Esempio n. 1
0
// build maps to make other conversions
void buildSubMaps(const Epetra_Map & globalMap,const std::vector<int> & vars,const Epetra_Comm & comm,
                  std::vector<std::pair<int,Teuchos::RCP<Epetra_Map> > > & subMaps)
{
   buildSubMaps(globalMap.NumGlobalElements(),globalMap.NumMyElements(),globalMap.MinMyGID(),
                vars,comm,subMaps);
}
Esempio n. 2
0
int main(int argc, char *argv[]) {

// standard Epetra MPI/Serial Comm startup	
#ifdef EPETRA_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm comm (MPI_COMM_WORLD);
#else
  Epetra_SerialComm comm;
#endif
  
  int MyPID = comm.MyPID();
  int ierr = 0;
  bool verbose = (0 == MyPID);
  bool reportErrors = (0 == MyPID);
  // setup MatlabEngine
  if (verbose) cout << "going to startup a matlab process...\n";
  EpetraExt::EpetraExt_MatlabEngine engine (comm);
  if (verbose) cout << "matlab started\n";
  
  // setup an array of doubles to be used for the examples
  int M = 20;
  int numGlobalElements = M * comm.NumProc();
  int N = 3;
  int numMyEntries = M * N;
  double* A = new double[numMyEntries];
  double* Aptr = A;
  int startValue = numMyEntries * MyPID;

  for(int col=0; col < N; col++) {
	for(int row=0; row < M; row++) {
          *Aptr++ = startValue++;
      }
  }

  // setup an array of ints to be used for the examples
  int* intA = new int[numMyEntries];
  int* intAptr = intA;
  int intStartValue = numMyEntries * MyPID;
  for(int i=0; i < M*N; i++) {
      *intAptr++ = intStartValue++;
  }
  
  // construct a map to be used by distributed objects
  Epetra_Map map (numGlobalElements, 0, comm);
  
  // CrsMatrix example
  // constructs a globally distributed CrsMatrix and then puts it into Matlab
  if (verbose) cout << " constructing CrsMatrix...\n";
  Epetra_CrsMatrix crsMatrix (Copy, map, N);
  int* indices = new int[N];
  for (int col=0; col < N; col++) {
    indices[col] = col;	  
  }
  
  double value = startValue;
  double* values = new double[numMyEntries];
  int minMyGID = map.MinMyGID();
  for (int row=0; row < M; row++) {
    for (int col=0; col < N; col++) {
      values[col] = value++;
    }
      
    crsMatrix.InsertGlobalValues(minMyGID + row, N, values, indices);
  }
  
  crsMatrix.FillComplete();
  if (verbose) cout << " CrsMatrix constructed\n";
  if (verbose) cout << " putting CrsMatrix into Matlab as CRSM\n";
  ierr = engine.PutRowMatrix(crsMatrix, "CRSM", false);
  if (ierr) {
    if (reportErrors) cout << "There was an error in engine.PutRowMatrix(crsMatrix, \"CRSM\", false): " << ierr << endl;
  }
  
  // BlockMap example
  // puts a map into Matlab
  if (verbose) cout << " putting Map into Matlab as MAP\n";
  ierr = engine.PutBlockMap(map, "MAP", false);
  if (ierr) {
    if (reportErrors) cout << "There was an error in engine.PutBlockMap(map, \"MAP\", false);: " << ierr << endl;
  }
  
  // MultiVector example
  // constructs a globally distributed MultiVector and then puts it into Matlab
  if (verbose) cout << " constructing MultiVector...\n";
  Epetra_MultiVector multiVector (Copy, map, A, M, N);
  if (verbose) cout << " MultiVector constructed\n";
  if (verbose) cout << " putting MultiVector into Matlab as MV\n";
  ierr = engine.PutMultiVector(multiVector, "MV");
  if (ierr) {
    if (reportErrors) cout << "There was an error in engine.PutMultiVector(multiVector, \"MV\"): " << ierr << endl;
  }
  
  // SerialDenseMatrix example
  // constructs a SerialDenseMatrix on every PE
  if (verbose) cout << " constructing a SerialDenseMatrix...\n";
  Epetra_SerialDenseMatrix sdMatrix (Copy, A, M, M, N);
  if (verbose) cout << " SerialDenseMatrix constructed\n";
  if (verbose) cout << " putting SerialDenseMatrix from PE0 into Matlab as SDM_PE0\n";
  // since the third parameter is left out, the SerialDenseMatrix from PE0 is used by default
  ierr = engine.PutSerialDenseMatrix(sdMatrix, "SDM_PE0");
  if (ierr) {
    if (reportErrors) cout << "There was an error in engine.PutSerialDenseMatrix(sdMatrix, \"SDM_PE0\"): " << ierr << endl;
  }
  if (comm.NumProc() > 1) {
    if (verbose) cout << " putting SerialDenseMatrix from PE1 into Matlab as SDM_PE1\n";
    // specifying 1 as the third parameter will put the SerialDenseMatrix from PE1 into Matlab
    ierr = engine.PutSerialDenseMatrix(sdMatrix, "SDM_PE1", 1);
    if (ierr) {
      if (reportErrors) cout << "There was an error in engine.PutSerialDenseMatrix(sdMatrix, \"SDM_PE1\", 1): " << ierr << endl;
    }
  }
  

  // SerialDenseVector example
  // constructs a SerialDenseVector on every PE
  if (verbose) cout << " constructing a SerialDenseVector...\n";
  Epetra_SerialDenseVector sdVector (Copy, A, M);
  if (verbose) cout << " SerialDenseVector constructed\n";
  // since the third parameter is left out, the SerialDenseMatrix from PE0 is used by default
  if (verbose) cout << " putting SerialDenseVector from PE0 into Matlab as SDV_PE0\n";
  ierr = engine.PutSerialDenseMatrix(sdVector, "SDV_PE0");
  if (ierr) {
    if (reportErrors) cout << "There was an error in engine.PutSerialDenseMatrix(sdVector, \"SDV_PE0\"): " << ierr << endl;
  }
  if (comm.NumProc() > 1) {
    if (verbose) cout << " putting SerialDenseVector from PE1 into Matlab as SDV_PE1\n";
    // specifying 1 as the third parameter will put the SerialDenseVector from PE1 into Matlab
    ierr = engine.PutSerialDenseMatrix(sdVector, "SDV_PE1", 1);
    if (ierr) {
      if (reportErrors) cout << "There was an error in engine.PutSerialDenseMatrix(sdMatrix, \"SDV_PE1\", 1): " << ierr << endl;
    }
  }

  // IntSerialDenseMatrix example
  // constructs a IntSerialDenseMatrix on every PE
  if (verbose) cout << " constructing a IntSerialDenseMatrix...\n";
  Epetra_IntSerialDenseMatrix isdMatrix (Copy, intA, M, M, N);
  if (verbose) cout << " IntSerialDenseMatrix constructed\n";
  // since the third parameter is left out, the IntSerialDenseMatrix from PE0 is used by default
  if (verbose) cout << " putting IntSerialDenseMatrix from PE0 into Matlab as ISDM_PE0\n";
  ierr = engine.PutIntSerialDenseMatrix(isdMatrix, "ISDM_PE0");
  if (ierr) {
    if (reportErrors) cout << "There was an error in engine.PutIntSerialDenseMatrix(isdMatrix, \"ISDM_PE0\"): " << ierr << endl;
  }
  if (comm.NumProc() > 1) {
    if (verbose) cout << " putting IntSerialDenseMatrix from PE1 into Matlab as ISDM_PE1\n";
    // specifying 1 as the third parameter will put the IntSerialDenseMatrix from PE1 into Matlab
    ierr = engine.PutIntSerialDenseMatrix(isdMatrix, "ISDM_PE1", 1);
    if (ierr) {
      if (reportErrors) cout << "There was an error in engine.PutSerialDenseMatrix(isdMatrix, \"ISDM_PE1\", 1): " << ierr << endl;
    }
  }


  // IntSerialDenseVector example
  // constructs a IntSerialDenseVector on every PE
  if (verbose) cout << " constructing a IntSerialDenseVector...\n";
  Epetra_IntSerialDenseVector isdVector (Copy, intA, M);
  if (verbose) cout << " IntSerialDenseVector constructed\n";
  // since the third parameter is left out, the IntSerialDenseVector from PE0 is used by default
  if (verbose) cout << " putting IntSerialDenseVector from PE0 into Matlab as ISDV_PE0\n";
  ierr = engine.PutIntSerialDenseMatrix(isdVector, "ISDV_PE0");
  if (ierr) {
    if (reportErrors) cout << "There was an error in engine.PutIntSerialDenseMatrix(isdVector, \"ISDV_PE0\"): " << ierr << endl;
  }
  if (comm.NumProc() > 1) {
    if (verbose) cout << " putting IntSerialDenseVector from PE1 into Matlab as ISDV_PE1\n";
    // specifying 1 as the third parameter will put the IntSerialDenseVector from PE1 into Matlab
    ierr = engine.PutIntSerialDenseMatrix(isdVector, "ISDV_PE1", 1);
    if (ierr) {
      if (reportErrors) cout << "There was an error in engine.PutSerialDenseMatrix(isdVector, \"ISDV_PE1\", 1): " << ierr << endl;
    }
  }
  
  // entering a while loop on PE0 will keep the Matlab workspace alive
  /*
  if (MyPID == 0)
  while(1) {
    // do nothing
  }
  */

  const int bufSize = 200;
  char s [bufSize];
  const int matlabBufferSize = 1024 * 16;
  char matlabBuffer [matlabBufferSize];
  
  // send some commands to Matlab and output the result to stdout
  engine.EvalString("whos", matlabBuffer, matlabBufferSize);
  if (verbose) cout << matlabBuffer << endl;
  engine.EvalString("SDV_PE0", matlabBuffer, matlabBufferSize);
  if (verbose) cout << matlabBuffer << endl;
  if (comm.NumProc() > 1) {
    engine.EvalString("SDV_PE1", matlabBuffer, matlabBufferSize);
    if (verbose) cout << matlabBuffer << endl;
  }
  
  // the following allows user interaction with Matlab
  if (MyPID == 0)
  while(1) {
      // Prompt the user and get a string
      printf(">> ");
      if (fgets(s, bufSize, stdin) == NULL) {
          printf("Bye\n");
          break ;
      }
      printf ("command :%s:\n", s) ;
      
      // send the command to MATLAB
      // output goes to stdout
      ierr = engine.EvalString(s, matlabBuffer, matlabBufferSize);
      if (ierr != 0) {
          printf("there was an error: %d", ierr);
		  ierr = 0;
      }
      else {
      	  printf("Matlab Output:\n%s", matlabBuffer);
      }
  }
  
  if (verbose) cout << endl << " all done\n";

// standard finalizer for Epetra MPI Comms
#ifdef EPETRA_MPI
  MPI_Finalize();
#endif

  // we need to delete engine because the MatlabEngine finalizer shuts down the Matlab process associated with this example
  // if we don't delete the Matlab engine, then this example application will not shut down properly
  delete &engine;
  return(0);
}
Esempio n. 3
0
int checkmap(Epetra_Map & Map, int NumGlobalElements, int NumMyElements, 
	     int *MyGlobalElements, int IndexBase, Epetra_Comm& Comm,
	     bool DistributedGlobal)
{
  int i, ierr=0, forierr = 0;

  EPETRA_TEST_ERR(!Map.ConstantElementSize(),ierr);

  EPETRA_TEST_ERR(DistributedGlobal!=Map.DistributedGlobal(),ierr);


  EPETRA_TEST_ERR(Map.ElementSize()!=1,ierr);
  int *MyElementSizeList = new int[NumMyElements];

  EPETRA_TEST_ERR(Map.ElementSizeList(MyElementSizeList)!=0,ierr);

  forierr = 0;
  for (i=0; i<NumMyElements; i++) forierr += MyElementSizeList[i]!=1;
  EPETRA_TEST_ERR(forierr,ierr);

  delete [] MyElementSizeList;

  const Epetra_Comm & Comm1 = Map.Comm();

  EPETRA_TEST_ERR(Comm1.NumProc()!=Comm.NumProc(),ierr);

  EPETRA_TEST_ERR(Comm1.MyPID()!=Comm.MyPID(),ierr);

  EPETRA_TEST_ERR(Map.IndexBase()!=IndexBase,ierr);

  EPETRA_TEST_ERR(!Map.LinearMap() && MyGlobalElements==0,ierr);

  EPETRA_TEST_ERR(Map.LinearMap() && MyGlobalElements!=0,ierr);

  EPETRA_TEST_ERR(Map.MaxAllGID()!=NumGlobalElements-1+IndexBase,ierr);

  EPETRA_TEST_ERR(Map.MaxElementSize()!=1,ierr);

  int MaxLID = Map.MaxLID();
  EPETRA_TEST_ERR(MaxLID!=NumMyElements-1,ierr);

  int MaxMyGID = (Comm.MyPID()+1)*NumMyElements-1+IndexBase;
  if (Comm.MyPID()>2) MaxMyGID+=3;
  if (!DistributedGlobal) MaxMyGID = NumMyElements-1+IndexBase;
  EPETRA_TEST_ERR(Map.MaxMyGID()!=MaxMyGID,ierr);

  EPETRA_TEST_ERR(Map.MinAllGID()!=IndexBase,ierr);

  EPETRA_TEST_ERR(Map.MinElementSize()!=1,ierr);

  EPETRA_TEST_ERR(Map.MinLID()!=0,ierr);

  int MinMyGID = Comm.MyPID()*NumMyElements+IndexBase;
  if (Comm.MyPID()>2) MinMyGID+=3;
  if (!DistributedGlobal) MinMyGID = 0;
  EPETRA_TEST_ERR(Map.MinMyGID()!=MinMyGID,ierr);
  
  int * MyGlobalElements1 = new int[NumMyElements];
  EPETRA_TEST_ERR(Map.MyGlobalElements(MyGlobalElements1)!=0,ierr);

  forierr = 0;
  if (MyGlobalElements==0)
    {
      for (i=0; i<NumMyElements; i++) 
	forierr += MyGlobalElements1[i]!=MinMyGID+i;
      EPETRA_TEST_ERR(forierr,ierr);
    }
  else {
    for (i=0; i<NumMyElements; i++)
      forierr += MyGlobalElements[i]!=MyGlobalElements1[i];
    EPETRA_TEST_ERR(forierr,ierr);
  }
  EPETRA_TEST_ERR(Map.NumGlobalElements()!=NumGlobalElements,ierr);
  
  EPETRA_TEST_ERR(Map.NumGlobalPoints()!=NumGlobalElements,ierr);
  
  EPETRA_TEST_ERR(Map.NumMyElements()!=NumMyElements,ierr);  

  EPETRA_TEST_ERR(Map.NumMyPoints()!=NumMyElements,ierr);

  int MaxMyGID2 = Map.GID(Map.LID(MaxMyGID));
  EPETRA_TEST_ERR(MaxMyGID2 != MaxMyGID,ierr);
  int MaxLID2 = Map.LID(Map.GID(MaxLID));
  EPETRA_TEST_ERR(MaxLID2 != MaxLID,ierr);

  EPETRA_TEST_ERR(Map.GID(MaxLID+1) != IndexBase-1,ierr);// MaxLID+1 doesn't exist
  EPETRA_TEST_ERR(Map.LID(MaxMyGID+1) != -1,ierr);// MaxMyGID+1 doesn't exist or is on a different processor

  EPETRA_TEST_ERR(!Map.MyGID(MaxMyGID),ierr);
  EPETRA_TEST_ERR(Map.MyGID(MaxMyGID+1),ierr);

  EPETRA_TEST_ERR(!Map.MyLID(MaxLID),ierr);
  EPETRA_TEST_ERR(Map.MyLID(MaxLID+1),ierr);

  EPETRA_TEST_ERR(!Map.MyGID(Map.GID(MaxLID)),ierr);
  EPETRA_TEST_ERR(Map.MyGID(Map.GID(MaxLID+1)),ierr);

  EPETRA_TEST_ERR(!Map.MyLID(Map.LID(MaxMyGID)),ierr);
  EPETRA_TEST_ERR(Map.MyLID(Map.LID(MaxMyGID+1)),ierr);

  // Check RemoteIDList function
  // Get some GIDs off of each processor to test
  int TotalNumEle, NumElePerProc, NumProc = Comm.NumProc();
  int MinNumEleOnProc;
  int NumMyEle=Map.NumMyElements();
  Comm.MinAll(&NumMyEle,&MinNumEleOnProc,1);
  if (MinNumEleOnProc > 5) NumElePerProc = 6;
  else NumElePerProc = MinNumEleOnProc;
  if (NumElePerProc > 0) {
    TotalNumEle = NumElePerProc*NumProc;
    int * MyGIDlist = new int[NumElePerProc];
    int * GIDlist = new int[TotalNumEle];
    int * PIDlist = new int[TotalNumEle];
    int * LIDlist = new int[TotalNumEle];
    for (i=0; i<NumElePerProc; i++)
	  MyGIDlist[i] = MyGlobalElements1[i];
    Comm.GatherAll(MyGIDlist,GIDlist,NumElePerProc);// Get a few values from each proc
    Map.RemoteIDList(TotalNumEle, GIDlist, PIDlist, LIDlist);
    int MyPID= Comm.MyPID();

    forierr = 0;
    for (i=0; i<TotalNumEle; i++) {
      if (Map.MyGID(GIDlist[i])) {
	forierr += PIDlist[i] != MyPID;
	forierr += !Map.MyLID(Map.LID(GIDlist[i])) || Map.LID(GIDlist[i]) != LIDlist[i] || Map.GID(LIDlist[i]) != GIDlist[i];
      }
      else {
	forierr += PIDlist[i] == MyPID; // If MyGID comes back false, the PID listed should be that of another proc
      }
    }
    EPETRA_TEST_ERR(forierr,ierr);

    delete [] MyGIDlist;
    delete [] GIDlist;
    delete [] PIDlist;
    delete [] LIDlist;
  }

  delete [] MyGlobalElements1;

  // Check RemoteIDList function (assumes all maps are linear, even if not stored that way)

  if (Map.LinearMap()) {

    int * GIDList = new int[3];
    int * PIDList = new int[3];
    int * LIDList = new int[3];
    int MyPID = Map.Comm().MyPID();
  
    int NumIDs = 0;
    //GIDList[NumIDs++] = Map.MaxAllGID()+1; // Should return -1 for both PID and LID
    if (Map.MinMyGID()-1>=Map.MinAllGID()) GIDList[NumIDs++] = Map.MinMyGID()-1;
    if (Map.MaxMyGID()+1<=Map.MaxAllGID()) GIDList[NumIDs++] = Map.MaxMyGID()+1;

    Map.RemoteIDList(NumIDs, GIDList, PIDList, LIDList);

    NumIDs = 0;

    //EPETRA_TEST_ERR(!(PIDList[NumIDs]==-1),ierr);
    //EPETRA_TEST_ERR(!(LIDList[NumIDs++]==-1),ierr);

    if (Map.MinMyGID()-1>=Map.MinAllGID()) EPETRA_TEST_ERR(!(PIDList[NumIDs++]==MyPID-1),ierr);
    if (Map.MaxMyGID()+1<=Map.MaxAllGID()) EPETRA_TEST_ERR(!(PIDList[NumIDs]==MyPID+1),ierr);
    if (Map.MaxMyGID()+1<=Map.MaxAllGID()) EPETRA_TEST_ERR(!(LIDList[NumIDs++]==0),ierr);

    delete [] GIDList;
    delete [] PIDList;
    delete [] LIDList;

  }
  
  return (ierr);
}
int MultiVectorTests(const Epetra_Map & Map, int NumVectors, bool verbose)
{
  const Epetra_Comm & Comm = Map.Comm();
  int ierr = 0, i, j;
  
  /* get number of processors and the name of this processor */
  
  int MyPID   = Comm.MyPID();
  
  // Construct FEVbrMatrix
  
  if (verbose && MyPID==0) cout << "constructing Epetra_FEVbrMatrix" << endl;

  //
  //we'll set up a tri-diagonal matrix.
  //

  int numGlobalRows = Map.NumGlobalElements();
  int minLocalRow = Map.MinMyGID();
  int rowLengths = 3;

  Epetra_FEVbrMatrix A(Copy, Map, rowLengths);
 
  if (verbose && MyPID==0) {
    cout << "calling A.InsertGlobalValues with 1-D data array"<<endl;
  }

  int numCols = 3;
  int* ptIndices = new int[numCols];
  for(int k=0; k<numCols; ++k) {
    ptIndices[k] = minLocalRow+k;
  }

  double* values_1d = new double[numCols*numCols];
  for(j=0; j<numCols*numCols; ++j) {
    values_1d[j] = 3.0;
  }

  //For an extreme test, we'll have all processors sum into all rows.

  int minGID = Map.MinAllGID();

  //For now we're going to assume that there's just one point associated with
  //each GID (element).

  double* ptCoefs = new double[3];

  {for(i=0; i<numGlobalRows; ++i) {
    if (i>0 && i<numGlobalRows-1) {
      ptIndices[0] = minGID+i-1;
      ptIndices[1] = minGID+i;
      ptIndices[2] = minGID+i+1;
      ptCoefs[0] = -1.0;
      ptCoefs[1] = 2.0;
      ptCoefs[2] = -1.0;
      numCols = 3;
    }
    else if (i == 0) {
      ptIndices[0] = minGID+i;
      ptIndices[1] = minGID+i+1;
      ptIndices[2] = minGID+i+2;
      ptCoefs[0] = 2.0;
      ptCoefs[1] = -1.0;
      ptCoefs[2] = -1.0;
      numCols = 3;
    }
    else {
      ptIndices[0] = minGID+i-2;
      ptIndices[1] = minGID+i-1;
      ptIndices[2] = minGID+i;
      ptCoefs[0] = -1.0;
      ptCoefs[1] = -1.0;
      ptCoefs[2] = 2.0;
      numCols = 3;
    }

    int row = minGID+i;

    EPETRA_TEST_ERR( A.BeginInsertGlobalValues(row, rowLengths, ptIndices), ierr);

    for(j=0; j<rowLengths; ++j) {
      EPETRA_TEST_ERR( A.SubmitBlockEntry(&(ptCoefs[j]), 1, 1, 1), ierr);
    }

    EPETRA_TEST_ERR( A.EndSubmitEntries(), ierr);

  }}

  if (verbose&&MyPID==0) {
    cout << "calling A.GlobalAssemble()" << endl;
  }

  EPETRA_TEST_ERR( A.GlobalAssemble(), ierr );

  if (verbose&&MyPID==0) {
  cout << "after globalAssemble"<<endl;
  }
  if (verbose) {
  A.Print(cout);
  }

  delete [] values_1d;
  delete [] ptIndices;
  delete [] ptCoefs;

  return(ierr);
}