Esempio n. 1
0
//-----------------------------------------------------------------------------
// Select everything that lies within the marquee view-aligned rectangle. For
// points, we test by the point location. For normals, we test by the normal's
// associated point. For anything else, we test by any piecewise linear edge.
//-----------------------------------------------------------------------------
void GraphicsWindow::SelectByMarquee(void) {
    Point2d begin = ProjectPoint(orig.marqueePoint);
    double xmin = min(orig.mouse.x, begin.x),
           xmax = max(orig.mouse.x, begin.x),
           ymin = min(orig.mouse.y, begin.y),
           ymax = max(orig.mouse.y, begin.y);

    Entity *e;
    for(e = SK.entity.First(); e; e = SK.entity.NextAfter(e)) {
        if(e->group.v != SS.GW.activeGroup.v) continue;
        if(e->IsFace() || e->IsDistance()) continue;
        if(!e->IsVisible()) continue;

        if(e->IsPoint() || e->IsNormal()) {
            Vector p = e->IsPoint() ? e->PointGetNum() :
                                      SK.GetEntity(e->point[0])->PointGetNum();
            Point2d pp = ProjectPoint(p);
            if(pp.x >= xmin && pp.x <= xmax &&
               pp.y >= ymin && pp.y <= ymax)
            {
                MakeSelected(e->h);
            }
        } else {
            // Use the 3d bounding box test routines, to avoid duplication;
            // so let our bounding square become a bounding box that certainly
            // includes the z = 0 plane.
            Vector ptMin = Vector::From(xmin, ymin, -1),
                   ptMax = Vector::From(xmax, ymax, 1);
            SEdgeList sel;
            ZERO(&sel);
            e->GenerateEdges(&sel, true);
            SEdge *se;
            for(se = sel.l.First(); se; se = sel.l.NextAfter(se)) {
                Point2d ppa = ProjectPoint(se->a),
                        ppb = ProjectPoint(se->b);
                Vector  ptA = Vector::From(ppa.x, ppa.y, 0),
                        ptB = Vector::From(ppb.x, ppb.y, 0);
                if(Vector::BoundingBoxIntersectsLine(ptMax, ptMin,
                                                     ptA, ptB, true) ||
                   !ptA.OutsideAndNotOn(ptMax, ptMin) ||
                   !ptB.OutsideAndNotOn(ptMax, ptMin))
                {
                    MakeSelected(e->h);
                    break;
                }
            }
            sel.Clear();
        }
    }
}
Esempio n. 2
0
void SSurface::TriangulateInto(SShell *shell, SMesh *sm) {
    SEdgeList el = {};

    MakeEdgesInto(shell, &el, AS_UV);

    SPolygon poly = {};
    if(el.AssemblePolygon(&poly, NULL, true)) {
        int i, start = sm->l.n;
        if(degm == 1 && degn == 1) {
            // A surface with curvature along one direction only; so
            // choose the triangulation with chords that lie as much
            // as possible within the surface. And since the trim curves
            // have been pwl'd to within the desired chord tol, that will
            // produce a surface good to within roughly that tol.
            //
            // If this is just a plane (degree (1, 1)) then the triangulation
            // code will notice that, and not bother checking chord tols.
            poly.UvTriangulateInto(sm, this);
        } else {
            // A surface with compound curvature. So we must overlay a
            // two-dimensional grid, and triangulate around that.
            poly.UvGridTriangulateInto(sm, this);
        }

        STriMeta meta = { face, color };
        for(i = start; i < sm->l.n; i++) {
            STriangle *st = &(sm->l.elem[i]);
            st->meta = meta;
            st->an = NormalAt(st->a.x, st->a.y);
            st->bn = NormalAt(st->b.x, st->b.y);
            st->cn = NormalAt(st->c.x, st->c.y);
            st->a = PointAt(st->a.x, st->a.y);
            st->b = PointAt(st->b.x, st->b.y);
            st->c = PointAt(st->c.x, st->c.y);
            // Works out that my chosen contour direction is inconsistent with
            // the triangle direction, sigh.
            st->FlipNormal();
        }
    } else {
        dbp("failed to assemble polygon to trim nurbs surface in uv space");
    }

    el.Clear();
    poly.Clear();
}
Esempio n. 3
0
bool SPolygon::SelfIntersecting(Vector *intersectsAt) {
    SEdgeList el;
    ZERO(&el);
    MakeEdgesInto(&el);
    SKdNodeEdges *kdtree = SKdNodeEdges::From(&el);

    int cnt = 1;
    el.l.ClearTags();

    bool ret = false;
    SEdge *se;
    for(se = el.l.First(); se; se = el.l.NextAfter(se)) {
        int inters = kdtree->AnyEdgeCrossings(se->a, se->b, cnt, intersectsAt);
        if(inters != 1) {
            ret = true;
            break;
        }
        cnt++;
    }

    el.Clear();
    return ret;
}
Esempio n. 4
0
void SolveSpaceUI::MenuAnalyze(int id) {
    SS.GW.GroupSelection();
#define gs (SS.GW.gs)

    switch(id) {
        case GraphicsWindow::MNU_STEP_DIM:
            if(gs.constraints == 1 && gs.n == 0) {
                Constraint *c = SK.GetConstraint(gs.constraint[0]);
                if(c->HasLabel() && !c->reference) {
                    SS.TW.shown.dimFinish = c->valA;
                    SS.TW.shown.dimSteps = 10;
                    SS.TW.shown.dimIsDistance =
                        (c->type != Constraint::ANGLE) &&
                        (c->type != Constraint::LENGTH_RATIO) &&
                        (c->type != Constraint::LENGTH_DIFFERENCE);
                    SS.TW.shown.constraint = c->h;
                    SS.TW.shown.screen = TextWindow::SCREEN_STEP_DIMENSION;

                    // The step params are specified in the text window,
                    // so force that to be shown.
                    SS.GW.ForceTextWindowShown();

                    SS.ScheduleShowTW();
                    SS.GW.ClearSelection();
                } else {
                    Error("Constraint must have a label, and must not be "
                          "a reference dimension.");
                }
            } else {
                Error("Bad selection for step dimension; select a constraint.");
            }
            break;

        case GraphicsWindow::MNU_NAKED_EDGES: {
            SS.nakedEdges.Clear();

            Group *g = SK.GetGroup(SS.GW.activeGroup);
            SMesh *m = &(g->displayMesh);
            SKdNode *root = SKdNode::From(m);
            bool inters, leaks;
            root->MakeCertainEdgesInto(&(SS.nakedEdges),
                SKdNode::NAKED_OR_SELF_INTER_EDGES, true, &inters, &leaks);

            InvalidateGraphics();

            const char *intersMsg = inters ?
                "The mesh is self-intersecting (NOT okay, invalid)." :
                "The mesh is not self-intersecting (okay, valid).";
            const char *leaksMsg = leaks ?
                "The mesh has naked edges (NOT okay, invalid)." :
                "The mesh is watertight (okay, valid).";

            std::string cntMsg = ssprintf("\n\nThe model contains %d triangles, from "
                            "%d surfaces.", g->displayMesh.l.n, g->runningShell.surface.n);

            if(SS.nakedEdges.l.n == 0) {
                Message("%s\n\n%s\n\nZero problematic edges, good.%s",
                    intersMsg, leaksMsg, cntMsg.c_str());
            } else {
                Error("%s\n\n%s\n\n%d problematic edges, bad.%s",
                    intersMsg, leaksMsg, SS.nakedEdges.l.n, cntMsg.c_str());
            }
            break;
        }

        case GraphicsWindow::MNU_INTERFERENCE: {
            SS.nakedEdges.Clear();

            SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);
            SKdNode *root = SKdNode::From(m);
            bool inters, leaks;
            root->MakeCertainEdgesInto(&(SS.nakedEdges),
                SKdNode::SELF_INTER_EDGES, false, &inters, &leaks);

            InvalidateGraphics();

            if(inters) {
                Error("%d edges interfere with other triangles, bad.",
                    SS.nakedEdges.l.n);
            } else {
                Message("The assembly does not interfere, good.");
            }
            break;
        }

        case GraphicsWindow::MNU_VOLUME: {
            SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);

            double vol = 0;
            int i;
            for(i = 0; i < m->l.n; i++) {
                STriangle tr = m->l.elem[i];

                // Translate to place vertex A at (x, y, 0)
                Vector trans = Vector::From(tr.a.x, tr.a.y, 0);
                tr.a = (tr.a).Minus(trans);
                tr.b = (tr.b).Minus(trans);
                tr.c = (tr.c).Minus(trans);

                // Rotate to place vertex B on the y-axis. Depending on
                // whether the triangle is CW or CCW, C is either to the
                // right or to the left of the y-axis. This handles the
                // sign of our normal.
                Vector u = Vector::From(-tr.b.y, tr.b.x, 0);
                u = u.WithMagnitude(1);
                Vector v = Vector::From(tr.b.x, tr.b.y, 0);
                v = v.WithMagnitude(1);
                Vector n = Vector::From(0, 0, 1);

                tr.a = (tr.a).DotInToCsys(u, v, n);
                tr.b = (tr.b).DotInToCsys(u, v, n);
                tr.c = (tr.c).DotInToCsys(u, v, n);

                n = tr.Normal().WithMagnitude(1);

                // Triangles on edge don't contribute
                if(fabs(n.z) < LENGTH_EPS) continue;

                // The plane has equation p dot n = a dot n
                double d = (tr.a).Dot(n);
                // nx*x + ny*y + nz*z = d
                // nz*z = d - nx*x - ny*y
                double A = -n.x/n.z, B = -n.y/n.z, C = d/n.z;

                double mac = tr.c.y/tr.c.x, mbc = (tr.c.y - tr.b.y)/tr.c.x;
                double xc = tr.c.x, yb = tr.b.y;

                // I asked Maple for
                //    int(int(A*x + B*y +C, y=mac*x..(mbc*x + yb)), x=0..xc);
                double integral =
                    (1.0/3)*(
                        A*(mbc-mac)+
                        (1.0/2)*B*(mbc*mbc-mac*mac)
                    )*(xc*xc*xc)+
                    (1.0/2)*(A*yb+B*yb*mbc+C*(mbc-mac))*xc*xc+
                    C*yb*xc+
                    (1.0/2)*B*yb*yb*xc;

                vol += integral;
            }

            std::string msg = ssprintf("The volume of the solid model is:\n\n""    %.3f %s^3",
                vol / pow(SS.MmPerUnit(), 3),
                SS.UnitName());

            if(SS.viewUnits == SolveSpaceUI::UNIT_MM) {
                msg += ssprintf("\n    %.2f mL", vol/(10*10*10));
            }
            msg += "\n\nCurved surfaces have been approximated as triangles.\n"
                   "This introduces error, typically of around 1%.";
            Message("%s", msg.c_str());
            break;
        }

        case GraphicsWindow::MNU_AREA: {
            Group *g = SK.GetGroup(SS.GW.activeGroup);
            if(g->polyError.how != Group::POLY_GOOD) {
                Error("This group does not contain a correctly-formed "
                      "2d closed area. It is open, not coplanar, or self-"
                      "intersecting.");
                break;
            }
            SEdgeList sel = {};
            g->polyLoops.MakeEdgesInto(&sel);
            SPolygon sp = {};
            sel.AssemblePolygon(&sp, NULL, true);
            sp.normal = sp.ComputeNormal();
            sp.FixContourDirections();
            double area = sp.SignedArea();
            double scale = SS.MmPerUnit();
            Message("The area of the region sketched in this group is:\n\n"
                    "    %.3f %s^2\n\n"
                    "Curves have been approximated as piecewise linear.\n"
                    "This introduces error, typically of around 1%%.",
                area / (scale*scale),
                SS.UnitName());
            sel.Clear();
            sp.Clear();
            break;
        }

        case GraphicsWindow::MNU_SHOW_DOF:
            // This works like a normal solve, except that it calculates
            // which variables are free/bound at the same time.
            SS.GenerateAll(SolveSpaceUI::GENERATE_ALL, true);
            break;

        case GraphicsWindow::MNU_TRACE_PT:
            if(gs.points == 1 && gs.n == 1) {
                SS.traced.point = gs.point[0];
                SS.GW.ClearSelection();
            } else {
                Error("Bad selection for trace; select a single point.");
            }
            break;

        case GraphicsWindow::MNU_STOP_TRACING: {
            std::string exportFile;
            if(GetSaveFile(&exportFile, "", CsvFileFilter)) {
                FILE *f = ssfopen(exportFile, "wb");
                if(f) {
                    int i;
                    SContour *sc = &(SS.traced.path);
                    for(i = 0; i < sc->l.n; i++) {
                        Vector p = sc->l.elem[i].p;
                        double s = SS.exportScale;
                        fprintf(f, "%.10f, %.10f, %.10f\r\n",
                            p.x/s, p.y/s, p.z/s);
                    }
                    fclose(f);
                } else {
                    Error("Couldn't write to '%s'", exportFile.c_str());
                }
            }
            // Clear the trace, and stop tracing
            SS.traced.point = Entity::NO_ENTITY;
            SS.traced.path.l.Clear();
            InvalidateGraphics();
            break;
        }

        default: oops();
    }
}
Esempio n. 5
0
//-----------------------------------------------------------------------------
// Trim this surface against the specified shell, in the way that's appropriate
// for the specified Boolean operation type (and which operand we are). We
// also need a pointer to the shell that contains our own surface, since that
// contains our original trim curves.
//-----------------------------------------------------------------------------
SSurface SSurface::MakeCopyTrimAgainst(SShell *parent,
                                       SShell *sha, SShell *shb,
                                       SShell *into,
                                       int type)
{
    bool opA = (parent == sha);
    SShell *agnst = opA ? shb : sha;

    SSurface ret;
    // The returned surface is identical, just the trim curves change
    ret = *this;
    ret.trim = {};

    // First, build a list of the existing trim curves; update them to use
    // the split curves.
    STrimBy *stb;
    for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
        STrimBy stn = *stb;
        stn.curve = (parent->curve.FindById(stn.curve))->newH;
        ret.trim.Add(&stn);
    }

    if(type == SShell::AS_DIFFERENCE && !opA) {
        // The second operand of a Boolean difference gets turned inside out
        ret.Reverse();
    }

    // Build up our original trim polygon; remember the coordinates could
    // be changed if we just flipped the surface normal, and we are using
    // the split curves (not the original curves).
    SEdgeList orig = {};
    ret.MakeEdgesInto(into, &orig, AS_UV);
    ret.trim.Clear();
    // which means that we can't necessarily use the old BSP...
    SBspUv *origBsp = SBspUv::From(&orig, &ret);

    // And now intersect the other shell against us
    SEdgeList inter = {};

    SSurface *ss;
    for(ss = agnst->surface.First(); ss; ss = agnst->surface.NextAfter(ss)) {
        SCurve *sc;
        for(sc = into->curve.First(); sc; sc = into->curve.NextAfter(sc)) {
            if(sc->source != SCurve::FROM_INTERSECTION) continue;
            if(opA) {
                if(sc->surfA.v != h.v || sc->surfB.v != ss->h.v) continue;
            } else {
                if(sc->surfB.v != h.v || sc->surfA.v != ss->h.v) continue;
            }

            int i;
            for(i = 1; i < sc->pts.n; i++) {
                Vector a = sc->pts.elem[i-1].p,
                       b = sc->pts.elem[i].p;

                Point2d auv, buv;
                ss->ClosestPointTo(a, &(auv.x), &(auv.y));
                ss->ClosestPointTo(b, &(buv.x), &(buv.y));

                int c = (ss->bsp) ? ss->bsp->ClassifyEdge(auv, buv, ss) : SBspUv::OUTSIDE;
                if(c != SBspUv::OUTSIDE) {
                    Vector ta = Vector::From(0, 0, 0);
                    Vector tb = Vector::From(0, 0, 0);
                    ret.ClosestPointTo(a, &(ta.x), &(ta.y));
                    ret.ClosestPointTo(b, &(tb.x), &(tb.y));

                    Vector tn = ret.NormalAt(ta.x, ta.y);
                    Vector sn = ss->NormalAt(auv.x, auv.y);

                    // We are subtracting the portion of our surface that
                    // lies in the shell, so the in-plane edge normal should
                    // point opposite to the surface normal.
                    bool bkwds = true;
                    if((tn.Cross(b.Minus(a))).Dot(sn) < 0) bkwds = !bkwds;
                    if(type == SShell::AS_DIFFERENCE && !opA) bkwds = !bkwds;
                    if(bkwds) {
                        inter.AddEdge(tb, ta, sc->h.v, 1);
                    } else {
                        inter.AddEdge(ta, tb, sc->h.v, 0);
                    }
                }
            }
        }
    }

    // Record all the points where more than two edges join, which I will call
    // the choosing points. If two edges join at a non-choosing point, then
    // they must either both be kept or both be discarded (since that would
    // otherwise create an open contour).
    SPointList choosing = {};
    SEdge *se;
    for(se = orig.l.First(); se; se = orig.l.NextAfter(se)) {
        choosing.IncrementTagFor(se->a);
        choosing.IncrementTagFor(se->b);
    }
    for(se = inter.l.First(); se; se = inter.l.NextAfter(se)) {
        choosing.IncrementTagFor(se->a);
        choosing.IncrementTagFor(se->b);
    }
    SPoint *sp;
    for(sp = choosing.l.First(); sp; sp = choosing.l.NextAfter(sp)) {
        if(sp->tag == 2) {
            sp->tag = 1;
        } else {
            sp->tag = 0;
        }
    }
    choosing.l.RemoveTagged();

    // The list of edges to trim our new surface, a combination of edges from
    // our original and intersecting edge lists.
    SEdgeList final = {};

    while(orig.l.n > 0) {
        SEdgeList chain = {};
        FindChainAvoiding(&orig, &chain, &choosing);

        // Arbitrarily choose an edge within the chain to classify; they
        // should all be the same, though.
        se = &(chain.l.elem[chain.l.n/2]);

        Point2d auv  = (se->a).ProjectXy(),
                buv  = (se->b).ProjectXy();

        Vector pt, enin, enout, surfn;
        ret.EdgeNormalsWithinSurface(auv, buv, &pt, &enin, &enout, &surfn,
                                        se->auxA, into, sha, shb);

        int indir_shell, outdir_shell, indir_orig, outdir_orig;

        indir_orig  = SShell::INSIDE;
        outdir_orig = SShell::OUTSIDE;

        agnst->ClassifyEdge(&indir_shell, &outdir_shell,
                            ret.PointAt(auv), ret.PointAt(buv), pt,
                            enin, enout, surfn);

        if(KeepEdge(type, opA, indir_shell, outdir_shell,
                               indir_orig,  outdir_orig))
        {
            for(se = chain.l.First(); se; se = chain.l.NextAfter(se)) {
                final.AddEdge(se->a, se->b, se->auxA, se->auxB);
            }
        }
        chain.Clear();
    }
void SPolygon::UvGridTriangulateInto(SMesh *mesh, SSurface *srf) {
    SEdgeList orig;
    ZERO(&orig);
    MakeEdgesInto(&orig);

    SEdgeList holes;
    ZERO(&holes);

    normal = Vector::From(0, 0, 1);
    FixContourDirections();

    // Build a rectangular grid, with horizontal and vertical lines in the
    // uv plane. The spacing of these lines is adaptive, so calculate that.
    List<double> li, lj;
    ZERO(&li);
    ZERO(&lj);
    double v = 0;
    li.Add(&v);
    srf->MakeTriangulationGridInto(&li, 0, 1, true);
    lj.Add(&v);
    srf->MakeTriangulationGridInto(&lj, 0, 1, false);

    // Now iterate over each quad in the grid. If it's outside the polygon,
    // or if it intersects the polygon, then we discard it. Otherwise we
    // generate two triangles in the mesh, and cut it out of our polygon.
    int i, j;
    for(i = 0; i < (li.n - 1); i++) {
        for(j = 0; j < (lj.n - 1); j++) {
            double us = li.elem[i], uf = li.elem[i+1],
                   vs = lj.elem[j], vf = lj.elem[j+1];

            Vector a = Vector::From(us, vs, 0),
                   b = Vector::From(us, vf, 0),
                   c = Vector::From(uf, vf, 0),
                   d = Vector::From(uf, vs, 0);

            if(orig.AnyEdgeCrossings(a, b, NULL) ||
               orig.AnyEdgeCrossings(b, c, NULL) ||
               orig.AnyEdgeCrossings(c, d, NULL) ||
               orig.AnyEdgeCrossings(d, a, NULL))
            {
                continue;
            }

            // There's no intersections, so it doesn't matter which point
            // we decide to test.
            if(!this->ContainsPoint(a)) {
                continue;
            }

            // Add the quad to our mesh
            STriangle tr;
            ZERO(&tr);
            tr.a = a;
            tr.b = b;
            tr.c = c;
            mesh->AddTriangle(&tr);
            tr.a = a;
            tr.b = c;
            tr.c = d;
            mesh->AddTriangle(&tr);

            holes.AddEdge(a, b);
            holes.AddEdge(b, c);
            holes.AddEdge(c, d);
            holes.AddEdge(d, a);
        }
    }

    holes.CullExtraneousEdges();
    SPolygon hp;
    ZERO(&hp);
    holes.AssemblePolygon(&hp, NULL, true);

    SContour *sc;
    for(sc = hp.l.First(); sc; sc = hp.l.NextAfter(sc)) {
        l.Add(sc);
    }

    orig.Clear();
    holes.Clear();
    li.Clear();
    lj.Clear();
    hp.l.Clear();

    UvTriangulateInto(mesh, srf);
}
void SPolygon::UvTriangulateInto(SMesh *m, SSurface *srf) {
    if(l.n <= 0) return;

    SDWORD in = GetMilliseconds();

    normal = Vector::From(0, 0, 1);

    while(l.n > 0) {
        FixContourDirections();
        l.ClearTags();

        // Find a top-level contour, and start with that. Then build bridges
        // in order to merge all its islands into a single contour.
        SContour *top;
        for(top = l.First(); top; top = l.NextAfter(top)) {
            if(top->timesEnclosed == 0) {
                break;
            }
        }
        if(!top) {
            dbp("polygon has no top-level contours?");
            return;
        }

        // Start with the outer contour
        SContour merged;
        ZERO(&merged);
        top->tag = 1;
        top->CopyInto(&merged);
        (merged.l.n)--;

        // List all of the edges, for testing whether bridges work.
        SEdgeList el;
        ZERO(&el);
        top->MakeEdgesInto(&el);
        List<Vector> vl;
        ZERO(&vl);

        // And now find all of its holes. Note that we will also find any
        // outer contours that lie entirely within this contour, and any
        // holes for those contours. But that's okay, because we can merge
        // those too.
        SContour *sc;
        for(sc = l.First(); sc; sc = l.NextAfter(sc)) {
            if(sc->timesEnclosed != 1) continue;
            if(sc->l.n < 2) continue;

            // Test the midpoint of an edge. Our polygon may not be self-
            // intersecting, but two contours may share a vertex; so a
            // vertex could be on the edge of another polygon, in which
            // case ContainsPointProjdToNormal returns indeterminate.
            Vector tp = sc->AnyEdgeMidpoint();
            if(top->ContainsPointProjdToNormal(normal, tp)) {
                sc->tag = 2;
                sc->MakeEdgesInto(&el);
                sc->FindPointWithMinX();
            }
        }

//        dbp("finished finding holes: %d ms", GetMilliseconds() - in);
        for(;;) {
            double xmin = 1e10;
            SContour *scmin = NULL;

            for(sc = l.First(); sc; sc = l.NextAfter(sc)) {
                if(sc->tag != 2) continue;

                if(sc->xminPt.x < xmin) {
                    xmin = sc->xminPt.x;
                    scmin = sc;
                }
            }
            if(!scmin) break;

            if(!merged.BridgeToContour(scmin, &el, &vl)) {
                dbp("couldn't merge our hole");
                return;
            }
//            dbp("   bridged to contour: %d ms", GetMilliseconds() - in);
            scmin->tag = 3;
        }
//        dbp("finished merging holes: %d ms", GetMilliseconds() - in);

        merged.UvTriangulateInto(m, srf);
//        dbp("finished ear clippping: %d ms", GetMilliseconds() - in);
        merged.l.Clear();
        el.Clear();
        vl.Clear();

        // Careful, need to free the points within the contours, and not just
        // the contours themselves. This was a tricky memory leak.
        for(sc = l.First(); sc; sc = l.NextAfter(sc)) {
            if(sc->tag) {
                sc->l.Clear();
            }
        }
        l.RemoveTagged();
    }
}
Esempio n. 8
0
void SSurface::IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
                                SShell *into)
{
    Vector amax, amin, bmax, bmin;
    GetAxisAlignedBounding(&amax, &amin);
    b->GetAxisAlignedBounding(&bmax, &bmin);

    if(Vector::BoundingBoxesDisjoint(amax, amin, bmax, bmin)) {
        // They cannot possibly intersect, no curves to generate
        return;
    }

    Vector alongt, alongb;
    SBezier oft, ofb;
    bool isExtdt = this->IsExtrusion(&oft, &alongt),
         isExtdb =    b->IsExtrusion(&ofb, &alongb);

    if(degm == 1 && degn == 1 && b->degm == 1 && b->degn == 1) {
        // Line-line intersection; it's a plane or nothing.
        Vector na = NormalAt(0, 0).WithMagnitude(1),
               nb = b->NormalAt(0, 0).WithMagnitude(1);
        double da = na.Dot(PointAt(0, 0)),
               db = nb.Dot(b->PointAt(0, 0));

        Vector dl = na.Cross(nb);
        if(dl.Magnitude() < LENGTH_EPS) return; // parallel planes
        dl = dl.WithMagnitude(1);
        Vector p = Vector::AtIntersectionOfPlanes(na, da, nb, db);

        // Trim it to the region 0 <= {u,v} <= 1 for each plane; not strictly
        // necessary, since line will be split and excess edges culled, but
        // this improves speed and robustness.
        int i;
        double tmax = VERY_POSITIVE, tmin = VERY_NEGATIVE;
        for(i = 0; i < 2; i++) {
            SSurface *s = (i == 0) ? this : b;
            Vector tu, tv;
            s->TangentsAt(0, 0, &tu, &tv);

            double up, vp, ud, vd;
            s->ClosestPointTo(p, &up, &vp);
            ud = (dl.Dot(tu)) / tu.MagSquared();
            vd = (dl.Dot(tv)) / tv.MagSquared();

            // so u = up + t*ud
            //    v = vp + t*vd
            if(ud > LENGTH_EPS) {
                tmin = max(tmin, -up/ud);
                tmax = min(tmax, (1 - up)/ud);
            } else if(ud < -LENGTH_EPS) {
                tmax = min(tmax, -up/ud);
                tmin = max(tmin, (1 - up)/ud);
            } else {
                if(up < -LENGTH_EPS || up > 1 + LENGTH_EPS) {
                    // u is constant, and outside [0, 1]
                    tmax = VERY_NEGATIVE;
                }
            }
            if(vd > LENGTH_EPS) {
                tmin = max(tmin, -vp/vd);
                tmax = min(tmax, (1 - vp)/vd);
            } else if(vd < -LENGTH_EPS) {
                tmax = min(tmax, -vp/vd);
                tmin = max(tmin, (1 - vp)/vd);
            } else {
                if(vp < -LENGTH_EPS || vp > 1 + LENGTH_EPS) {
                    // v is constant, and outside [0, 1]
                    tmax = VERY_NEGATIVE;
                }
            }
        }

        if(tmax > tmin + LENGTH_EPS) {
            SBezier bezier = SBezier::From(p.Plus(dl.ScaledBy(tmin)),
                                           p.Plus(dl.ScaledBy(tmax)));
            AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
        }
    } else if((degm == 1 && degn == 1 && isExtdb) ||
              (b->degm == 1 && b->degn == 1 && isExtdt))
    {
        // The intersection between a plane and a surface of extrusion
        SSurface *splane, *sext;
        if(degm == 1 && degn == 1) {
            splane = this;
            sext = b;
        } else {
            splane = b;
            sext = this;
        }

        Vector n = splane->NormalAt(0, 0).WithMagnitude(1), along;
        double d = n.Dot(splane->PointAt(0, 0));
        SBezier bezier;
        (void)sext->IsExtrusion(&bezier, &along);

        if(fabs(n.Dot(along)) < LENGTH_EPS) {
            // Direction of extrusion is parallel to plane; so intersection
            // is zero or more lines. Build a line within the plane, and
            // normal to the direction of extrusion, and intersect that line
            // against the surface; each intersection point corresponds to
            // a line.
            Vector pm, alu, p0, dp;
            // a point halfway along the extrusion
            pm = ((sext->ctrl[0][0]).Plus(sext->ctrl[0][1])).ScaledBy(0.5);
            alu = along.WithMagnitude(1);
            dp = (n.Cross(along)).WithMagnitude(1);
            // n, alu, and dp form an orthogonal csys; set n component to
            // place it on the plane, alu component to lie halfway along
            // extrusion, and dp component doesn't matter so zero
            p0 = n.ScaledBy(d).Plus(alu.ScaledBy(pm.Dot(alu)));

            List<SInter> inters = {};
            sext->AllPointsIntersecting(p0, p0.Plus(dp), &inters,
                /*asSegment=*/false, /*trimmed=*/false, /*inclTangent=*/true);

            SInter *si;
            for(si = inters.First(); si; si = inters.NextAfter(si)) {
                Vector al = along.ScaledBy(0.5);
                SBezier bezier;
                bezier = SBezier::From((si->p).Minus(al), (si->p).Plus(al));
                AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
            }

            inters.Clear();
        } else {
            // Direction of extrusion is not parallel to plane; so
            // intersection is projection of extruded curve into our plane.
            int i;
            for(i = 0; i <= bezier.deg; i++) {
                Vector p0 = bezier.ctrl[i],
                       p1 = p0.Plus(along);

                bezier.ctrl[i] =
                    Vector::AtIntersectionOfPlaneAndLine(n, d, p0, p1, NULL);
            }

            AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
        }
    } else if(isExtdt && isExtdb &&
                sqrt(fabs(alongt.Dot(alongb))) >
                sqrt(alongt.Magnitude() * alongb.Magnitude()) - LENGTH_EPS)
    {
        // Two surfaces of extrusion along the same axis. So they might
        // intersect along some number of lines parallel to the axis.
        Vector axis = alongt.WithMagnitude(1);

        List<SInter> inters = {};
        List<Vector> lv = {};

        double a_axis0 = (   ctrl[0][0]).Dot(axis),
               a_axis1 = (   ctrl[0][1]).Dot(axis),
               b_axis0 = (b->ctrl[0][0]).Dot(axis),
               b_axis1 = (b->ctrl[0][1]).Dot(axis);

        if(a_axis0 > a_axis1) swap(a_axis0, a_axis1);
        if(b_axis0 > b_axis1) swap(b_axis0, b_axis1);

        double ab_axis0 = max(a_axis0, b_axis0),
               ab_axis1 = min(a_axis1, b_axis1);

        if(fabs(ab_axis0 - ab_axis1) < LENGTH_EPS) {
            // The line would be zero-length
            return;
        }

        Vector axis0 = axis.ScaledBy(ab_axis0),
               axis1 = axis.ScaledBy(ab_axis1),
               axisc = (axis0.Plus(axis1)).ScaledBy(0.5);

        oft.MakePwlInto(&lv);

        int i;
        for(i = 0; i < lv.n - 1; i++) {
            Vector pa = lv.elem[i], pb = lv.elem[i+1];
            pa = pa.Minus(axis.ScaledBy(pa.Dot(axis)));
            pb = pb.Minus(axis.ScaledBy(pb.Dot(axis)));
            pa = pa.Plus(axisc);
            pb = pb.Plus(axisc);

            b->AllPointsIntersecting(pa, pb, &inters,
                /*asSegment=*/true,/*trimmed=*/false, /*inclTangent=*/false);
        }

        SInter *si;
        for(si = inters.First(); si; si = inters.NextAfter(si)) {
            Vector p = (si->p).Minus(axis.ScaledBy((si->p).Dot(axis)));
            double ub, vb;
            b->ClosestPointTo(p, &ub, &vb, /*mustConverge=*/true);
            SSurface plane;
            plane = SSurface::FromPlane(p, axis.Normal(0), axis.Normal(1));

            b->PointOnSurfaces(this, &plane, &ub, &vb);

            p = b->PointAt(ub, vb);

            SBezier bezier;
            bezier = SBezier::From(p.Plus(axis0), p.Plus(axis1));
            AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
        }

        inters.Clear();
        lv.Clear();
    } else {
        // Try intersecting the surfaces numerically, by a marching algorithm.
        // First, we find all the intersections between a surface and the
        // boundary of the other surface.
        SPointList spl = {};
        int a;
        for(a = 0; a < 2; a++) {
            SShell   *shA  = (a == 0) ? agnstA : agnstB;
            SSurface *srfA = (a == 0) ? this : b,
                     *srfB = (a == 0) ? b : this;

            SEdgeList el = {};
            srfA->MakeEdgesInto(shA, &el, MakeAs::XYZ, NULL);

            SEdge *se;
            for(se = el.l.First(); se; se = el.l.NextAfter(se)) {
                List<SInter> lsi = {};

                srfB->AllPointsIntersecting(se->a, se->b, &lsi,
                    /*asSegment=*/true, /*trimmed=*/true, /*inclTangent=*/false);
                if(lsi.n == 0) continue;

                // Find the other surface that this curve trims.
                hSCurve hsc = { (uint32_t)se->auxA };
                SCurve *sc = shA->curve.FindById(hsc);
                hSSurface hother = (sc->surfA.v == srfA->h.v) ?
                                                    sc->surfB : sc->surfA;
                SSurface *other = shA->surface.FindById(hother);

                SInter *si;
                for(si = lsi.First(); si; si = lsi.NextAfter(si)) {
                    Vector p = si->p;
                    double u, v;
                    srfB->ClosestPointTo(p, &u, &v);
                    srfB->PointOnSurfaces(srfA, other, &u, &v);
                    p = srfB->PointAt(u, v);
                    if(!spl.ContainsPoint(p)) {
                        SPoint sp;
                        sp.p = p;
                        // We also need the edge normal, so that we know in
                        // which direction to march.
                        srfA->ClosestPointTo(p, &u, &v);
                        Vector n = srfA->NormalAt(u, v);
                        sp.auxv = n.Cross((se->b).Minus(se->a));
                        sp.auxv = (sp.auxv).WithMagnitude(1);

                        spl.l.Add(&sp);
                    }
                }
                lsi.Clear();
            }

            el.Clear();
        }

        while(spl.l.n >= 2) {
            SCurve sc = {};
            sc.surfA = h;
            sc.surfB = b->h;
            sc.isExact = false;
            sc.source = SCurve::Source::INTERSECTION;

            Vector start  = spl.l.elem[0].p,
                   startv = spl.l.elem[0].auxv;
            spl.l.ClearTags();
            spl.l.elem[0].tag = 1;
            spl.l.RemoveTagged();

            // Our chord tolerance is whatever the user specified
            double maxtol = SS.ChordTolMm();
            int maxsteps = max(300, SS.GetMaxSegments()*3);

            // The curve starts at our starting point.
            SCurvePt padd = {};
            padd.vertex = true;
            padd.p = start;
            sc.pts.Add(&padd);

            Point2d pa, pb;
            Vector np, npc = Vector::From(0, 0, 0);
            bool fwd = false;
            // Better to start with a too-small step, so that we don't miss
            // features of the curve entirely.
            double tol, step = maxtol;
            for(a = 0; a < maxsteps; a++) {
                ClosestPointTo(start, &pa);
                b->ClosestPointTo(start, &pb);

                Vector na =    NormalAt(pa).WithMagnitude(1),
                       nb = b->NormalAt(pb).WithMagnitude(1);

                if(a == 0) {
                    Vector dp = nb.Cross(na);
                    if(dp.Dot(startv) < 0) {
                        // We want to march in the more inward direction.
                        fwd = true;
                    } else {
                        fwd = false;
                    }
                }

                int i;
                for(i = 0; i < 20; i++) {
                    Vector dp = nb.Cross(na);
                    if(!fwd) dp = dp.ScaledBy(-1);
                    dp = dp.WithMagnitude(step);

                    np = start.Plus(dp);
                    npc = ClosestPointOnThisAndSurface(b, np);
                    tol = (npc.Minus(np)).Magnitude();

                    if(tol > maxtol*0.8) {
                        step *= 0.90;
                    } else {
                        step /= 0.90;
                    }

                    if((tol < maxtol) && (tol > maxtol/2)) {
                        // If we meet the chord tolerance test, and we're
                        // not too fine, then we break out.
                        break;
                    }
                }

                SPoint *sp;
                for(sp = spl.l.First(); sp; sp = spl.l.NextAfter(sp)) {
                    if((sp->p).OnLineSegment(start, npc, 2*SS.ChordTolMm())) {
                        sp->tag = 1;
                        a = maxsteps;
                        npc = sp->p;
                    }
                }

                padd.p = npc;
                padd.vertex = (a == maxsteps);
                sc.pts.Add(&padd);

                start = npc;
            }

            spl.l.RemoveTagged();

            // And now we split and insert the curve
            SCurve split = sc.MakeCopySplitAgainst(agnstA, agnstB, this, b);
            sc.Clear();
            into->curve.AddAndAssignId(&split);
        }
        spl.Clear();
    }
}
Esempio n. 9
0
void SolveSpace::ExportLinesAndMesh(SEdgeList *sel, SBezierList *sbl, SMesh *sm,
                                    Vector u, Vector v, Vector n,
                                        Vector origin, double cameraTan,
                                    VectorFileWriter *out)
{
    double s = 1.0 / SS.exportScale;

    // Project into the export plane; so when we're done, z doesn't matter,
    // and x and y are what goes in the DXF.
    SEdge *e;
    for(e = sel->l.First(); e; e = sel->l.NextAfter(e)) {
        // project into the specified csys, and apply export scale
        (e->a) = e->a.InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
        (e->b) = e->b.InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
    }

    SBezier *b;
    if(sbl) {
        for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
            *b = b->InPerspective(u, v, n, origin, cameraTan);
            int i;
            for(i = 0; i <= b->deg; i++) {
                b->ctrl[i] = (b->ctrl[i]).ScaledBy(s);
            }
        }
    }

    // If cutter radius compensation is requested, then perform it now
    if(fabs(SS.exportOffset) > LENGTH_EPS) {
        // assemble those edges into a polygon, and clear the edge list
        SPolygon sp;
        ZERO(&sp);
        sel->AssemblePolygon(&sp, NULL);
        sel->Clear();

        SPolygon compd;
        ZERO(&compd);
        sp.normal = Vector::From(0, 0, -1);
        sp.FixContourDirections();
        sp.OffsetInto(&compd, SS.exportOffset*s);
        sp.Clear();

        compd.MakeEdgesInto(sel);
        compd.Clear();
    }

    // Now the triangle mesh; project, then build a BSP to perform
    // occlusion testing and generated the shaded surfaces.
    SMesh smp;
    ZERO(&smp);
    if(sm) {
        Vector l0 = (SS.lightDir[0]).WithMagnitude(1),
               l1 = (SS.lightDir[1]).WithMagnitude(1);
        STriangle *tr;
        for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
            STriangle tt = *tr;
            tt.a = (tt.a).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
            tt.b = (tt.b).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
            tt.c = (tt.c).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);

            // And calculate lighting for the triangle
            Vector n = tt.Normal().WithMagnitude(1);
            double lighting = SS.ambientIntensity +
                                  max(0, (SS.lightIntensity[0])*(n.Dot(l0))) +
                                  max(0, (SS.lightIntensity[1])*(n.Dot(l1)));
            double r = min(1, REDf  (tt.meta.color)*lighting),
                   g = min(1, GREENf(tt.meta.color)*lighting),
                   b = min(1, BLUEf (tt.meta.color)*lighting);
            tt.meta.color = RGBf(r, g, b);
            smp.AddTriangle(&tt);
        }
    }

    // Use the BSP routines to generate the split triangles in paint order.
    SBsp3 *bsp = SBsp3::FromMesh(&smp);
    SMesh sms;
    ZERO(&sms);
    bsp->GenerateInPaintOrder(&sms);
    // And cull the back-facing triangles
    STriangle *tr;
    sms.l.ClearTags();
    for(tr = sms.l.First(); tr; tr = sms.l.NextAfter(tr)) {
        Vector n = tr->Normal();
        if(n.z < 0) {
            tr->tag = 1;
        }
    }
    sms.l.RemoveTagged();

    // And now we perform hidden line removal if requested
    SEdgeList hlrd;
    ZERO(&hlrd);
    if(sm && !SS.GW.showHdnLines) {
        SKdNode *root = SKdNode::From(&smp);

        // Generate the edges where a curved surface turns from front-facing
        // to back-facing.
        if(SS.GW.showEdges) {
            root->MakeCertainEdgesInto(sel, SKdNode::TURNING_EDGES,
                        false, NULL, NULL);
        }

        root->ClearTags();
        int cnt = 1234;

        SEdge *se;
        for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) {
            if(se->auxA == Style::CONSTRAINT) {
                // Constraints should not get hidden line removed; they're
                // always on top.
                hlrd.AddEdge(se->a, se->b, se->auxA);
                continue;
            }

            SEdgeList out;
            ZERO(&out);
            // Split the original edge against the mesh
            out.AddEdge(se->a, se->b, se->auxA);
            root->OcclusionTestLine(*se, &out, cnt);
            // the occlusion test splits unnecessarily; so fix those
            out.MergeCollinearSegments(se->a, se->b);
            cnt++;
            // And add the results to our output
            SEdge *sen;
            for(sen = out.l.First(); sen; sen = out.l.NextAfter(sen)) {
                hlrd.AddEdge(sen->a, sen->b, sen->auxA);
            }
            out.Clear();
        }

        sel = &hlrd;
    }

    // We kept the line segments and Beziers separate until now; but put them
    // all together, and also project everything into the xy plane, since not
    // all export targets ignore the z component of the points.
    for(e = sel->l.First(); e; e = sel->l.NextAfter(e)) {
        SBezier sb = SBezier::From(e->a, e->b);
        sb.auxA = e->auxA;
        sbl->l.Add(&sb);
    }
    for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
        for(int i = 0; i <= b->deg; i++) {
            b->ctrl[i].z = 0;
        }
    }

    // If possible, then we will assemble these output curves into loops. They
    // will then get exported as closed paths.
    SBezierLoopSetSet sblss;
    ZERO(&sblss);
    SBezierList leftovers;
    ZERO(&leftovers);
    SSurface srf = SSurface::FromPlane(Vector::From(0, 0, 0),
                                       Vector::From(1, 0, 0),
                                       Vector::From(0, 1, 0));
    SPolygon spxyz;
    ZERO(&spxyz);
    bool allClosed;
    SEdge notClosedAt;
    sbl->l.ClearTags();
    sblss.FindOuterFacesFrom(sbl, &spxyz, &srf,
                             SS.ChordTolMm()*s,
                             &allClosed, &notClosedAt,
                             NULL, NULL,
                             &leftovers);
    for(b = leftovers.l.First(); b; b = leftovers.l.NextAfter(b)) {
        sblss.AddOpenPath(b);
    }

    // Now write the lines and triangles to the output file
    out->Output(&sblss, &sms);

    leftovers.Clear();
    spxyz.Clear();
    sblss.Clear();
    smp.Clear();
    sms.Clear();
    hlrd.Clear();
}
Esempio n. 10
0
void SolveSpace::ExportViewOrWireframeTo(char *filename, bool wireframe) {
    int i;
    SEdgeList edges;
    ZERO(&edges);
    SBezierList beziers;
    ZERO(&beziers);

    SMesh *sm = NULL;
    if(SS.GW.showShaded) {
        Group *g = SK.GetGroup(SS.GW.activeGroup);
        g->GenerateDisplayItems();
        sm = &(g->displayMesh);
    }
    if(sm && sm->IsEmpty()) {
        sm = NULL;
    }

    for(i = 0; i < SK.entity.n; i++) {
        Entity *e = &(SK.entity.elem[i]);
        if(!e->IsVisible()) continue;
        if(e->construction) continue;

        if(SS.exportPwlCurves || (sm && !SS.GW.showHdnLines) ||
                                 fabs(SS.exportOffset) > LENGTH_EPS)
        {
            // We will be doing hidden line removal, which we can't do on
            // exact curves; so we need things broken down to pwls. Same
            // problem with cutter radius compensation.
            e->GenerateEdges(&edges);
        } else {
            e->GenerateBezierCurves(&beziers);
        }
    }

    if(SS.GW.showEdges) {
        Group *g = SK.GetGroup(SS.GW.activeGroup);
        g->GenerateDisplayItems();
        SEdgeList *selr = &(g->displayEdges);
        SEdge *se;
        for(se = selr->l.First(); se; se = selr->l.NextAfter(se)) {
            edges.AddEdge(se->a, se->b, Style::SOLID_EDGE);
        }
    }

    if(SS.GW.showConstraints) {
        Constraint *c;
        for(c = SK.constraint.First(); c; c = SK.constraint.NextAfter(c)) {
            c->GetEdges(&edges);
        }
    }

    if(wireframe) {
        VectorFileWriter *out = VectorFileWriter::ForFile(filename);
        if(out) {
            ExportWireframeCurves(&edges, &beziers, out);
        }
    } else {
        Vector u = SS.GW.projRight,
               v = SS.GW.projUp,
               n = u.Cross(v),
               origin = SS.GW.offset.ScaledBy(-1);

        VectorFileWriter *out = VectorFileWriter::ForFile(filename);
        if(out) {
            ExportLinesAndMesh(&edges, &beziers, sm,
                               u, v, n, origin, SS.CameraTangent()*SS.GW.scale,
                               out);
        }

        if(out && !out->HasCanvasSize()) {
            // These file formats don't have a canvas size, so they just
            // get exported in the raw coordinate system. So indicate what
            // that was on-screen.
            SS.justExportedInfo.draw = true;
            SS.justExportedInfo.pt = origin;
            SS.justExportedInfo.u = u;
            SS.justExportedInfo.v = v;
            InvalidateGraphics();
        }
    }

    edges.Clear();
    beziers.Clear();
}
Esempio n. 11
0
void SolveSpace::ExportSectionTo(char *filename) {
    Vector gn = (SS.GW.projRight).Cross(SS.GW.projUp);
    gn = gn.WithMagnitude(1);

    Group *g = SK.GetGroup(SS.GW.activeGroup);
    g->GenerateDisplayItems();
    if(g->displayMesh.IsEmpty()) {
        Error("No solid model present; draw one with extrudes and revolves, "
              "or use Export 2d View to export bare lines and curves.");
        return;
    }
    
    // The plane in which the exported section lies; need this because we'll
    // reorient from that plane into the xy plane before exporting.
    Vector origin, u, v, n;
    double d;

    SS.GW.GroupSelection();
#define gs (SS.GW.gs)
    if((gs.n == 0 && g->activeWorkplane.v != Entity::FREE_IN_3D.v)) {
        Entity *wrkpl = SK.GetEntity(g->activeWorkplane);
        origin = wrkpl->WorkplaneGetOffset();
        n = wrkpl->Normal()->NormalN();
        u = wrkpl->Normal()->NormalU();
        v = wrkpl->Normal()->NormalV();
    } else if(gs.n == 1 && gs.faces == 1) {
        Entity *face = SK.GetEntity(gs.entity[0]);
        origin = face->FaceGetPointNum();
        n = face->FaceGetNormalNum();
        if(n.Dot(gn) < 0) n = n.ScaledBy(-1);
        u = n.Normal(0);
        v = n.Normal(1);
    } else if(gs.n == 3 && gs.vectors == 2 && gs.points == 1) {
        Vector ut = SK.GetEntity(gs.entity[0])->VectorGetNum(),
               vt = SK.GetEntity(gs.entity[1])->VectorGetNum();
        ut = ut.WithMagnitude(1);
        vt = vt.WithMagnitude(1);

        if(fabs(SS.GW.projUp.Dot(vt)) < fabs(SS.GW.projUp.Dot(ut))) {
            SWAP(Vector, ut, vt);
        }
        if(SS.GW.projRight.Dot(ut) < 0) ut = ut.ScaledBy(-1);
        if(SS.GW.projUp.   Dot(vt) < 0) vt = vt.ScaledBy(-1);

        origin = SK.GetEntity(gs.point[0])->PointGetNum();
        n = ut.Cross(vt);
        u = ut.WithMagnitude(1);
        v = (n.Cross(u)).WithMagnitude(1);
    } else {
        Error("Bad selection for export section. Please select:\n\n"
              "    * nothing, with an active workplane "
                        "(workplane is section plane)\n"
              "    * a face (section plane through face)\n"
              "    * a point and two line segments "
                        "(plane through point and parallel to lines)\n");
        return;
    }
    SS.GW.ClearSelection();

    n = n.WithMagnitude(1);
    d = origin.Dot(n);

    SEdgeList el;
    ZERO(&el);
    SBezierList bl;
    ZERO(&bl);

    // If there's a mesh, then grab the edges from it.
    g->runningMesh.MakeEdgesInPlaneInto(&el, n, d);

    // If there's a shell, then grab the edges and possibly Beziers.
    g->runningShell.MakeSectionEdgesInto(n, d,
       &el, 
       (SS.exportPwlCurves || fabs(SS.exportOffset) > LENGTH_EPS) ? NULL : &bl);

    // All of these are solid model edges, so use the appropriate style.
    SEdge *se;
    for(se = el.l.First(); se; se = el.l.NextAfter(se)) {
        se->auxA = Style::SOLID_EDGE;
    }
    SBezier *sb;
    for(sb = bl.l.First(); sb; sb = bl.l.NextAfter(sb)) {
        sb->auxA = Style::SOLID_EDGE;
    }

    el.CullExtraneousEdges();
    bl.CullIdenticalBeziers();

    // And write the edges.
    VectorFileWriter *out = VectorFileWriter::ForFile(filename);
    if(out) {
        // parallel projection (no perspective), and no mesh
        ExportLinesAndMesh(&el, &bl, NULL,
                           u, v, n, origin, 0,
                           out);
    }
    el.Clear();
    bl.Clear();
}
Esempio n. 12
0
void Entity::DrawOrGetDistance(void) {
    if(!IsVisible()) return;

    Group *g = SK.GetGroup(group);

    switch(type) {
        case POINT_N_COPY:
        case POINT_N_TRANS:
        case POINT_N_ROT_TRANS:
        case POINT_N_ROT_AA:
        case POINT_IN_3D:
        case POINT_IN_2D: {
            Vector v = PointGetNum();
            dogd.refp = v;

            if(dogd.drawing) {
                double s = 3.5;
                Vector r = SS.GW.projRight.ScaledBy(s/SS.GW.scale);
                Vector d = SS.GW.projUp.ScaledBy(s/SS.GW.scale);

                ssglColorRGB(Style::Color(Style::DATUM));
                ssglDepthRangeOffset(6);
                glBegin(GL_QUADS);
                    ssglVertex3v(v.Plus (r).Plus (d));
                    ssglVertex3v(v.Plus (r).Minus(d));
                    ssglVertex3v(v.Minus(r).Minus(d));
                    ssglVertex3v(v.Minus(r).Plus (d));
                glEnd();
                ssglDepthRangeOffset(0);
            } else {
                Point2d pp = SS.GW.ProjectPoint(v);
                dogd.dmin = pp.DistanceTo(dogd.mp) - 6;
            }
            break;
        }

        case NORMAL_N_COPY:
        case NORMAL_N_ROT:
        case NORMAL_N_ROT_AA:
        case NORMAL_IN_3D:
        case NORMAL_IN_2D: {
            int i;
            for(i = 0; i < 2; i++) {
                if(i == 0 && !SS.GW.showNormals) {
                    // When the normals are hidden, we will continue to show
                    // the coordinate axes at the bottom left corner, but
                    // not at the origin.
                    continue;
                }

                hRequest hr = h.request();
                // Always draw the x, y, and z axes in red, green, and blue;
                // brighter for the ones at the bottom left of the screen,
                // dimmer for the ones at the model origin.
                int f = (i == 0 ? 100 : 255);
                if(hr.v == Request::HREQUEST_REFERENCE_XY.v) {
                    ssglColorRGB(RGBi(0, 0, f));
                } else if(hr.v == Request::HREQUEST_REFERENCE_YZ.v) {
                    ssglColorRGB(RGBi(f, 0, 0));
                } else if(hr.v == Request::HREQUEST_REFERENCE_ZX.v) {
                    ssglColorRGB(RGBi(0, f, 0));
                } else {
                    ssglColorRGB(Style::Color(Style::NORMALS));
                    if(i > 0) break;
                }

                Quaternion q = NormalGetNum();
                Vector tail;
                if(i == 0) {
                    tail = SK.GetEntity(point[0])->PointGetNum();
                    glLineWidth(1);
                } else {
                    // Draw an extra copy of the x, y, and z axes, that's
                    // always in the corner of the view and at the front.
                    // So those are always available, perhaps useful.
                    double s = SS.GW.scale;
                    double h = 60 - SS.GW.height/2;
                    double w = 60 - SS.GW.width/2;
                    tail = SS.GW.projRight.ScaledBy(w/s).Plus(
                           SS.GW.projUp.   ScaledBy(h/s)).Minus(SS.GW.offset);
                    ssglDepthRangeLockToFront(true);
                    glLineWidth(2);
                }

                Vector v = (q.RotationN()).WithMagnitude(50/SS.GW.scale);
                Vector tip = tail.Plus(v);
                LineDrawOrGetDistance(tail, tip);

                v = v.WithMagnitude(12/SS.GW.scale);
                Vector axis = q.RotationV();
                LineDrawOrGetDistance(tip,tip.Minus(v.RotatedAbout(axis, 0.6)));
                LineDrawOrGetDistance(tip,tip.Minus(v.RotatedAbout(axis,-0.6)));
            }
            ssglDepthRangeLockToFront(false);
            break;
        }

        case DISTANCE:
        case DISTANCE_N_COPY:
            // These are used only as data structures, nothing to display.
            break;

        case WORKPLANE: {
            Vector p;
            p = SK.GetEntity(point[0])->PointGetNum();

            Vector u = Normal()->NormalU();
            Vector v = Normal()->NormalV();

            double s = (min(SS.GW.width, SS.GW.height))*0.45/SS.GW.scale;

            Vector us = u.ScaledBy(s);
            Vector vs = v.ScaledBy(s);

            Vector pp = p.Plus (us).Plus (vs);
            Vector pm = p.Plus (us).Minus(vs);
            Vector mm = p.Minus(us).Minus(vs), mm2 = mm;
            Vector mp = p.Minus(us).Plus (vs);

            glLineWidth(1);
            ssglColorRGB(Style::Color(Style::NORMALS));
            glEnable(GL_LINE_STIPPLE);
            glLineStipple(3, 0x1111);
            if(!h.isFromRequest()) {
                mm = mm.Plus(v.ScaledBy(60/SS.GW.scale));
                mm2 = mm2.Plus(u.ScaledBy(60/SS.GW.scale));
                LineDrawOrGetDistance(mm2, mm);
            }
            LineDrawOrGetDistance(pp, pm);
            LineDrawOrGetDistance(pm, mm2);
            LineDrawOrGetDistance(mm, mp);
            LineDrawOrGetDistance(mp, pp);
            glDisable(GL_LINE_STIPPLE);

            char *str = DescriptionString()+5;
            double th = DEFAULT_TEXT_HEIGHT;
            if(dogd.drawing) {
                ssglWriteText(str, th, mm2, u, v, NULL, NULL);
            } else {
                Vector pos = mm2.Plus(u.ScaledBy(ssglStrWidth(str, th)/2)).Plus(
                                      v.ScaledBy(ssglStrHeight(th)/2));
                Point2d pp = SS.GW.ProjectPoint(pos);
                dogd.dmin = min(dogd.dmin, pp.DistanceTo(dogd.mp) - 10);
                // If a line lies in a plane, then select the line, not
                // the plane.
                dogd.dmin += 3;
            }
            break;
        }

        case LINE_SEGMENT:
        case CIRCLE:
        case ARC_OF_CIRCLE:
        case CUBIC:
        case CUBIC_PERIODIC:
        case TTF_TEXT:
            // Nothing but the curve(s).
            break;

        case FACE_NORMAL_PT:
        case FACE_XPROD:
        case FACE_N_ROT_TRANS:
        case FACE_N_TRANS:
        case FACE_N_ROT_AA:
            // Do nothing; these are drawn with the triangle mesh
            break;

        default:
            oops();
    }

    // And draw the curves; generate the rational polynomial curves for
    // everything, then piecewise linearize them, and display those.
    SEdgeList sel;
    ZERO(&sel);
    GenerateEdges(&sel, true);
    int i;
    for(i = 0; i < sel.l.n; i++) {
        SEdge *se = &(sel.l.elem[i]);
        LineDrawOrGetDistance(se->a, se->b, true);
    }
    sel.Clear();
}