Esempio n. 1
0
extern "C" OSL_DLL_EXPORT int
test_shade (int argc, const char *argv[])
{
    OIIO::Timer timer;

    // Create a new shading system.  We pass it the RendererServices
    // object that services callbacks from the shading system, NULL for
    // the TextureSystem (that just makes 'create' make its own TS), and
    // an error handler.
    shadingsys = new ShadingSystem (&rend, NULL, &errhandler);

    // Register the layout of all closures known to this renderer
    // Any closure used by the shader which is not registered, or
    // registered with a different number of arguments will lead
    // to a runtime error.
    register_closures(shadingsys);

    // Remember that each shader parameter may optionally have a
    // metadata hint [[int lockgeom=...]], where 0 indicates that the
    // parameter may be overridden by the geometry itself, for example
    // with data interpolated from the mesh vertices, and a value of 1
    // means that it is "locked" with respect to the geometry (i.e. it
    // will not be overridden with interpolated or
    // per-geometric-primitive data).
    // 
    // In order to most fully optimize shader, we typically want any
    // shader parameter not explicitly specified to default to being
    // locked (i.e. no per-geometry override):
    shadingsys->attribute("lockgeom", 1);

    // Now we declare our shader.
    // 
    // Each material in the scene is comprised of a "shader group."
    // Each group is comprised of one or more "layers" (a.k.a. shader
    // instances) with possible connections from outputs of
    // upstream/early layers into the inputs of downstream/later layers.
    // A shader instance is the combination of a reference to a shader
    // master and its parameter values that may override the defaults in
    // the shader source and may be particular to this instance (versus
    // all the other instances of the same shader).
    // 
    // A shader group declaration typically looks like this:
    //
    //   ShaderGroupRef shadergroup = ss->ShaderGroupBegin ();
    //   ss->Parameter ("paramname", TypeDesc paramtype, void *value);
    //      ... and so on for all the other parameters of...
    //   ss->Shader ("shadertype", "shadername", "layername");
    //      The Shader() call creates a new instance, which gets
    //      all the pending Parameter() values made right before it.
    //   ... and other shader instances in this group, interspersed with...
    //   ss->ConnectShaders ("layer1", "param1", "layer2", "param2");
    //   ... and other connections ...
    //   ss->ShaderGroupEnd ();
    // 
    // It looks so simple, and it really is, except that the way this
    // testshade program works is that all the Parameter() and Shader()
    // calls are done inside getargs(), as it walks through the command
    // line arguments, whereas the connections accumulate and have
    // to be processed at the end.  Bear with us.
    
    // Start the shader group and grab a reference to it.
    shadergroup = shadingsys->ShaderGroupBegin (groupname);

    // Get the command line arguments.  That will set up all the shader
    // instances and their parameters for the group.
    getargs (argc, argv);

    if (! shadergroup) {
        std::cerr << "ERROR: Invalid shader group. Exiting testshade.\n";
        return EXIT_FAILURE;
    }

    shadingsys->attribute (shadergroup.get(), "groupname", groupname);

    // Now set up the connections
    for (size_t i = 0;  i < connections.size();  i += 4) {
        if (i+3 < connections.size()) {
            std::cout << "Connect " 
                      << connections[i] << "." << connections[i+1]
                      << " to " << connections[i+2] << "." << connections[i+3]
                      << "\n";
            shadingsys->ConnectShaders (connections[i].c_str(),
                                        connections[i+1].c_str(),
                                        connections[i+2].c_str(),
                                        connections[i+3].c_str());
        }
    }

    // End the group
    shadingsys->ShaderGroupEnd ();

    if (verbose || do_oslquery) {
        std::string pickle;
        shadingsys->getattribute (shadergroup.get(), "pickle", pickle);
        std::cout << "Shader group:\n---\n" << pickle << "\n---\n";
        std::cout << "\n";
        ustring groupname;
        shadingsys->getattribute (shadergroup.get(), "groupname", groupname);
        std::cout << "Shader group \"" << groupname << "\" layers are:\n";
        int num_layers = 0;
        shadingsys->getattribute (shadergroup.get(), "num_layers", num_layers);
        if (num_layers > 0) {
            std::vector<const char *> layers (size_t(num_layers), NULL);
            shadingsys->getattribute (shadergroup.get(), "layer_names",
                                      TypeDesc(TypeDesc::STRING, num_layers),
                                      &layers[0]);
            for (int i = 0; i < num_layers; ++i) {
                std::cout << "    " << (layers[i] ? layers[i] : "<unnamed>") << "\n";
                if (do_oslquery) {
                    OSLQuery q;
                    q.init (shadergroup.get(), i);
                    for (size_t p = 0;  p < q.nparams(); ++p) {
                        const OSLQuery::Parameter *param = q.getparam(p);
                        std::cout << "\t" << (param->isoutput ? "output "  : "")
                                  << param->type << ' ' << param->name << "\n";
                    }
                }
            }
        }
        std::cout << "\n";
    }
    if (archivegroup.size())
        shadingsys->archive_shadergroup (shadergroup.get(), archivegroup);

    if (outputfiles.size() != 0)
        std::cout << "\n";

    // Set up the named transformations, including shader and object.
    // For this test application, we just do this statically; in a real
    // renderer, the global named space (like "myspace") would probably
    // be static, but shader and object spaces may be different for each
    // object.
    setup_transformations (rend, Mshad, Mobj);

    // Set up the image outputs requested on the command line
    setup_output_images (shadingsys, shadergroup);

    if (debug)
        test_group_attributes (shadergroup.get());

    if (num_threads < 1)
        num_threads = boost::thread::hardware_concurrency();

    double setuptime = timer.lap ();

    // Allow a settable number of iterations to "render" the whole image,
    // which is useful for time trials of things that would be too quick
    // to accurately time for a single iteration
    for (int iter = 0;  iter < iters;  ++iter) {
        OIIO::ROI roi (0, xres, 0, yres);

        if (use_shade_image)
            OSL::shade_image (*shadingsys, *shadergroup, NULL,
                              *outputimgs[0], outputvarnames,
                              pixelcenters ? ShadePixelCenters : ShadePixelGrid,
                              roi, num_threads);
        else {
            bool save = (iter == (iters-1));   // save on last iteration
#if 0
            shade_region (shadergroup.get(), roi, save);
#else
            OIIO::ImageBufAlgo::parallel_image (
                    boost::bind (shade_region, shadergroup.get(), _1, save),
                    roi, num_threads);
#endif
        }

        // If any reparam was requested, do it now
        if (reparams.size() && reparam_layer.size()) {
            for (size_t p = 0;  p < reparams.size();  ++p) {
                const ParamValue &pv (reparams[p]);
                shadingsys->ReParameter (*shadergroup, reparam_layer.c_str(),
                                         pv.name().c_str(), pv.type(),
                                         pv.data());
            }
        }
    }
    double runtime = timer.lap();

    if (outputfiles.size() == 0)
        std::cout << "\n";

    // Write the output images to disk
    for (size_t i = 0;  i < outputimgs.size();  ++i) {
        if (outputimgs[i]) {
            if (! print_outputs) {
                std::string filename = outputimgs[i]->name();
                // JPEG, GIF, and PNG images should be automatically saved
                // as sRGB because they are almost certainly supposed to
                // be displayed on web pages.
                using namespace OIIO;
                if (Strutil::iends_with (filename, ".jpg") ||
                    Strutil::iends_with (filename, ".jpeg") ||
                    Strutil::iends_with (filename, ".gif") ||
                    Strutil::iends_with (filename, ".png")) {
                    ImageBuf ccbuf;
                    ImageBufAlgo::colorconvert (ccbuf, *outputimgs[i],
                                                "linear", "sRGB", false,
                                                "", "");
                    ccbuf.set_write_format (outputimgs[i]->spec().format);
                    ccbuf.write (filename);
                } else {
                    outputimgs[i]->write (filename);
                }
            }
            delete outputimgs[i];
            outputimgs[i] = NULL;
        }
    }

    // Print some debugging info
    if (debug || runstats || profile) {
        double writetime = timer.lap();
        std::cout << "\n";
        std::cout << "Setup: " << OIIO::Strutil::timeintervalformat (setuptime,2) << "\n";
        std::cout << "Run  : " << OIIO::Strutil::timeintervalformat (runtime,2) << "\n";
        std::cout << "Write: " << OIIO::Strutil::timeintervalformat (writetime,2) << "\n";
        std::cout << "\n";
        std::cout << shadingsys->getstats (5) << "\n";
        OIIO::TextureSystem *texturesys = shadingsys->texturesys();
        if (texturesys)
            std::cout << texturesys->getstats (5) << "\n";
        std::cout << ustring::getstats() << "\n";
    }

    // We're done with the shading system now, destroy it
    shadergroup.reset ();  // Must release this before destroying shadingsys
    delete shadingsys;

    return EXIT_SUCCESS;
}
static void
setup_output_images (ShadingSystem *shadingsys,
                     ShaderGroupRef &shadergroup)
{
    // Tell the shading system which outputs we want
    if (outputvars.size()) {
        std::vector<const char *> aovnames (outputvars.size());
        for (size_t i = 0; i < outputvars.size(); ++i)
            aovnames[i] = outputvars[i].c_str();
        shadingsys->attribute ("renderer_outputs",
                               TypeDesc(TypeDesc::STRING,(int)aovnames.size()),
                               &aovnames[0]);
    }

    if (extraoptions.size())
        shadingsys->attribute ("options", extraoptions);

    ShadingContext *ctx = shadingsys->get_context ();
    // Because we can only call get_symbol on something that has been
    // set up to shade (or executed), we call execute() but tell it not
    // to actually run the shader.
    ShaderGlobals sg;
    setup_shaderglobals (sg, shadingsys, 0, 0);
    shadingsys->execute (*ctx, *shadergroup, sg, false);

    // For each output file specified on the command line...
    for (size_t i = 0;  i < outputfiles.size();  ++i) {
        // Make a ustring version of the output name, for fast manipulation
        outputvarnames.push_back (ustring(outputvars[i]));
        // Start with a NULL ImageBuf pointer
        outputimgs.push_back (NULL);

        // Ask for a pointer to the symbol's data, as computed by this
        // shader.
        TypeDesc t;
        const void *data = shadingsys->get_symbol (*ctx, outputvarnames[i], t);
        if (!data) {
            std::cout << "Output " << outputvars[i] 
                      << " not found, skipping.\n";
            continue;  // Skip if symbol isn't found
        }
        std::cout << "Output " << outputvars[i] << " to "
                  << outputfiles[i] << "\n";

        // And the "base" type, i.e. the type of each element or channel
        TypeDesc tbase = TypeDesc ((TypeDesc::BASETYPE)t.basetype);

        // But which type are we going to write?  Use the true data type
        // from OSL, unless the command line options indicated that
        // something else was desired.
        TypeDesc outtypebase = tbase;
        if (dataformatname == "uint8")
            outtypebase = TypeDesc::UINT8;
        else if (dataformatname == "half")
            outtypebase = TypeDesc::HALF;
        else if (dataformatname == "float")
            outtypebase = TypeDesc::FLOAT;

        // Number of channels to write to the image is the number of (array)
        // elements times the number of channels (e.g. 1 for scalar, 3 for
        // vector, etc.)
        int nchans = t.numelements() * t.aggregate;

        // Make an ImageBuf of the right type and size to hold this
        // symbol's output, and initially clear it to all black pixels.
        OIIO::ImageSpec spec (xres, yres, nchans, outtypebase);
        outputimgs[i] = new OIIO::ImageBuf(outputfiles[i], spec);
        OIIO::ImageBufAlgo::zero (*outputimgs[i]);
    }

    shadingsys->release_context (ctx);  // don't need this anymore for now
}
Esempio n. 3
0
static void
setup_output_images (ShadingSystem *shadingsys,
                     ShaderGroupRef &shadergroup)
{
    // Tell the shading system which outputs we want
    if (outputvars.size()) {
        std::vector<const char *> aovnames (outputvars.size());
        for (size_t i = 0; i < outputvars.size(); ++i) {
            ustring varname (outputvars[i]);
            aovnames[i] = varname.c_str();
            size_t dot = varname.find('.');
            if (dot != ustring::npos) {
                // If the name contains a dot, it's intended to be layer.symbol
                varname = ustring (varname, dot+1);
            }
        }
        shadingsys->attribute (use_group_outputs ? shadergroup.get() : NULL,
                               "renderer_outputs",
                               TypeDesc(TypeDesc::STRING,(int)aovnames.size()),
                               &aovnames[0]);
        if (use_group_outputs)
            std::cout << "Marking group outputs, not global renderer outputs.\n";
    }

    if (entrylayers.size()) {
        std::vector<const char *> layers;
        std::cout << "Entry layers:";
        for (size_t i = 0; i < entrylayers.size(); ++i) {
            ustring layername (entrylayers[i]);  // convert to ustring
            int layid = shadingsys->find_layer (*shadergroup, layername);
            layers.push_back (layername.c_str());
            entrylayer_index.push_back (layid);
            std::cout << ' ' << entrylayers[i] << "(" << layid << ")";
        }
        std::cout << "\n";
        shadingsys->attribute (shadergroup.get(), "entry_layers",
                               TypeDesc(TypeDesc::STRING,(int)entrylayers.size()),
                               &layers[0]);
    }

    if (extraoptions.size())
        shadingsys->attribute ("options", extraoptions);

    ShadingContext *ctx = shadingsys->get_context ();
    // Because we can only call find_symbol or get_symbol on something that
    // has been set up to shade (or executed), we call execute() but tell it
    // not to actually run the shader.
    ShaderGlobals sg;
    setup_shaderglobals (sg, shadingsys, 0, 0);

    if (raytype_opt)
        shadingsys->optimize_group (shadergroup.get(), raytype_bit, ~raytype_bit);
    shadingsys->execute (ctx, *shadergroup, sg, false);

    if (entryoutputs.size()) {
        std::cout << "Entry outputs:";
        for (size_t i = 0; i < entryoutputs.size(); ++i) {
            ustring name (entryoutputs[i]);  // convert to ustring
            const ShaderSymbol *sym = shadingsys->find_symbol (*shadergroup, name);
            if (!sym) {
                std::cout << "\nEntry output " << entryoutputs[i] << " not found. Abording.\n";
                exit (EXIT_FAILURE);
            }
            entrylayer_symbols.push_back (sym);
            std::cout << ' ' << entryoutputs[i];
        }
        std::cout << "\n";
    }

    // For each output file specified on the command line...
    for (size_t i = 0;  i < outputfiles.size();  ++i) {
        // Make a ustring version of the output name, for fast manipulation
        outputvarnames.push_back (ustring(outputvars[i]));
        // Start with a NULL ImageBuf pointer
        outputimgs.push_back (NULL);

        // Ask for a pointer to the symbol's data, as computed by this
        // shader.
        TypeDesc t;
        const void *data = shadingsys->get_symbol (*ctx, outputvarnames[i], t);
        if (!data) {
            std::cout << "Output " << outputvars[i] 
                      << " not found, skipping.\n";
            continue;  // Skip if symbol isn't found
        }
        std::cout << "Output " << outputvars[i] << " to "
                  << outputfiles[i] << "\n";

        // And the "base" type, i.e. the type of each element or channel
        TypeDesc tbase = TypeDesc ((TypeDesc::BASETYPE)t.basetype);

        // But which type are we going to write?  Use the true data type
        // from OSL, unless the command line options indicated that
        // something else was desired.
        TypeDesc outtypebase = tbase;
        if (dataformatname == "uint8")
            outtypebase = TypeDesc::UINT8;
        else if (dataformatname == "half")
            outtypebase = TypeDesc::HALF;
        else if (dataformatname == "float")
            outtypebase = TypeDesc::FLOAT;

        // Number of channels to write to the image is the number of (array)
        // elements times the number of channels (e.g. 1 for scalar, 3 for
        // vector, etc.)
        int nchans = t.numelements() * t.aggregate;

        // Make an ImageBuf of the right type and size to hold this
        // symbol's output, and initially clear it to all black pixels.
        OIIO::ImageSpec spec (xres, yres, nchans, TypeDesc::FLOAT);
        outputimgs[i] = new OIIO::ImageBuf(outputfiles[i], spec);
        outputimgs[i]->set_write_format (outtypebase);
        OIIO::ImageBufAlgo::zero (*outputimgs[i]);
    }

    if (outputimgs.empty()) {
        OIIO::ImageSpec spec (xres, yres, 3, TypeDesc::FLOAT);
        outputimgs.push_back(new OIIO::ImageBuf(spec));
    }

    shadingsys->release_context (ctx);  // don't need this anymore for now
}