void CPDF_CryptoHandler::CryptBlock(bool bEncrypt, uint32_t objnum, uint32_t gennum, const uint8_t* src_buf, uint32_t src_size, uint8_t* dest_buf, uint32_t& dest_size) { if (m_Cipher == FXCIPHER_NONE) { FXSYS_memcpy(dest_buf, src_buf, src_size); return; } uint8_t realkey[16]; int realkeylen = 16; if (m_Cipher != FXCIPHER_AES || m_KeyLen != 32) { uint8_t key1[32]; PopulateKey(objnum, gennum, key1); if (m_Cipher == FXCIPHER_AES) { FXSYS_memcpy(key1 + m_KeyLen + 5, "sAlT", 4); } CRYPT_MD5Generate( key1, m_Cipher == FXCIPHER_AES ? m_KeyLen + 9 : m_KeyLen + 5, realkey); realkeylen = m_KeyLen + 5; if (realkeylen > 16) { realkeylen = 16; } } if (m_Cipher == FXCIPHER_AES) { CRYPT_AESSetKey(m_pAESContext, 16, m_KeyLen == 32 ? m_EncryptKey : realkey, m_KeyLen, bEncrypt); if (bEncrypt) { uint8_t iv[16]; for (int i = 0; i < 16; i++) { iv[i] = (uint8_t)rand(); } CRYPT_AESSetIV(m_pAESContext, iv); FXSYS_memcpy(dest_buf, iv, 16); int nblocks = src_size / 16; CRYPT_AESEncrypt(m_pAESContext, dest_buf + 16, src_buf, nblocks * 16); uint8_t padding[16]; FXSYS_memcpy(padding, src_buf + nblocks * 16, src_size % 16); FXSYS_memset(padding + src_size % 16, 16 - src_size % 16, 16 - src_size % 16); CRYPT_AESEncrypt(m_pAESContext, dest_buf + nblocks * 16 + 16, padding, 16); dest_size = 32 + nblocks * 16; } else { CRYPT_AESSetIV(m_pAESContext, src_buf); CRYPT_AESDecrypt(m_pAESContext, dest_buf, src_buf + 16, src_size - 16); dest_size = src_size - 16; dest_size -= dest_buf[dest_size - 1]; } } else { ASSERT(dest_size == src_size); if (dest_buf != src_buf) { FXSYS_memcpy(dest_buf, src_buf, src_size); } CRYPT_ArcFourCryptBlock(dest_buf, dest_size, realkey, realkeylen); } }
void CPDF_SecurityHandler::AES256_SetPerms(CPDF_Dictionary* pEncryptDict, uint32_t permissions, FX_BOOL bEncryptMetadata, const uint8_t* key) { uint8_t buf[16]; buf[0] = (uint8_t)permissions; buf[1] = (uint8_t)(permissions >> 8); buf[2] = (uint8_t)(permissions >> 16); buf[3] = (uint8_t)(permissions >> 24); buf[4] = 0xff; buf[5] = 0xff; buf[6] = 0xff; buf[7] = 0xff; buf[8] = bEncryptMetadata ? 'T' : 'F'; buf[9] = 'a'; buf[10] = 'd'; buf[11] = 'b'; uint8_t* aes = FX_Alloc(uint8_t, 2048); CRYPT_AESSetKey(aes, 16, key, 32, TRUE); uint8_t iv[16], buf1[16]; FXSYS_memset(iv, 0, 16); CRYPT_AESSetIV(aes, iv); CRYPT_AESEncrypt(aes, buf1, buf, 16); FX_Free(aes); pEncryptDict->SetAtString("Perms", CFX_ByteString(buf1, 16)); }
void CPDF_StandardSecurityHandler::AES256_SetPerms(CPDF_Dictionary* pEncryptDict, FX_DWORD permissions, FX_BOOL bEncryptMetadata, FX_LPCBYTE key) { FX_BYTE buf[16]; buf[0] = (FX_BYTE)permissions; buf[1] = (FX_BYTE)(permissions >> 8); buf[2] = (FX_BYTE)(permissions >> 16); buf[3] = (FX_BYTE)(permissions >> 24); buf[4] = 0xff; buf[5] = 0xff; buf[6] = 0xff; buf[7] = 0xff; buf[8] = bEncryptMetadata ? 'T' : 'F'; buf[9] = 'a'; buf[10] = 'd'; buf[11] = 'b'; FX_BYTE* aes = FX_Alloc(FX_BYTE, 2048); CRYPT_AESSetKey(aes, 16, key, 32, TRUE); FX_BYTE iv[16], buf1[16]; FXSYS_memset32(iv, 0, 16); CRYPT_AESSetIV(aes, iv); CRYPT_AESEncrypt(aes, buf1, buf, 16); FX_Free(aes); pEncryptDict->SetAtString(FX_BSTRC("Perms"), CFX_ByteString(buf1, 16)); }
bool CPDF_CryptoHandler::CryptStream(void* context, const uint8_t* src_buf, uint32_t src_size, CFX_BinaryBuf& dest_buf, bool bEncrypt) { if (!context) { return false; } if (m_Cipher == FXCIPHER_NONE) { dest_buf.AppendBlock(src_buf, src_size); return true; } if (m_Cipher == FXCIPHER_RC4) { int old_size = dest_buf.GetSize(); dest_buf.AppendBlock(src_buf, src_size); CRYPT_ArcFourCrypt(reinterpret_cast<CRYPT_rc4_context*>(context), dest_buf.GetBuffer() + old_size, src_size); return true; } AESCryptContext* pContext = reinterpret_cast<AESCryptContext*>(context); if (pContext->m_bIV && bEncrypt) { dest_buf.AppendBlock(pContext->m_Block, 16); pContext->m_bIV = false; } uint32_t src_off = 0; uint32_t src_left = src_size; while (1) { uint32_t copy_size = 16 - pContext->m_BlockOffset; if (copy_size > src_left) { copy_size = src_left; } FXSYS_memcpy(pContext->m_Block + pContext->m_BlockOffset, src_buf + src_off, copy_size); src_off += copy_size; src_left -= copy_size; pContext->m_BlockOffset += copy_size; if (pContext->m_BlockOffset == 16) { if (!bEncrypt && pContext->m_bIV) { CRYPT_AESSetIV(pContext->m_Context, pContext->m_Block); pContext->m_bIV = false; pContext->m_BlockOffset = 0; } else if (src_off < src_size) { uint8_t block_buf[16]; if (bEncrypt) { CRYPT_AESEncrypt(pContext->m_Context, block_buf, pContext->m_Block, 16); } else { CRYPT_AESDecrypt(pContext->m_Context, block_buf, pContext->m_Block, 16); } dest_buf.AppendBlock(block_buf, 16); pContext->m_BlockOffset = 0; } } if (!src_left) { break; } } return true; }
void CPDF_StandardSecurityHandler::AES256_SetPassword( CPDF_Dictionary* pEncryptDict, const uint8_t* password, FX_DWORD size, FX_BOOL bOwner, const uint8_t* key) { uint8_t sha[128]; CRYPT_SHA1Start(sha); CRYPT_SHA1Update(sha, key, 32); CRYPT_SHA1Update(sha, (uint8_t*)"hello", 5); uint8_t digest[20]; CRYPT_SHA1Finish(sha, digest); CFX_ByteString ukey = pEncryptDict->GetString(FX_BSTRC("U")); uint8_t digest1[48]; if (m_Revision >= 6) { Revision6_Hash(password, size, digest, (bOwner ? (const uint8_t*)ukey : NULL), digest1); } else { CRYPT_SHA256Start(sha); CRYPT_SHA256Update(sha, password, size); CRYPT_SHA256Update(sha, digest, 8); if (bOwner) { CRYPT_SHA256Update(sha, ukey, ukey.GetLength()); } CRYPT_SHA256Finish(sha, digest1); } FXSYS_memcpy(digest1 + 32, digest, 16); pEncryptDict->SetAtString(bOwner ? FX_BSTRC("O") : FX_BSTRC("U"), CFX_ByteString(digest1, 48)); if (m_Revision >= 6) { Revision6_Hash(password, size, digest + 8, (bOwner ? (const uint8_t*)ukey : NULL), digest1); } else { CRYPT_SHA256Start(sha); CRYPT_SHA256Update(sha, password, size); CRYPT_SHA256Update(sha, digest + 8, 8); if (bOwner) { CRYPT_SHA256Update(sha, ukey, ukey.GetLength()); } CRYPT_SHA256Finish(sha, digest1); } uint8_t* aes = FX_Alloc(uint8_t, 2048); CRYPT_AESSetKey(aes, 16, digest1, 32, TRUE); uint8_t iv[16]; FXSYS_memset(iv, 0, 16); CRYPT_AESSetIV(aes, iv); CRYPT_AESEncrypt(aes, digest1, key, 32); FX_Free(aes); pEncryptDict->SetAtString(bOwner ? FX_BSTRC("OE") : FX_BSTRC("UE"), CFX_ByteString(digest1, 32)); }
bool CPDF_CryptoHandler::CryptFinish(void* context, CFX_BinaryBuf& dest_buf, bool bEncrypt) { if (!context) { return false; } if (m_Cipher == FXCIPHER_NONE) { return true; } if (m_Cipher == FXCIPHER_RC4) { FX_Free(context); return true; } AESCryptContext* pContext = (AESCryptContext*)context; if (bEncrypt) { uint8_t block_buf[16]; if (pContext->m_BlockOffset == 16) { CRYPT_AESEncrypt(pContext->m_Context, block_buf, pContext->m_Block, 16); dest_buf.AppendBlock(block_buf, 16); pContext->m_BlockOffset = 0; } FXSYS_memset(pContext->m_Block + pContext->m_BlockOffset, (uint8_t)(16 - pContext->m_BlockOffset), 16 - pContext->m_BlockOffset); CRYPT_AESEncrypt(pContext->m_Context, block_buf, pContext->m_Block, 16); dest_buf.AppendBlock(block_buf, 16); } else if (pContext->m_BlockOffset == 16) { uint8_t block_buf[16]; CRYPT_AESDecrypt(pContext->m_Context, block_buf, pContext->m_Block, 16); if (block_buf[15] <= 16) { dest_buf.AppendBlock(block_buf, 16 - block_buf[15]); } } FX_Free(pContext); return true; }
void Revision6_Hash(const uint8_t* password, uint32_t size, const uint8_t* salt, const uint8_t* vector, uint8_t* hash) { int iBlockSize = 32; uint8_t sha[128]; CRYPT_SHA256Start(sha); CRYPT_SHA256Update(sha, password, size); CRYPT_SHA256Update(sha, salt, 8); if (vector) { CRYPT_SHA256Update(sha, vector, 48); } uint8_t digest[32]; CRYPT_SHA256Finish(sha, digest); CFX_ByteTextBuf buf; uint8_t* input = digest; uint8_t* key = input; uint8_t* iv = input + 16; uint8_t* E = buf.GetBuffer(); int iBufLen = buf.GetLength(); CFX_ByteTextBuf interDigest; int i = 0; uint8_t* aes = FX_Alloc(uint8_t, 2048); while (i < 64 || i < E[iBufLen - 1] + 32) { int iRoundSize = size + iBlockSize; if (vector) { iRoundSize += 48; } iBufLen = iRoundSize * 64; buf.EstimateSize(iBufLen); E = buf.GetBuffer(); CFX_ByteTextBuf content; for (int j = 0; j < 64; ++j) { content.AppendBlock(password, size); content.AppendBlock(input, iBlockSize); if (vector) { content.AppendBlock(vector, 48); } } CRYPT_AESSetKey(aes, 16, key, 16, TRUE); CRYPT_AESSetIV(aes, iv); CRYPT_AESEncrypt(aes, E, content.GetBuffer(), iBufLen); int iHash = 0; switch (BigOrder64BitsMod3(E)) { case 0: iHash = 0; iBlockSize = 32; break; case 1: iHash = 1; iBlockSize = 48; break; default: iHash = 2; iBlockSize = 64; break; } interDigest.EstimateSize(iBlockSize); input = interDigest.GetBuffer(); if (iHash == 0) { CRYPT_SHA256Generate(E, iBufLen, input); } else if (iHash == 1) { CRYPT_SHA384Generate(E, iBufLen, input); } else if (iHash == 2) { CRYPT_SHA512Generate(E, iBufLen, input); } key = input; iv = input + 16; ++i; } FX_Free(aes); if (hash) { FXSYS_memcpy(hash, input, 32); } }