_thread]->MarginalNodes(domain, DomainSize, 1);
                        const CPotential * pMargPot = 
                            pCurrentInfEng[Num_thread]->GetQueryJPD();
                        parameter ->UpdateStatisticsEM(pMargPot, pCurrentEvid);
                        was_updated[DomainNodes_new+Num_thread*numberOfParameters]= true;
                    }
                }
                else
                {
                    const CEvidence *pEvidences[] = { pCurrentEvid };
                    parameter->UpdateStatisticsML(pEvidences, 1); 
                    was_updated[DomainNodes_new+Num_thread*numberOfParameters]= true;
                }  
            }
            itsML[Num_thread] = itsML[Num_thread] || !infIsNeed;
        }  // end of parallel for

        for (int delta = 1; delta < numberOfThreads; delta++)
        {
            itsML[0] = itsML[0] || itsML[delta];
        };

        //to join factors
#pragma omp parallel for private(factor) default(shared)
        for (factor = 0; factor < numberOfParameters; factor++)
        {
            for (int proc = 1; proc < numberOfThreads; proc++)
            {
                if (was_updated[factor+proc*numberOfParameters])
                {
                    ppAllFactors[factor]->UpdateStatisticsML(ppAllFactors[factor + 
                        proc*numberOfParameters]);
                    ppAllFactors[factor+proc*numberOfParameters]->GetDistribFun()->
                        ClearStatisticalData();
                };
                was_updated[factor+proc*numberOfParameters] = false;
            };
        };

        switch (pGrModel->GetModelType())
        {
        case mtBNet:
            {
                loglikOld = loglik;
                loglik = 0.0f;
                for (domainNodes = 0; domainNodes < numberOfParameters; domainNodes++)
                {
                    parameter1 = pGrModel->GetFactor(domainNodes);
                    loglik += parameter1->ProcessingStatisticalData(
                        m_numberOfAllEvidences);
                }
                break;
            }
        case mtMRF2:
        case mtMNet:
            {
                loglikOld = loglik;
                loglik = _LearnPotentials();
                break;
            }
        default:
            {
                PNL_THROW(CBadConst, "model type")
                    break;
            }
        }
        stopExpression = float(fabs(2 * (loglikOld - loglik) / 
            (loglikOld + loglik)));

        exit = ((stopExpression > epsilon) && (iteration <= GetMaxIterEM())) && !itsML[0];

        if (exit)
        {
            ClearStatisticData();
        }

        m_critValue.push_back(loglik);

        for (int j = 0; j < numberOfThreads; j++)
        {
            delete pCurrentInfEng[j];
            pCurrentInfEng[j] = NULL;
        }
    } while (exit);

    delete [] pCurrentInfEng;

    //”даление дополнительных факторов
    for (factor = numberOfParameters; factor < numberOfParameters * numberOfThreads;
    factor++)
    {
        delete ppAllFactors[factor];
    };

    delete[] ppAllFactors;
    delete[] was_updated;

    if (iteration > GetMaxIterEM())
    {
        PNL_THROW(CNotConverged, "maximum number of iterations")
    }

    SetNumProcEv( GetNumEv() );
}
void CParEMLearningEngine::LearnContMPI()
{
    CStaticGraphicalModel *pGrModel =  this->GetStaticModel();
    PNL_CHECK_IS_NULL_POINTER(pGrModel);
    PNL_CHECK_LEFT_BORDER(GetNumEv() - GetNumberProcEv() , 1);
    
    CInfEngine *pInfEng = NULL;
  
    pInfEng = CJtreeInfEngine::Create(pGrModel);
      
    
    float loglik = 0.0f;
    int domainNodes;
    CFactor *parameter = NULL;
    int numberOfParameters = pGrModel->GetNumberOfParameters();
    
    int nFactors = pGrModel->GetNumberOfFactors();
    const CEvidence *pEv;
    CFactor *pFactor;
    
    int iteration = 0;
    int ev;
    int i,numSelfEvidences,NumberOfProcesses, MyRank;
    int start_mpi, finish_mpi;
    
    MPI_Comm_size(MPI_COMM_WORLD, &NumberOfProcesses);
    MPI_Comm_rank(MPI_COMM_WORLD, &MyRank);
    
    if (IsAllObserved())
    {
        int i;
        float **evid = NULL;
        EDistributionType dt;
        CFactor *factor = NULL;
        for (i = 0; i < nFactors; i++)
        {
            factor = pGrModel->GetFactor(i);
                 
            factor->UpdateStatisticsML(&m_Vector_pEvidences[GetNumberProcEv()], 
               GetNumEv() - GetNumberProcEv());
            
        }
        m_critValue.push_back(UpdateModel());
    }
    else
    {
        bool bContinue;
        const CPotential * pot;
        
        do
        {
            ClearStatisticData();
            iteration++;

            numSelfEvidences = (GetNumEv() - GetNumberProcEv()) / NumberOfProcesses;
            start_mpi = GetNumberProcEv() + numSelfEvidences * MyRank; 
            if (MyRank < NumberOfProcesses - 1)
                finish_mpi = start_mpi + numSelfEvidences; 
            else
                finish_mpi = GetNumEv();            

            for(int ev = start_mpi; ev < finish_mpi; ev++)
            {
                
                bool bInfIsNeed = !GetObsFlags(ev)->empty(); 
                pEv = m_Vector_pEvidences[ev];
                
                if( bInfIsNeed )
                {
                    pInfEng->EnterEvidence(pEv,      0, 0);
                }
                int i;
                
                for( i = 0; i < nFactors; i++ )
                {
                    pFactor = pGrModel->GetFactor(i);
                    int nnodes;
                    const int * domain;
                    pFactor->GetDomain( &nnodes, &domain );
                    if( bInfIsNeed && !IsDomainObserved(nnodes, domain, ev ) )
                    {
                        pInfEng->MarginalNodes( domain, nnodes, 1 );
                        pot = pInfEng->GetQueryJPD(); 
                        
                        pFactor->UpdateStatisticsEM( /*pInfEng->GetQueryJPD */ pot, pEv );
                    }
                    else
                    {
                        pFactor->UpdateStatisticsML( &pEv, 1 );
                    }
                }
            }
            
            for(domainNodes = 0; domainNodes < numberOfParameters; domainNodes++ )
            {   
                parameter = pGrModel->GetFactor(domainNodes);
                
                C2DNumericDenseMatrix<float> *matMeanForSending;
                C2DNumericDenseMatrix<float> *matCovForSending;
                int dataLengthM,dataLengthC;
                
                const float *pMeanDataForSending;
                const float *pCovDataForSending;
                
                matMeanForSending = static_cast<C2DNumericDenseMatrix<float>*>
                    ((parameter->GetDistribFun())->GetStatisticalMatrix(stMatMu));               
                
                matMeanForSending->GetRawData(&dataLengthM, &pMeanDataForSending);
                
                matCovForSending = static_cast<C2DNumericDenseMatrix<float>*>
                    ((parameter->GetDistribFun())->GetStatisticalMatrix(stMatSigma));               
                
                matCovForSending->GetRawData(&dataLengthC, &pCovDataForSending);
                
                float *pMeanDataRecv = new float[dataLengthM];
                float *pCovDataRecv = new float[dataLengthC];
                MPI_Status status;                         
                
                MPI_Allreduce((void*)pMeanDataForSending, pMeanDataRecv, dataLengthM, MPI_FLOAT, MPI_SUM,
                    MPI_COMM_WORLD);
                MPI_Allreduce((void*)pCovDataForSending, pCovDataRecv, dataLengthC, MPI_FLOAT, MPI_SUM,
                    MPI_COMM_WORLD);
                
                memcpy((void*)pMeanDataForSending,pMeanDataRecv,dataLengthM*sizeof(float));
                
                memcpy((void*)pCovDataForSending,pCovDataRecv,dataLengthC*sizeof(float));
            }                        

            loglik = UpdateModel();
            
            if( GetMaxIterEM() != 1)
            {
                bool flag = iteration == 1 ? true : 
                (fabs(2*(m_critValue.back()-loglik)/(m_critValue.back() + loglik)) > GetPrecisionEM() );
                
                bContinue = GetMaxIterEM() > iteration && flag;
            }
            else
            {
                bContinue = false;
            }
            m_critValue.push_back(loglik);
            
        }while(bContinue);
    }
    SetNumProcEv( GetNumEv() );
}
Esempio n. 5
0
CExInfEngine< INF_ENGINE, MODEL, FLAV, FALLBACK_ENGINE1, FALLBACK_ENGINE2 >::CExInfEngine( CStaticGraphicalModel const *gm )
    : CInfEngine( itEx, gm ), evidence_mine( false ),
      maximize( 0 ), MPE_ev( 0 ), query_JPD( 0 ), graphical_model( gm )
{
    int i, j, k;
    intVector dom;
    intVector conv;
    CFactor *fac;

    PNL_MAKE_LOCAL( CGraph *, gr, gm, GetGraph() );
    PNL_MAKE_LOCAL( int, sz, gr, GetNumberOfNodes() );

    gr->GetConnectivityComponents( &decomposition );

    for ( i = decomposition.size(); i--; )
    {
        std::sort( decomposition[i].begin(), decomposition[i].end() );
    }
    if ( PNL_IS_EXINFENGINEFLAVOUR_UNSORTED( FLAV ) )
    {
        gr->GetTopologicalOrder( &conv );
    }

    orig2comp.resize( sz );
    orig2idx.resize( sz );

    for ( k = 2; k--; )
    {
        for ( i = decomposition.size(); i--; )
        {
            for ( j = decomposition[i].size(); j--; )
            {
                orig2comp[decomposition[i][j]] = i;
                orig2idx[decomposition[i][j]] = j;
            }
        }

        if ( PNL_IS_EXINFENGINEFLAVOUR_UNSORTED( FLAV ) && k )
        {
            for ( i = sz; i--; )
            {
                decomposition[orig2comp[conv[i]]][orig2idx[conv[i]]] = i;
            }
        }
        else
        {
            break;
        }
    }

    graphs.resize( decomposition.size() );
    models.resize( decomposition.size() );
    engines.resize( decomposition.size() );

    for ( i = decomposition.size(); i--; )
    {
        graphs[i] = gr->ExtractSubgraph( decomposition[i] );
#if 0
        std::cout << "graph " << i << std::endl;
        graphs[i]->Dump();
#endif
    }
    node_types.resize( decomposition.size() );
    node_assoc.resize( decomposition.size() );
    for ( i = 0, k = 0; i < decomposition.size(); ++i )
    {
        node_types[i].resize( decomposition[i].size() );
        node_assoc[i].resize( decomposition[i].size() );
        for ( j = 0; j < decomposition[i].size(); ++j )
        {
            node_types[i][j] = *gm->GetNodeType( decomposition[i][j] );
            node_assoc[i][j] = j;
        }
    }
    for ( i = decomposition.size(); i--; )
    {
        models[i] = MODEL::Create( decomposition[i].size(), node_types[i], node_assoc[i], graphs[i] );
    }
    for ( i = 0; i < gm->GetNumberOfFactors(); ++i )
    {
        fac = gm->GetFactor( i );
        fac->GetDomain( &dom );
#if 0
        std::cout << "Ex received orig factor" << std::endl;
        fac->GetDistribFun()->Dump();
#endif
        k = orig2comp[dom[0]];
        for ( j = dom.size(); j--; )
        {
            dom[j] = orig2idx[dom[j]];
        }
        fac = CFactor::CopyWithNewDomain( fac, dom, models[k]->GetModelDomain() );
#if 0
        std::cout << "Ex mangled it to" << std::endl;
        fac->GetDistribFun()->Dump();
#endif
        models[k]->AttachFactor( fac );
    }
    for ( i = decomposition.size(); i--; )
    {
        switch ( decomposition[i].size() )
        {
        case 1:
            engines[i] = FALLBACK_ENGINE1::Create( models[i] );
            continue;
        case 2:
            engines[i] = FALLBACK_ENGINE2::Create( models[i] );
            continue;
        default:
            engines[i] = INF_ENGINE::Create( models[i] );
        }
    }
}
Esempio n. 6
0
void CEMLearningEngine::Learn()
{
    CStaticGraphicalModel *pGrModel =  this->GetStaticModel();
    PNL_CHECK_IS_NULL_POINTER(pGrModel);
    PNL_CHECK_LEFT_BORDER(GetNumEv() - GetNumberProcEv() , 1);
    
    CInfEngine *pInfEng = NULL;
    if (m_pInfEngine)
    {
        pInfEng = m_pInfEngine;
    }
    else
    {
        if (!m_bAllObserved)
        {
            pInfEng = CJtreeInfEngine::Create(pGrModel);
            m_pInfEngine = pInfEng;
        }
    }
    
    float loglik = 0.0f;
    
    int nFactors = pGrModel->GetNumberOfFactors();
    const CEvidence *pEv;
    CFactor *pFactor;
    
    int iteration = 0;
    int ev;

    bool IsCastNeed = false;
    int i;
    for( i = 0; i < nFactors; i++ )
    {
        pFactor = pGrModel->GetFactor(i);
        EDistributionType dt = pFactor->GetDistributionType();
        if ( dt == dtSoftMax ) IsCastNeed = true;
    }

    float ** full_evid = NULL;
    if (IsCastNeed)
    {
        BuildFullEvidenceMatrix(&full_evid);
    }

    
    if (IsAllObserved())
    {
        int i;
        float **evid = NULL;
        EDistributionType dt;
        CFactor *factor = NULL;
        for (i = 0; i < nFactors; i++)
        {
            factor = pGrModel->GetFactor(i);
            dt = factor->GetDistributionType();
            if (dt != dtSoftMax)
            {
                factor->UpdateStatisticsML(&m_Vector_pEvidences[GetNumberProcEv()], 
                    GetNumEv() - GetNumberProcEv());
            }
            else
            {
                
                intVector family;
				family.resize(0);
                pGrModel->GetGraph()->GetParents(i, &family);
                family.push_back(i);
                CSoftMaxCPD* SoftMaxFactor = static_cast<CSoftMaxCPD*>(factor);
                SoftMaxFactor->BuildCurrentEvidenceMatrix(&full_evid, 
					&evid,family,m_Vector_pEvidences.size());
				SoftMaxFactor->InitLearnData();
                SoftMaxFactor->SetMaximizingMethod(m_MaximizingMethod);
                SoftMaxFactor->MaximumLikelihood(evid, m_Vector_pEvidences.size(),
                    0.00001f, 0.01f);
                SoftMaxFactor->CopyLearnDataToDistrib();
                for (int k = 0; k < factor->GetDomainSize(); k++)
                {
                    delete [] evid[k];
                }
                delete [] evid;
            }
        }
        m_critValue.push_back(UpdateModel());
    }
    else
    {
        bool bContinue;
        const CPotential * pot;
        
/*        bool IsCastNeed = false;
        int i;
        for( i = 0; i < nFactors; i++ )
        {
            pFactor = pGrModel->GetFactor(i);
            EDistributionType dt = pFactor->GetDistributionType();
            if ( dt == dtSoftMax ) IsCastNeed = true;
        }

        float ** full_evid;
        if (IsCastNeed)
        {
            BuildFullEvidenceMatrix(full_evid);
        }*/
        
        do
        {
            ClearStatisticData();
            iteration++;
            for( ev = GetNumberProcEv(); ev < GetNumEv() ; ev++ )
            {
                bool bInfIsNeed = !GetObsFlags(ev)->empty(); 
                pEv = m_Vector_pEvidences[ev];
                if( bInfIsNeed )
                {
                    pInfEng->EnterEvidence(pEv, 0, 0);
                }
                int i;
                for( i = 0; i < nFactors; i++ )
                {
                    pFactor = pGrModel->GetFactor(i);
                    int nnodes;
                    const int * domain;
                    pFactor->GetDomain( &nnodes, &domain );
                    if( bInfIsNeed && !IsDomainObserved(nnodes, domain, ev ) )
                    {
                        pInfEng->MarginalNodes( domain, nnodes, 1 );
                        pot = pInfEng->GetQueryJPD(); 
                        if ( (!(m_Vector_pEvidences[ev])->IsNodeObserved(i)) && (IsCastNeed) )
                        {
                            Cast(pot, i, ev, &full_evid);
                        }
                        EDistributionType dt;
                        dt = pFactor->GetDistributionType();
                        if ( !(dt == dtSoftMax) )
                            pFactor->UpdateStatisticsEM( /*pInfEng->GetQueryJPD */ pot, pEv );
                    }
                    else
                    {
                        if ((pFactor->GetDistributionType()) != dtSoftMax)
                            pFactor->UpdateStatisticsML( &pEv, 1 );
                    }
                }
            }
            
            int i;
/*
            printf ("\n My Full Evidence Matrix");
            for (i=0; i<nFactors; i++)
            {
                for (j=0; j<GetNumEv(); j++)
                {
                    printf ("%f   ", full_evid[i][j]);
                }
                printf("\n");
            } 
*/            
            float **evid = NULL;
            EDistributionType dt;
            CFactor *factor = NULL;
            // int i;
            for (i = 0; i < nFactors; i++)
            {
                factor = pGrModel->GetFactor(i);
                dt = factor->GetDistributionType();
                if (dt == dtSoftMax)
                {
					intVector family;
				    family.resize(0);
                    pGrModel->GetGraph()->GetParents(i, &family);
                    family.push_back(i);
                    CSoftMaxCPD* SoftMaxFactor = static_cast<CSoftMaxCPD*>(factor);
					SoftMaxFactor->BuildCurrentEvidenceMatrix(&full_evid, 
						&evid,family,m_Vector_pEvidences.size());
                    SoftMaxFactor->InitLearnData();
                    SoftMaxFactor->SetMaximizingMethod(m_MaximizingMethod);
                    //        SoftMaxFactor->MaximumLikelihood(evid, m_numberOfLastEvidences, 
                    SoftMaxFactor->MaximumLikelihood(evid, m_Vector_pEvidences.size(),
                        0.00001f, 0.01f);
                    SoftMaxFactor->CopyLearnDataToDistrib();
                    for (int k = 0; k < factor->GetDomainSize(); k++)
                    {
                        delete [] evid[k];
                    }
                    delete [] evid;
                }
            }
                        
            loglik = UpdateModel();
            
            if( GetMaxIterEM() != 1)
            {
                bool flag = iteration == 1 ? true : 
                (fabs(2*(m_critValue.back()-loglik)/(m_critValue.back() + loglik)) > GetPrecisionEM() );
                
                bContinue = GetMaxIterEM() > iteration && flag;
            }
            else
            {
                bContinue = false;
            }
            m_critValue.push_back(loglik);
            
        }while(bContinue);
    }
    SetNumProcEv( GetNumEv() );
   
    if (IsCastNeed)
    {
        int NumOfNodes = pGrModel->GetGraph()->GetNumberOfNodes();
        for (i=0; i<NumOfNodes; i++)
        {
            delete [] full_evid[i];
        }
        delete [] full_evid;
    }

}
void CStaticStructLearnSEM::CreateNeighborCPDs(CBNet* pBNet, 
	pCPDVector* vNeighborCPDs, EDGEOPVECTOR* vValidMoves, intVector* RevCorrespDel)
{
	CGraph* pGraph = pBNet->GetGraph();
	CDAG* pDAG = CDAG::Create(*pGraph);
	CModelDomain* pMD = pBNet->GetModelDomain();
	intVector vDiscrete, vContinuous;
	intVector vAncestor, vDescent;
	intVector vMixture, vMix;
	const CNodeType* nt;
	CFactor* factor;

	int i, j, position;
	vAncestor.assign(m_vAncestor.begin(), m_vAncestor.end());
	vDescent.assign(m_vDescent.begin(), m_vDescent.end());

	pBNet->FindMixtureNodes(&vMix);
	for(i=0; i<vMix.size(); i++)
	{
		factor = pBNet->GetFactor(vMix[i]);
		j = static_cast<CMixtureGaussianCPD*>(factor) -> GetNumberOfMixtureNode();
		vMixture.push_back(j);
	}

	for(i=0; i<m_nNodes; i++)
	{
		nt = pMD->GetVariableType(i);
		if( nt->IsDiscrete() )
		{
			vDiscrete.push_back(i);
		}
		else
			vContinuous.push_back(i);
	}
	
	vValidMoves->clear();
	vNeighborCPDs->clear();
	RevCorrespDel->clear();
	pDAG->GetAllValidMove(vValidMoves, &vMixture.front(), vMixture.size(), m_nMaxFanIn, 
		                  &vDiscrete, &vContinuous, &vDescent, &vAncestor );
	int nMoves = vValidMoves->size();
	intVector domain;
	EDGEOP curMove;

	int start, end;
	for(i=0; i<nMoves; i++)
	{
		domain.clear();
		curMove = (*vValidMoves)[i];
		switch (curMove.DAGChangeType)
		{
		case DAG_DEL : 
			start = curMove.originalEdge.startNode;
			end = curMove.originalEdge.endNode;
			factor = pBNet->GetFactor(end);
			factor->GetDomain(&domain);
			position = std::find(domain.begin(), domain.end(), start)
					       - domain.begin();
			domain.erase(domain.begin()+position);
			vNeighborCPDs->push_back(CreateRandomCPD(domain.size(), &domain.front(), pBNet));
			break;

		case DAG_ADD :
			start = curMove.originalEdge.startNode;
			end = curMove.originalEdge.endNode;
			factor = pBNet->GetFactor(end);
			factor->GetDomain(&domain);
			domain.insert(domain.begin(), start);
			vNeighborCPDs->push_back(CreateRandomCPD(domain.size(), &domain.front(), pBNet));
			break;

		case DAG_REV :
			end = curMove.originalEdge.startNode;
			start = curMove.originalEdge.endNode;
			factor = pBNet->GetFactor(end);
			factor->GetDomain(&domain);
			domain.insert(domain.begin(), start);
			vNeighborCPDs->push_back(CreateRandomCPD(domain.size(), &domain.front(), pBNet));
			break;
		}
	}

	RevCorrespDel->assign(nMoves, -1);
	EDGEOP pre_move;
	for(i=0; i<nMoves; i++)
	{
		curMove = (*vValidMoves)[i];
		if(curMove.DAGChangeType == DAG_REV)
		{
			start = curMove.originalEdge.startNode;
			end = curMove.originalEdge.endNode;
			for(j=0; j<nMoves; j++)
			{
				pre_move = (*vValidMoves)[j];
				if( (start == pre_move.originalEdge.startNode) &&
					(end == pre_move.originalEdge.endNode) &&
					(pre_move.DAGChangeType == DAG_DEL) )
				{
					(*RevCorrespDel)[i] = j;
					break;
				}
			}
		}
	}
}