Esempio n. 1
0
      /* Method to set an a priori position of receiver using
       * Bancroft's method.
       *
       * @param Tr            Time of observation
       * @param Satellite     std::vector of satellites in view
       * @param Pseudorange   std::vector of pseudoranges measured from
       *                      rover station to satellites
       * @param Eph           Satellites Ephemeris
       *
       * @return
       *  0 if OK
       *  -1 if problems arose
       */
   int ModeledPR::Prepare( const CommonTime& Tr,
                           std::vector<SatID>& Satellite,
                           std::vector<double>& Pseudorange,
                           const XvtStore<SatID>& Eph )
   {

      Matrix<double> SVP;
      Bancroft Ban;
      Vector<double> vPos;
      PRSolution2 raimObj;

      try
      {
         raimObj.PrepareAutonomousSolution( Tr,
                                            Satellite,
                                            Pseudorange,
                                            Eph,
                                            SVP );

         if( Ban.Compute(SVP, vPos) < 0 )
         {
            return -1;
         }
      }
      catch(...)
      {
         return -1;
      }

      return Prepare(vPos(0), vPos(1), vPos(2));

   }  // End of method 'ModeledPR::Prepare()'
Esempio n. 2
0
void P::process()
{
   for (int i=1; i < 33; i++)
   {
      SatID sv(i, SatID::systemGPS);
      svVec.push_back(sv);
   }

   vector<int> dataPoints(32);
   float refDataPoint;
// -----------------------------------------------------------------------
// -----------------------------------------------------------------------
// Following tables hold the data sets that we have for now.
// NOW CARDATA.bin
/*
// subframe three data points from gnssDavisHouseCar2.bin: (z=360198) CRUMMY
   dataPoints[1]=29487862; 
   dataPoints[9]=29415434;
   dataPoints[14]=29393435;
   dataPoints[23]=29360589;
   dataPoints[25]=29365069;
   dataPoints[28]=29328671;
   dataPoints[29]=29471399;
*/
// position -e rin269.08n -z 360204 -w 1498
/*
// sf3 
// position -e rin269.08n -z 360204 -r 8.184 -w 1498
// GOOD results: rms 55 rmsknown 62
   dataPoints[1]=14743933; 
   dataPoints[9]=14707720;
   dataPoints[14]=14696721;
   dataPoints[17]=14745155;
   dataPoints[23]=14680297;
   dataPoints[25]=14682538;
   dataPoints[28]=14662516;
   dataPoints[29]=14735701;
*/
/*
// sf4 GOOD ALSO
   dataPoints[1]=63847008; 
   dataPoints[9]=63810816;
   dataPoints[14]=63799663;
   dataPoints[17]=63848083;
   dataPoints[23]=63783288;
   dataPoints[25]=63785487;
   dataPoints[28]=63765493;
   dataPoints[29]=63838790;
*/
/*
// sf 5   90 meters
   dataPoints[1]=112950083; 
   dataPoints[9]=112913912;
   dataPoints[14]=112902598;
   dataPoints[17]=112951011;
   dataPoints[23]=112886279;
   dataPoints[25]=112888436;
   dataPoints[28]=112868477;
   dataPoints[29]=112941879;
*/
/*
// sf 1  140 m, 220 m (only 7 sats)
   dataPoints[1]=162053158; 
   dataPoints[9]=162017008;
   dataPoints[14]=162005540;
   dataPoints[17]=162053932;
   dataPoints[23]=161989277;
   dataPoints[25]=161991385;
   dataPoints[29]=162044968;
*/
/*
// sf 2   90m and 130m
   dataPoints[1]=211156226; 
   dataPoints[9]=211120111;
   dataPoints[14]=211108482;
   dataPoints[17]=211156860;
   dataPoints[23]=211092268;
   dataPoints[25]=211094333;
   dataPoints[29]=211148057;
*/
// -----------------------------------------------------------------------
// -----------------------------------------------------------------------

   long int total = 0;
   int numberSVs = 0;
   for(int i=0; i<32;i++)
   {

      /* // This code uses first PRN found as reference data point.
      if(dataPoints[i] != 0)
      {
         refDataPoint = dataPoints[i];
         break;
      }*/

      total += dataPoints[i];
      if(dataPoints[i] != 0)
         numberSVs++;
   }
   refDataPoint = total/numberSVs; // average data point to be reference.
   
   vector<double> obsVec(32);
   for(int i=0; i<32; i++)
   {
      if(dataPoints[i] != 0)
      {
         // 0.073 is an arbitrary guessed time of flight
         obsVec[i] = gpstk::C_MPS*(0.073 - (refDataPoint - 
                                dataPoints[i])/(1000*sampleRate*1000));
      }  
      else
      {
         SatID temp(0, SatID::systemGPS); 
         svVec[i] = temp; // set SatID equal to 0, the SV won't be considered
      }
   }

   if(verboseLevel)
   {
      for(int i = 0; i < 32; i++)
         cout << svVec[i] << " "  << obsVec[i] << endl;
   }

//-----------------------------------------------------------------------------
// Calculate initial position solution.
   GGTropModel gg;
   gg.setWeather(30., 1000., 50.);    
   PRSolution2 prSolver;
   prSolver.RMSLimit = 400;
   prSolver.RAIMCompute(time, svVec, obsVec, bce, &gg);
   Vector<double> sol = prSolver.Solution;

   cout << endl << "Position (ECEF): " << fixed << sol[0] << " " << sol[1] 
        << " " << sol[2] << endl << "Clock Error (includes that caused by guess): " 
        << sol[3]*1000/gpstk::C_MPS << " ms" << endl;
   cout << "# good SV's: " << prSolver.Nsvs << endl
        << "RMSResidual: " << prSolver.RMSResidual << " meters" << endl << endl;
//----------------------------------------------------------------------------- 
// Calculate Ionosphere correction.
   antennaPos[0] = sol[0];
   antennaPos[1] = sol[1];
   antennaPos[2] = sol[2];
   Position ecef(antennaPos);
   for (int i=1; i<=32; i++)
   {
      SatID sv(i, SatID::systemGPS);
      try 
      {
         Xvt svpos = bce.getXvt(sv, time);
         double el = antennaPos.elvAngle(svpos.x);
         double az = antennaPos.azAngle(svpos.x);
         double ic = iono.getCorrection(time, ecef, el, az); // in meters
         ionoVec.push_back(ic);
      }
      catch (Exception& e)
      {}
   }
   if(verboseLevel)
   {
      for(int i = 0; i < 32; i++)
      {
         cout << svVec[i] << " "  << obsVec[i] << " " << ionoVec[i] << endl;
         
      }
   }
   for(int i=0;i<32;i++)
   {
      obsVec[i] -= sol[3]; // convert pseudoranges to ranges
      obsVec[i] += ionoVec[i]; // make iono correction to ranges.
   }

//----------------------------------------------------------------------------- 
// Recalculate position using time corrected by clock error + ionosphere.
   time -= (sol[3] / gpstk::C_MPS);
   GGTropModel gg2;
   gg2.setWeather(30.,1000., 20.); /*(Temp(C),Pressure(mbar),Humidity(%))*/    
   PRSolution2 prSolver2;
   prSolver2.RMSLimit = 400;
   prSolver2.RAIMCompute(time, svVec, obsVec, bce, &gg2);
   Vector<double> sol2 = prSolver2.Solution;
   cout << "Recomputing position with refined time and ionosphere correction:" 
        << fixed << setprecision(6);
   cout << endl << "Position (ECEF): " << fixed << sol2[0] << " " << sol2[1] 
        << " " << sol2[2] << endl << "Clock Error: " 
        << sol2[3]*1e6/gpstk::C_MPS << " us" << endl;
   cout << "# good SV's: " << prSolver2.Nsvs << endl
        << "RMSResidual: " << prSolver2.RMSResidual << " meters" << endl;

//-----------------------------------------------------------------------------
// Following block will make PRSolve compute residual from a known hardcoded
// position
   PRSolution2 prSolver3; 
   vector<double> S;
/*
   S.push_back(-756736.1300); // my house
   S.push_back(-5465547.0217);
   S.push_back(3189100.6012);
*/

   S.push_back(-740314.1444); // ARLSW antenna
   S.push_back(-5457066.8902);
   S.push_back(3207241.5759);

   S.push_back(0.0);
   prSolver3.Solution = S;
   prSolver3.ResidualCriterion = false;
   prSolver3.RMSLimit = 400;
   prSolver3.RAIMCompute(time, svVec, obsVec, bce, &gg2);
   cout << "RMSResidual from known position: " << prSolver3.RMSResidual
        << " meters" << endl << endl;
}
Esempio n. 3
0
   void ObsArray::load(const std::vector<std::string>& obsList,
                       const std::vector<std::string>& navList)
   {
      // First check for existance of input files
      for (size_t i=0; i< obsList.size(); i++)
      {
         if (!FileUtils::fileAccessCheck(obsList[i]))
         {
            ObsArrayException oae("Cannot read obs file " + obsList[i]);
            GPSTK_THROW(oae);
         }
      }

      for (size_t i=0; i< navList.size(); i++)
      {
         if (!FileUtils::fileAccessCheck(navList[i]))
         {
            ObsArrayException oae("Cannot read nav file " + navList[i]);
            GPSTK_THROW(oae);
         }
         else
      // Load the ephemeris information from the named NAV file.
      ephStore.loadFile(navList[i]);
      }

      long totalEpochsObs = 0;
      Triple antPos;
      double dR;

      for (size_t i=0; i< obsList.size(); i++)
      {
         //RinexObsHeader roh;
         long numEpochsObs = 0;
         double dataRate;
         Triple antennaPos;

         scanObsFile(obsList[i], numEpochsObs, dataRate, antennaPos);
         if (i==0)
         {
            antPos=antennaPos;
            dR=dataRate;

            if (antennaPos.mag()<1) // A reported antenna position near the
                                    // center of the Earth. REcompute.
	    {
	       PRSolution2 prSolver;
               prSolver.RMSLimit = 400;
               GGTropModel ggTropModel;
	       ggTropModel.setWeather(20., 1000., 50.); // A default model for sea level.

          // NOTE: The following section is partially adapted to Rinex3, but
          //       more work is needed here
               RinexObsStream tempObsStream(obsList[i]);
               Rinex3ObsData   tempObsData;
               Rinex3ObsHeader tempObsHeader;

               tempObsStream >> tempObsHeader;
               tempObsStream >> tempObsData;

               ExtractPC ifObs;
               ifObs.getData(tempObsData, tempObsHeader);

	       std::vector<SatID> vsats(ifObs.availableSV.size());
               for (size_t ii=0; ii<ifObs.availableSV.size(); ++ii)
	       {
                  vsats[ii]=ifObs.availableSV[ii];
	       }

	       std::vector<double> vranges(ifObs.obsData.size());
               for (size_t ii=0; ii<ifObs.obsData.size(); ++ii)
	       {
                  vranges[ii]=ifObs.obsData[ii];
	       }


               prSolver.RAIMCompute(tempObsData.time,
				    vsats, vranges,
				    ephStore, &ggTropModel);

               antPos[0] = prSolver.Solution[0];
               antPos[1] = prSolver.Solution[1];
               antPos[2] = prSolver.Solution[2];
	       /*
	       std::cout << "Position resolved at "
			 << antPos[0] << ", " << antPos[1] << ", "
		         << antPos[2] << std::endl;
	       */

	    }
         }
Esempio n. 4
0
File: RX.cpp Progetto: JC5005/GPSTk
//-----------------------------------------------------------------------------
void RxSim::process()
{
   pthread_t *thread_id = new pthread_t[numTrackers];
   pthread_attr_t attr;
   int rc;
   void *status;

   vector<Par> p(numTrackers);

   vector<NavFramer> nf(numTrackers);
   long int dataPoint =0;
   vector<int> count(numTrackers); 
   
   for(int i=0;i<numTrackers;i++)
   {
      nf[i].debugLevel = debugLevel;
      nf[i].dump(cout);
      count[i]=0;
   }

   complex<float> s;
   while (*input >> s)
   {
      Buffer b;
      b.arr.push_back(s);
      dataPoint++;
      int index = 0;
      int bufferSize = 40*16367;
      while(index < bufferSize) // Fill input buffer
      {   
         *input >> s;
         b.arr.push_back(s);   
         index++;
         dataPoint++;
      }

      pthread_attr_init(&attr);
      pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
      edgeFound = false;
      for(int i = 0; i < numTrackers; i++)
      {
         p[i].dp = dataPoint; // Set parameters for each tracker.
         p[i].bufferSize = bufferSize;
         p[i].s = &b;
         p[i].count = &count[i];
         p[i].tr = tr[i];
         p[i].nf = &nf[i];
         p[i].v = (verboseLevel);
         p[i].prn = tr[i]->prn;
         p[i].solvePos = solvePos;
         
   // Split
         rc = pthread_create( &thread_id[i], &attr, Cfunction, &p[i] ) ;
         if (rc)
         {
            printf("ERROR; return code from pthread_create() is %d\n", rc);
            exit(-1);
         }
      }

   // Join
      for(int i = 0; i < numTrackers; i++)
      {
         rc = pthread_join( thread_id[i], &status) ;
         if (rc)
         {
            printf("ERROR; return code from pthread_join() is %d\n", rc);
            exit(-1);
         }
      }
      if(edgeFound == true)
      {         
//---------------------------------------------------------------------------
// Position Solution
         if(solvePos == true)
         {
            GPSEphemerisStore bce;
            IonoModel iono;
            CommonTime time;
            double zCount = (double)ZCount - 6.0;
            double sampleRate = 1/timeStep;
            GPSEllipsoid gm;
            vector<SatID> svVec;
            vector<double> ionoVec;
            Triple antennaPos;

            time = GPSWeekZcount(gpsWeek, zCount);

            RinexNavStream rns(ephFile.c_str(), ios::in);
            rns.exceptions(ifstream::failbit);
            RinexNavHeader hdr;
            rns >> hdr;
            iono = IonoModel(hdr.ionAlpha, hdr.ionBeta);
            RinexNavData rnd;
            while (rns >> rnd)
               bce.addEphemeris(rnd);
            if (time < bce.getInitialTime() || time > bce.getFinalTime())
               cout << "Warning: Initial time does not appear to be "
                    << "within the provided ephemeris data." << endl;

            for (int i=1; i < 33; i++)
            {
               SatID sv(i, SatID::systemGPS);
               svVec.push_back(sv);
            }
            float refDataPoint;

            long int total = 0;
            int numberSVs = 0;

            for(int i=0; i<32;i++)
            {
               total += dataPoints[i];
               if(dataPoints[i] != 0)
                  numberSVs++;
            }
            refDataPoint = total/numberSVs;
            vector<double> obsVec(32);


            for(int i=0; i<32; i++)
            {
               if(dataPoints[i] != 0)
               {
                     // 0.073 is an arbitrary guessed time of flight
                  obsVec[i] = gpstk::C_MPS*(0.073 - (refDataPoint - 
                       dataPoints[i])/(sampleRate)); //*2 because of hilbert
               }  
               else
               {
                  SatID temp(0, SatID::systemGPS); 
                  svVec[i] = temp; // set SatID equal to 0, 
                                   //the SV won't be considered
               }
            }
// Calculate initial position solution.

            GGTropModel gg;
            gg.setWeather(30., 1000., 50.);    
            PRSolution2 prSolver;
            prSolver.RMSLimit = 400;
            prSolver.RAIMCompute(time, svVec, obsVec, bce, &gg); 
            Vector<double> sol = prSolver.Solution;
            cout << endl << "Position (ECEF): " << fixed << sol[0] 
                 << " " << sol[1] 
                 << " " << sol[2] << endl;
            time -= (sol[3] / gpstk::C_MPS);
            cout << "Time: " << time << endl;  
               //cout << "Clock Error (includes that caused by guess): " 
               //<< sol[3]*1000/gpstk::C_MPS << " ms" << endl;
            cout << "# good SV's: " << prSolver.Nsvs << endl
                 << "RMSResidual: " << prSolver.RMSResidual << " meters" 
                 << endl;

// If we wanted to just output ranges, we can correct the obsVector
// using the clock error and have the range to each sat.

            for(int i = 0; i < 32; i++)
               dataPoints[i] = 0;

// Calculate Ionosphere correction.
/*          antennaPos[0] = sol[0];
            antennaPos[1] = sol[1];
            antennaPos[2] = sol[2];
            ECEF ecef(antennaPos);
            for (int i=1; i<=32; i++)
            {
               SatID sv(i, SatID::systemGPS);
               try 
               {
                  Xvt svpos = bce.getXvt(sv, time);
                  double el = antennaPos.elvAngle(svpos.x);
                  double az = antennaPos.azAngle(svpos.x);
                  double ic = iono.getCorrection(time, ecef, el, az); // in meters
                  ionoVec.push_back(ic);
               }
               catch (Exception& e)
               {}
            }
            if(verboseLevel)
            {
               for(int i = 0; i < 32; i++)
               {
                  cout << svVec[i] << " "  << obsVec[i] << " " << ionoVec[i] << endl;
         
               }
            }
            for(int i=0;i<32;i++)
            {
               obsVec[i] -= sol[3]; // convert pseudoranges to ranges
               obsVec[i] += ionoVec[i]; // make iono correction to ranges.
            }*/
               // Then plug back into RAIMCompute...
         }
      }
//---------------------------------------------------------------------------

      if (cc->localTime > timeLimit)
         break;
   }