/** * Initializes the Input capture module to read the RC signals. */ void BSP_Radio_Init(void) { uwIC2Value = 0; uwIC1Value = 0; HAL_TIM_IC_Start_IT(&htim4, TIM_CHANNEL_1); HAL_TIM_IC_Start_IT(&htim4, TIM_CHANNEL_2); HAL_TIM_IC_Start_IT(&htim4, TIM_CHANNEL_3); }
/** * @brief Configures TIM5 to measure the LSI oscillator frequency. * @param None * @retval LSI Frequency */ static uint32_t GetLSIFrequency(void) { TIM_IC_InitTypeDef TIMInput_Config; /* Configure the TIM peripheral *********************************************/ /* Set TIMx instance */ Input_Handle.Instance = TIM5; /* TIM5 configuration: Input Capture mode --------------------- The LSI oscillator is connected to TIM5 TIM_CHANNEL_4. The Rising edge is used as active edge. The TIM5 CCR TIM_CHANNEL_4 is used to compute the frequency value. ------------------------------------------------------------ */ Input_Handle.Init.Prescaler = 0; Input_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; Input_Handle.Init.Period = 0xFFFF; Input_Handle.Init.ClockDivision = 0; if(HAL_TIM_IC_Init(&Input_Handle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* Connect internally the TIM5 TIM_CHANNEL_4 Input Capture to the LSI clock output */ __HAL_RCC_AFIO_CLK_ENABLE(); __HAL_AFIO_REMAP_TIM5CH4_ENABLE(); /* Configure the Input Capture of TIM_CHANNEL_4 */ TIMInput_Config.ICPolarity = TIM_ICPOLARITY_RISING; TIMInput_Config.ICSelection = TIM_ICSELECTION_DIRECTTI; TIMInput_Config.ICPrescaler = TIM_ICPSC_DIV8; TIMInput_Config.ICFilter = 0; if(HAL_TIM_IC_ConfigChannel(&Input_Handle, &TIMInput_Config, TIM_CHANNEL_4) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* Start the TIM Input Capture measurement in interrupt mode */ if(HAL_TIM_IC_Start_IT(&Input_Handle, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); } /* Wait until the TIM5 get 2 LSI edges */ while(uwCaptureNumber != 2) { } /* Disable TIM5 CC1 Interrupt Request */ HAL_TIM_IC_Stop_IT(&Input_Handle, TIM_CHANNEL_4); /* Deinitialize the TIM5 peripheral registers to their default reset values */ HAL_TIM_IC_DeInit(&Input_Handle); return uwLsiFreq; }
void TIM_Init(TIM_HandleTypeDef *timh) { TIM_IC_InitTypeDef sConfig; timh->Init.Period = 0xFFFF; timh->Init.Prescaler = 0; timh->Init.Prescaler = ((SystemCoreClock) / 1000000) - 1; // 1Mhz timh->Init.ClockDivision = 0; timh->Init.CounterMode = TIM_COUNTERMODE_UP; HAL_TIM_IC_Init(timh); // Common configuration sConfig.ICPrescaler = TIM_ICPSC_DIV1; sConfig.ICFilter = 0; // Configure the Input Capture of channel 1 sConfig.ICPolarity = TIM_ICPOLARITY_RISING; sConfig.ICSelection = TIM_ICSELECTION_INDIRECTTI; HAL_TIM_IC_ConfigChannel(timh, &sConfig, TIM_CHANNEL_1); // Configure the Input Capture of channel 2 sConfig.ICPolarity = TIM_ICPOLARITY_FALLING; sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; HAL_TIM_IC_ConfigChannel(timh, &sConfig, TIM_CHANNEL_2); // Configure the Input Capture of channel 3 sConfig.ICPolarity = TIM_ICPOLARITY_RISING; sConfig.ICSelection = TIM_ICSELECTION_INDIRECTTI; HAL_TIM_IC_ConfigChannel(timh, &sConfig, TIM_CHANNEL_3); // Configure the Input Capture of channel 4 sConfig.ICPolarity = TIM_ICPOLARITY_FALLING; sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; HAL_TIM_IC_ConfigChannel(timh, &sConfig, TIM_CHANNEL_4); HAL_TIM_IC_Start_IT(timh, TIM_CHANNEL_1); HAL_TIM_IC_Start_IT(timh, TIM_CHANNEL_2); HAL_TIM_IC_Start_IT(timh, TIM_CHANNEL_3); HAL_TIM_IC_Start_IT(timh, TIM_CHANNEL_4); }
/** * @brief TIM4 Configuration * @note TIM4 configuration is based on APB1 frequency * @note TIM4 Update event occurs each Input Capture Rising Edge * @param None * @retval None */ void TIM4_Config(void) { TIM_IC_InitTypeDef TIMInput_Config; uint16_t PeriodValue = 0; TIM_SlaveConfigTypeDef sSlaveConfig; /*##-1- Configure the TIM peripheral #######################################*/ /* Input Capture configuration */ Input_Handle.Instance = TIM4; /* Calculate the period value */ PeriodValue = (uint16_t) ((SystemCoreClock) / FREQ); Input_Handle.Init.Period = PeriodValue; Input_Handle.Init.Prescaler = 0; Input_Handle.Init.ClockDivision = 0; Input_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; Input_Handle.Init.RepetitionCounter = 0; HAL_TIM_IC_Init(&Input_Handle); /*##-2- Configure the Input Capture ########################################*/ /* Input Capture configuration of channel 2 */ TIMInput_Config.ICPolarity = TIM_ICPOLARITY_RISING; TIMInput_Config.ICSelection = TIM_ICSELECTION_DIRECTTI; TIMInput_Config.ICPrescaler = TIM_ICPSC_DIV1; TIMInput_Config.ICFilter = 0; if(HAL_TIM_IC_ConfigChannel(&Input_Handle, &TIMInput_Config, TIM_CHANNEL_2) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-3- Configure the Trigger Input ########################################*/ /* TIM4 Input Trigger selection */ sSlaveConfig.InputTrigger = TIM_TS_ITR2; sSlaveConfig.SlaveMode = TIM_SLAVEMODE_TRIGGER; HAL_TIM_SlaveConfigSynchronization(&Input_Handle, &sSlaveConfig); /* Reset the flags */ Input_Handle.Instance->SR = 0; /*##-4- Enable TIM peripheral counter ######################################*/ /* Start the TIM Input Capture measurement in interrupt mode */ if(HAL_TIM_IC_Start_IT(&Input_Handle, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } }
/** * @brief Configures TIM2 channel 4 in input capture mode * @param None * @retval None */ static void TIM_Config(void) { /*##-1- Configure the TIM peripheral #######################################*/ /* Set TIMx instance */ TimHandle.Instance = TIMx; /* Initialize TIMx peripheral as follow: + Period = 0xFFFF + Prescaler = 0 + ClockDivision = 0 + Counter direction = Up */ TimHandle.Init.Period = 0xFFFF; TimHandle.Init.Prescaler = 0; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; if(HAL_TIM_IC_Init(&TimHandle) != HAL_OK) { /* Error */ ErrorHandler(); } HAL_TIMEx_RemapConfig(&TimHandle, TIM2_TI4_COMP1); /*##-2- Configure the Input Capture channel ################################*/ /* Configure the Input Capture of channel 4 */ sICConfig.ICPolarity = TIM_ICPOLARITY_BOTHEDGE; sICConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; sICConfig.ICPrescaler = TIM_ICPSC_DIV1; sICConfig.ICFilter = 0; if(HAL_TIM_IC_ConfigChannel(&TimHandle, &sICConfig, TIM_CHANNEL_4) != HAL_OK) { /* Configuration Error */ ErrorHandler(); } /*##-3- Start the Input Capture in interrupt mode ##########################*/ if(HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_4) != HAL_OK) { /* Starting Error */ ErrorHandler(); } }
void pwmICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity) { TIM_HandleTypeDef* Handle = timerFindTimerHandle(tim); if (Handle == NULL) return; TIM_IC_InitTypeDef TIM_ICInitStructure; TIM_ICInitStructure.ICPolarity = polarity; TIM_ICInitStructure.ICSelection = TIM_ICSELECTION_DIRECTTI; TIM_ICInitStructure.ICPrescaler = TIM_ICPSC_DIV1; if (inputFilteringMode == INPUT_FILTERING_ENABLED) { TIM_ICInitStructure.ICFilter = INPUT_FILTER_TO_HELP_WITH_NOISE_FROM_OPENLRS_TELEMETRY_RX; } else { TIM_ICInitStructure.ICFilter = 0x00; } HAL_TIM_IC_ConfigChannel(Handle, &TIM_ICInitStructure, channel); HAL_TIM_IC_Start_IT(Handle,channel); }
int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration----------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* Configure the system clock */ SystemClock_Config(); /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM1_Init(); MX_USB_DEVICE_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_IC_Start_IT(&htim1, TIM_CHANNEL_1); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ //DBGMCU->CR |= DBGMCU_CR_DBG_TIM1_STOP; //this is for timer debugging while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ if (data_ready) { USBD_HID_SendReport(&hUsbDeviceFS, (uint8_t*) rc_data, 10); data_ready = 0; } } /* USER CODE END 3 */ }
/** * @brief Configures TIM5 to measure the LSI oscillator frequency. * @param None * @retval LSI Frequency */ static uint32_t GetLSIFrequency(void) { uint32_t pclk1 = 0; TIM_IC_InitTypeDef timinputconfig; /* Enable the LSI oscillator */ __HAL_RCC_LSI_ENABLE(); /* Wait till LSI is ready */ while (__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) { } /* Configure the TIM peripheral */ /* Set TIMx instance */ TimInputCaptureHandle.Instance = TIM5; /* TIM5 configuration: Input Capture mode --------------------- The LSI oscillator is connected to TIM5 CH4. The Rising edge is used as active edge. The TIM5 CCR4 is used to compute the frequency value. ------------------------------------------------------------ */ TimInputCaptureHandle.Init.Prescaler = 0; TimInputCaptureHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimInputCaptureHandle.Init.Period = 0xFFFF; TimInputCaptureHandle.Init.ClockDivision = 0; TimInputCaptureHandle.Init.RepetitionCounter = 0; if(HAL_TIM_IC_Init(&TimInputCaptureHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* Connect internally the TIM5_CH4 Input Capture to the LSI clock output */ HAL_TIMEx_RemapConfig(&TimInputCaptureHandle, TIM_TIM5_LSI); /* Configure the Input Capture of channel 4 */ timinputconfig.ICPolarity = TIM_ICPOLARITY_RISING; timinputconfig.ICSelection = TIM_ICSELECTION_DIRECTTI; timinputconfig.ICPrescaler = TIM_ICPSC_DIV8; timinputconfig.ICFilter = 0; if(HAL_TIM_IC_ConfigChannel(&TimInputCaptureHandle, &timinputconfig, TIM_CHANNEL_4) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* Reset the flags */ TimInputCaptureHandle.Instance->SR = 0; /* Start the TIM Input Capture measurement in interrupt mode */ if(HAL_TIM_IC_Start_IT(&TimInputCaptureHandle, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); } /* Wait until the TIM5 get 2 LSI edges (refer to TIM5_IRQHandler() in stm32f4xx_it.c file) */ while(uwMeasurementDone == 0) { } uwCaptureNumber = 0; /* Deinitialize the TIM5 peripheral registers to their default reset values */ HAL_TIM_IC_DeInit(&TimInputCaptureHandle); /* Compute the LSI frequency, depending on TIM5 input clock frequency (PCLK1)*/ /* Get PCLK1 frequency */ pclk1 = HAL_RCC_GetPCLK1Freq(); /* Get PCLK1 prescaler */ if((RCC->CFGR & RCC_CFGR_PPRE1) == 0) { /* PCLK1 prescaler equal to 1 => TIMCLK = PCLK1 */ return ((pclk1 / uwPeriodValue) * 8); } else { /* PCLK1 prescaler different from 1 => TIMCLK = 2 * PCLK1 */ return (((2 * pclk1) / uwPeriodValue) * 8); } }
/** * @brief Main program * @param None * @retval None */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Global MSP (MCU Support Package) initialization */ HAL_Init(); /* Configure the system clock to 168 MHz */ SystemClock_Config(); /* Configure LED3 */ BSP_LED_Init(LED3); /*##-1- Configure the TIM peripheral #######################################*/ /* --------------------------------------------------------------------------- TIM4 configuration: PWM Input mode In this example TIM4 input clock (TIM4CLK) is set to 2 * APB1 clock (PCLK1), since APB1 prescaler is different from 1. TIM4CLK = 2 * PCLK1 PCLK1 = HCLK / 4 => TIM4CLK = HCLK / 2 = SystemCoreClock /2 External Signal Frequency = TIM4 counter clock / TIM4_CCR2 in Hz. External Signal DutyCycle = (TIM4_CCR1*100)/(TIM4_CCR2) in %. --------------------------------------------------------------------------- */ /* Set TIMx instance */ TimHandle.Instance = TIM4; /* Initialize TIMx peripheral as follow: + Period = 0xFFFF + Prescaler = 0 + ClockDivision = 0 + Counter direction = Up */ TimHandle.Init.Period = 0xFFFF; TimHandle.Init.Prescaler = 0; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; if(HAL_TIM_IC_Init(&TimHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-2- Configure the Input Capture channels ###############################*/ /* Common configuration */ sConfig.ICPrescaler = TIM_ICPSC_DIV1; sConfig.ICFilter = 0; /* Configure the Input Capture of channel 1 */ sConfig.ICPolarity = TIM_ICPOLARITY_FALLING; sConfig.ICSelection = TIM_ICSELECTION_INDIRECTTI; if(HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /* Configure the Input Capture of channel 2 */ sConfig.ICPolarity = TIM_ICPOLARITY_RISING; sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; if(HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /*##-3- Configure the slave mode ###########################################*/ /* Select the slave Mode: Reset Mode */ sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET; sSlaveConfig.InputTrigger = TIM_TS_TI2FP2; if(HAL_TIM_SlaveConfigSynchronization(&TimHandle, &sSlaveConfig) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /*##-4- Start the Input Capture in interrupt mode ##########################*/ if(HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ Error_Handler(); } /*##-5- Start the Input Capture in interrupt mode ##########################*/ if(HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { /* Starting Error */ Error_Handler(); } /* Infinite loop */ while (1) { } }
/** * @brief Main program. * @param None * @retval None */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Global MSP (MCU Support Package) initialization */ if(HAL_Init()!= HAL_OK) { /* Start Conversation Error */ Error_Handler(); } /* Configure the system clock to 84 Mhz */ SystemClock_Config(); /* Configure LED5 */ BSP_LED_Init(LED5); /*##-1- Configure the TIM peripheral #######################################*/ /* Set TIMx instance */ TimHandle.Instance = TIMx; /* Initialize TIMx peripheral as follow: + Period = 0xFFFF + Prescaler = 0 + ClockDivision = 0 + Counter direction = Up */ TimHandle.Init.Period = 0xFFFF; TimHandle.Init.Prescaler = 0; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; if(HAL_TIM_IC_Init(&TimHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-2- Configure the Input Capture channels ###############################*/ /* Common configuration */ sConfig.ICPrescaler = TIM_ICPSC_DIV1; sConfig.ICFilter = 0; /* Configure the Input Capture of channel 1 */ sConfig.ICPolarity = TIM_ICPOLARITY_FALLING; sConfig.ICSelection = TIM_ICSELECTION_INDIRECTTI; if(HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /* Configure the Input Capture of channel 2 */ sConfig.ICPolarity = TIM_ICPOLARITY_RISING; sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; if(HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /*##-3- Configure the slave mode ###########################################*/ /* Select the slave Mode: Reset Mode */ sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET; sSlaveConfig.InputTrigger = TIM_TS_TI2FP2; if(HAL_TIM_SlaveConfigSynchronization(&TimHandle, &sSlaveConfig) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /*##-4- Start the Input Capture in interrupt mode ##########################*/ if(HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ Error_Handler(); } /*##-5- Start the Input Capture in interrupt mode ##########################*/ if(HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { /* Starting Error */ Error_Handler(); } /* Infinite loop */ while (1) { } }
/** * @brief Main program. * @param None * @retval None */ int main(void) { /* STM32F0xx HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Low Level Initialization */ HAL_Init(); /* Configure LED2 */ BSP_LED_Init(LED2); /* Configure the system clock to 48 MHz */ SystemClock_Config(); /*##-1- Configure the TIM peripheral #######################################*/ /* --------------------------------------------------------------------------- TIM3 configuration: PWM Input mode In this example TIM3 input clock (TIM3CLK) is set to APB1 clock (PCLK1), since APB1 prescaler is 1. TIM3CLK = PCLK1 PCLK1 = HCLK => TIM3CLK = HCLK = SystemCoreClock External Signal Frequency = TIM3 counter clock / TIM3_CCR2 in Hz. External Signal DutyCycle = (TIM3_CCR1*100)/(TIM3_CCR2) in %. --------------------------------------------------------------------------- */ /* Set TIMx instance */ TimHandle.Instance = TIMx; /* Initialize TIMx peripheral as follows: + Period = 0xFFFF + Prescaler = 0 + ClockDivision = 0 + Counter direction = Up */ TimHandle.Init.Period = 0xFFFF; TimHandle.Init.Prescaler = 0; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimHandle.Init.RepetitionCounter = 0; if (HAL_TIM_IC_Init(&TimHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-2- Configure the Input Capture channels ###############################*/ /* Common configuration */ sConfig.ICPrescaler = TIM_ICPSC_DIV1; sConfig.ICFilter = 0; /* Configure the Input Capture of channel 1 */ sConfig.ICPolarity = TIM_ICPOLARITY_FALLING; sConfig.ICSelection = TIM_ICSELECTION_INDIRECTTI; if (HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /* Configure the Input Capture of channel 2 */ sConfig.ICPolarity = TIM_ICPOLARITY_RISING; sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; if (HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /*##-3- Configure the slave mode ###########################################*/ /* Select the slave Mode: Reset Mode */ sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET; sSlaveConfig.InputTrigger = TIM_TS_TI2FP2; sSlaveConfig.TriggerPolarity = TIM_TRIGGERPOLARITY_NONINVERTED; sSlaveConfig.TriggerPrescaler = TIM_TRIGGERPRESCALER_DIV1; sSlaveConfig.TriggerFilter = 0; if (HAL_TIM_SlaveConfigSynchronization(&TimHandle, &sSlaveConfig) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /*##-4- Start the Input Capture in interrupt mode ##########################*/ if (HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ Error_Handler(); } /*##-5- Start the Input Capture in interrupt mode ##########################*/ if (HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { /* Starting Error */ Error_Handler(); } while (1) { } }
/** * @brief Configures IOs to control the two motors and one pump * @param None * @retval None */ void MOTOR_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; // Enable all timers PUMP_PWM_TIMER_CLK_ENABLE(); MOTOR_PWM_TIMER_CLK_ENABLE(); MOTOR_HALL_ENC1_TIMER_CLK_ENABLE(); MOTOR_HALL_ENC2_TIMER_CLK_ENABLE(); MOTOR_HALL_SPEED_TIMER_CLK_ENABLE(); // Enable the clock for all IO pins MOTOR_PWM_CLK_ENABLE(); MOTOR_CURR_CLK_ENABLE(); MOTOR_HALL_M1_ENC_CLK_ENABLE(); MOTOR_HALL_M2_ENC_CLK_ENABLE(); MOTOR_HALL_SPEED_CLK_ENABLE(); // Motor driver -------------------------------------------------------- // Configure the 4 motor pins of motor 1 and 2 as normal IO GPIO_InitStruct.Pin = MOTOR_M2_IN1_PIN | MOTOR_M2_IN2_PIN | MOTOR_M1_IN1_PIN| MOTOR_M1_IN2_PIN; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; GPIO_InitStruct.Alternate = MOTOR_PWM_TIMER_AF; HAL_GPIO_Init(MOTOR_PWM_PORT, &GPIO_InitStruct); // Configure the 2 motor pins of motor 3 as PWM output GPIO_InitStruct.Pin = MOTOR_M3_IN1_PIN | MOTOR_M3_IN2_PIN; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; GPIO_InitStruct.Alternate = PUMP_PWM_TIMER_AF; HAL_GPIO_Init(MOTOR_PWM_PORT, &GPIO_InitStruct); // Configure the 10 motor current pins GPIO_InitStruct.Pin = MOTOR_M2_I0_PIN | MOTOR_M2_I1_PIN | MOTOR_M2_I2_PIN | MOTOR_M2_I3_PIN | MOTOR_M2_I4_PIN | MOTOR_M1_I0_PIN | MOTOR_M1_I1_PIN | MOTOR_M1_I2_PIN | MOTOR_M1_I3_PIN | MOTOR_M1_I4_PIN; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; HAL_GPIO_Init(MOTOR_CURR_PORT, &GPIO_InitStruct); // Timer configuration for motor pwm htimMotor.Instance = MOTOR_PWM_TIMER; htimMotor.Init.Period = MOTOR_MAX - 1; // = 20kHz = 84MHz / 1 / 4200 htimMotor.Init.Prescaler = 1-1; htimMotor.Init.ClockDivision = 1; htimMotor.Init.CounterMode = TIM_COUNTERMODE_UP; HAL_TIM_PWM_Init(&htimMotor); // Timer configuration for pump htimPump.Instance = PUMP_PWM_TIMER; htimPump.Init.Period = MOTOR_MAX - 1; // = 20kHz = 168MHz / 2 / 4200 htimPump.Init.Prescaler = 2-1; htimPump.Init.ClockDivision = 1; htimPump.Init.CounterMode = TIM_COUNTERMODE_UP; HAL_TIM_PWM_Init(&htimPump); // Configure Timer 1 channel 1 and 2 as PWM output sConfigTimMotor.OCMode = TIM_OCMODE_PWM1; sConfigTimMotor.Pulse = 0; sConfigTimMotor.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigTimMotor.OCFastMode = TIM_OCFAST_ENABLE; sConfigTimMotor.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigTimMotor.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigTimMotor.OCNIdleState= TIM_OCNIDLESTATE_SET; // Configure Timer 1 channel 1 as PWM output sConfigTimPump.OCMode = TIM_OCMODE_PWM1; sConfigTimPump.Pulse = 0; sConfigTimPump.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigTimPump.OCFastMode = TIM_OCFAST_ENABLE; sConfigTimPump.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigTimPump.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigTimPump.OCNIdleState= TIM_OCNIDLESTATE_SET; // PWM Mode HAL_TIM_PWM_ConfigChannel(&htimMotor, &sConfigTimMotor, TIM_CHANNEL_1); HAL_TIM_PWM_ConfigChannel(&htimMotor, &sConfigTimMotor, TIM_CHANNEL_2); HAL_TIM_PWM_ConfigChannel(&htimMotor, &sConfigTimMotor, TIM_CHANNEL_3); HAL_TIM_PWM_ConfigChannel(&htimMotor, &sConfigTimMotor, TIM_CHANNEL_4); HAL_TIM_PWM_ConfigChannel(&htimPump, &sConfigTimPump, TIM_CHANNEL_1); HAL_TIM_PWM_ConfigChannel(&htimPump, &sConfigTimPump, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htimMotor, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htimMotor, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htimMotor, TIM_CHANNEL_3); HAL_TIM_PWM_Start(&htimMotor, TIM_CHANNEL_4); HAL_TIM_PWM_Start(&htimPump, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htimPump, TIM_CHANNEL_2); MOTOR_SetVal(MOTOR_M1, 0, 0); MOTOR_SetVal(MOTOR_M2, 0 , 0); MOTOR_SetVal(MOTOR_PUMP, 0, 0); // Encoder ---------------------------------------------------------- // Configure the hall encoder pins GPIO_InitStruct.Pin = MOTOR_HALL_M1A_ENC_PIN | MOTOR_HALL_M1B_ENC_PIN; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; GPIO_InitStruct.Alternate = MOTOR_HALL_ENC1_TIMER_AF; HAL_GPIO_Init(MOTOR_HALL_M1_ENC_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = MOTOR_HALL_M2A_ENC_PIN | MOTOR_HALL_M2B_ENC_PIN; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; GPIO_InitStruct.Alternate = MOTOR_HALL_ENC2_TIMER_AF; HAL_GPIO_Init(MOTOR_HALL_M2_ENC_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = MOTOR_HALL_M1A_SPEED_PIN | MOTOR_HALL_M1B_SPEED_PIN | MOTOR_HALL_M2A_SPEED_PIN | MOTOR_HALL_M2B_SPEED_PIN; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; GPIO_InitStruct.Alternate = MOTOR_HALL_SPEED_TIMER_AF; HAL_GPIO_Init(MOTOR_HALL_SPEED_PORT, &GPIO_InitStruct); // Timer configuration for hall encoder M1 htimEncM1.Instance = MOTOR_HALL_ENC1_TIMER; htimEncM1.Init.Period = 0xFFFF; htimEncM1.Init.Prescaler = 0; htimEncM1.Init.ClockDivision = 0; htimEncM1.Init.CounterMode = TIM_COUNTERMODE_UP; sConfigEncM.EncoderMode = TIM_ENCODERMODE_TI2; sConfigEncM.IC1Filter = 0; sConfigEncM.IC1Polarity = TIM_ICPOLARITY_RISING; sConfigEncM.IC1Prescaler = TIM_ICPSC_DIV1; sConfigEncM.IC1Selection = TIM_ICSELECTION_DIRECTTI; sConfigEncM.IC2Filter = 0; sConfigEncM.IC2Polarity = TIM_ICPOLARITY_RISING; sConfigEncM.IC2Prescaler = TIM_ICPSC_DIV1; sConfigEncM.IC2Selection = TIM_ICSELECTION_DIRECTTI; // Encoder Mode HAL_TIM_Encoder_Init(&htimEncM1, &sConfigEncM); HAL_TIM_Encoder_Start(&htimEncM1, TIM_CHANNEL_1); HAL_TIM_Encoder_Start(&htimEncM1, TIM_CHANNEL_2); // Timer configuration for hall encoder M2 htimEncM2.Instance = MOTOR_HALL_ENC2_TIMER; htimEncM2.Init.Period = 0xFFFF; htimEncM2.Init.Prescaler = 0; htimEncM2.Init.ClockDivision = 0; htimEncM2.Init.CounterMode = TIM_COUNTERMODE_UP; // Encoder mode HAL_TIM_Encoder_Init(&htimEncM2, &sConfigEncM); HAL_TIM_Encoder_Start(&htimEncM2, TIM_CHANNEL_1); HAL_TIM_Encoder_Start(&htimEncM2, TIM_CHANNEL_2); #ifdef MOTOR_MEASURE_SPEED // Timer configuration for input capture htimEncSpeed.Instance = MOTOR_HALL_SPEED_TIMER; htimEncSpeed.Init.Period = 0xFFFF; htimEncSpeed.Init.Prescaler = 84-1; // 10us htimEncSpeed.Init.ClockDivision = 0; htimEncSpeed.Init.CounterMode = TIM_COUNTERMODE_UP; HAL_TIM_IC_Init(&htimEncSpeed); sConfigEncSpeed.ICFilter = 0; sConfigEncSpeed.ICPolarity = TIM_ICPOLARITY_RISING; sConfigEncSpeed.ICPrescaler = TIM_ICPSC_DIV1; sConfigEncSpeed.ICSelection = TIM_ICSELECTION_DIRECTTI; // Configure the NVIC HAL_NVIC_SetPriority(TIM_HALL_SPEED_IRQn, 0, 1); /* Enable the TIM8 global Interrupt */ HAL_NVIC_EnableIRQ(TIM_HALL_SPEED_IRQn); // Input capture mode HAL_TIM_IC_ConfigChannel(&htimEncSpeed, &sConfigEncSpeed, TIM_CHANNEL_1); HAL_TIM_IC_ConfigChannel(&htimEncSpeed, &sConfigEncSpeed, TIM_CHANNEL_2); HAL_TIM_IC_ConfigChannel(&htimEncSpeed, &sConfigEncSpeed, TIM_CHANNEL_3); HAL_TIM_IC_ConfigChannel(&htimEncSpeed, &sConfigEncSpeed, TIM_CHANNEL_4); HAL_TIM_IC_Start_IT(&htimEncSpeed, TIM_CHANNEL_1); HAL_TIM_IC_Start_IT(&htimEncSpeed, TIM_CHANNEL_2); HAL_TIM_IC_Start_IT(&htimEncSpeed, TIM_CHANNEL_3); HAL_TIM_IC_Start_IT(&htimEncSpeed, TIM_CHANNEL_4); #endif //MOTOR_MEASURE_SPEED }
void Pb_init(void) { GPIO_InitTypeDef GPIO_InitStructure; /* Enable PB clock */ __BRD_PB_GPIO_CLK(); /* Set priority of PB Interrupt [0 (HIGH priority) to 15(LOW priority)] */ HAL_NVIC_SetPriority(BRD_PB_EXTI_IRQ, 4, 0); //Set Main priority ot 10 and sub-priority ot 0. //Enable PB interrupt and interrupt vector for pin DO NVIC_SetVector(BRD_PB_EXTI_IRQ, (uint32_t)&exti_pb_irqhandler); NVIC_EnableIRQ(BRD_PB_EXTI_IRQ); /* Configure PB pin as pull down input */ GPIO_InitStructure.Pin = BRD_PB_PIN; //Pin GPIO_InitStructure.Mode = GPIO_MODE_IT_RISING; //interrupt Mode GPIO_InitStructure.Pull = GPIO_PULLUP; //Enable Pull up, down or no pull resister GPIO_InitStructure.Speed = GPIO_SPEED_FAST; //Pin latency HAL_GPIO_Init(BRD_PB_GPIO_PORT, &GPIO_InitStructure); //Initialise Pin /*Set up Interrupt timer for laser transmit and pan tilt*/ __PANTILT_IR_TIMER_CLK(); /* Compute the prescaler value for 50Khz */ PrescalerValue = (uint16_t) ((SystemCoreClock /2)/1000000) - 1; /* Time base configuration */ TIM_Init.Instance = PANTILT_IR_TIM; //Enable Timer 2 //Set period count to be 1ms, so timer interrupt occurs every (1ms)*0.2. TIM_Init.Init.Period = (1000000/1000)*(vars->period_multiplyer); //10 = 1ms; 5 = 0.5ms 1khz half bit period for 100khz TIM_Init.Init.Prescaler = PrescalerValue; //Set presale value TIM_Init.Init.ClockDivision = 0; //Set clock division TIM_Init.Init.RepetitionCounter = 0; // Set Reload Value TIM_Init.Init.CounterMode = TIM_COUNTERMODE_UP; //Set timer to count up. /*Initialise Laser Transmit Port*/ __LASER_WAVE_GEN_1_GPIO_CLK(); GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Pull = GPIO_PULLDOWN; GPIO_InitStructure.Speed = GPIO_SPEED_FAST; GPIO_InitStructure.Pin = LASER_WAVE_GEN_1_PIN; HAL_GPIO_Init(LASER_WAVE_GEN_1_GPIO_PORT, &GPIO_InitStructure); HAL_Delay(500); /* Initialise General interrupt Timer */ HAL_TIM_Base_Init(&TIM_Init); /* Set priority of Timer 2 update Interrupt [0 (HIGH priority) to 15(LOW priority)] */ /* DO NOT SET INTERRUPT PRIORITY HIGHER THAN 3 */ HAL_NVIC_SetPriority(PANTILT_TIM_IRQn, 10, 0); //Set Main priority ot 10 and sub-priority ot 0. /* Enable timer update interrupt and interrupt vector for Timer */ NVIC_SetVector(PANTILT_TIM_IRQn, (uint32_t)&s4353096_general_irqhandler); NVIC_EnableIRQ(PANTILT_TIM_IRQn); /*Start the timer*/ HAL_TIM_Base_Start_IT(&TIM_Init); /*Initialise Input capture*/ __TIM3_CLK_ENABLE(); /* Enable the D0 Clock */ __BRD_D0_GPIO_CLK(); /* Configure the D0 pin with TIM3 input capture */ GPIO_InitStructure.Pin = BRD_D0_PIN; //Pin GPIO_InitStructure.Mode =GPIO_MODE_AF_PP; //Set mode to be output alternate GPIO_InitStructure.Pull = GPIO_NOPULL; //Enable Pull up, down or no pull resister GPIO_InitStructure.Speed = GPIO_SPEED_FAST; //Pin latency GPIO_InitStructure.Alternate = GPIO_AF2_TIM3; //Set alternate function to be timer 2 HAL_GPIO_Init(BRD_D0_GPIO_PORT, &GPIO_InitStructure); //Initialise Pin /* Compute the prescaler value. SystemCoreClock = 168000000 - set for 500Khz clock */ PrescalerValue = (uint16_t) ((SystemCoreClock /2) / 500000) - 1; /* Configure Timer 3 settings */ TIM_Init.Instance = TIM3; //Enable Timer 3 TIM_Init.Init.Period = 2*500000; //Set for 100ms (10Hz) period TIM_Init.Init.Prescaler = PrescalerValue; //Set presale value TIM_Init.Init.ClockDivision = 0; //Set clock division TIM_Init.Init.RepetitionCounter = 0; // Set Reload Value TIM_Init.Init.CounterMode = TIM_COUNTERMODE_UP; //Set timer to count up. /* Configure TIM3 Input capture */ TIM_ICInitStructure.ICPolarity = TIM_ICPOLARITY_RISING; //Set to trigger on rising edge TIM_ICInitStructure.ICSelection = TIM_ICSELECTION_DIRECTTI; TIM_ICInitStructure.ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStructure.ICFilter = 0; /* Set priority of Timer 3 Interrupt [0 (HIGH priority) to 15(LOW priority)] */ HAL_NVIC_SetPriority(TIM3_IRQn, 10, 0); //Set Main priority ot 10 and sub-priority ot 0. //Enable Timer 3 interrupt and interrupt vector NVIC_SetVector(TIM3_IRQn, (uint32_t)&tim3_irqhandler); NVIC_EnableIRQ(TIM3_IRQn); /* Enable input capture for Timer 3, channel 2 */ HAL_TIM_IC_Init(&TIM_Init); HAL_TIM_IC_ConfigChannel(&TIM_Init, &TIM_ICInitStructure, TIM_CHANNEL_2); /* Start Input Capture */ HAL_TIM_IC_Start_IT(&TIM_Init, TIM_CHANNEL_2); }
/** * @brief Main program * @param None * @retval None */ int main(void) { /*This sample code shows how to use STM32L0xx TIM HAL API to measure the frequency and duty cycle of an external signal through the STM32L0xx HAL API. */ /* STM32L0xx HAL library initialization: - Configure the Flash prefetch, Flash preread and Buffer caches - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Low Level Initialization */ HAL_Init(); /* Configure the system clock */ SystemClock_Config(); /*##-1- Configure the TIM peripheral #######################################*/ /* Set TIM instance */ TimHandle.Instance = TIM2; /* Initialize TIMx peripheral as follow: + Period = 0xFFFF + Prescaler = 0 + ClockDivision = 0 + Counter direction = Up */ TimHandle.Init.Period = 0xFFFF; TimHandle.Init.Prescaler = 0; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; if(HAL_TIM_IC_Init(&TimHandle) != HAL_OK) { /* Initialization Error */ ErrorHandler(); } /*##-2- Configure the Input Capture channels ###############################*/ /* Common configuration */ sConfig.ICPrescaler = TIM_ICPSC_DIV1; sConfig.ICFilter = 0; /* Configure the Input Capture of channel 1 */ sConfig.ICPolarity = TIM_ICPOLARITY_FALLING; sConfig.ICSelection = TIM_ICSELECTION_INDIRECTTI; if(HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_1) != HAL_OK) { /* Configuration Error */ ErrorHandler(); } /* Configure the Input Capture of channel 2 */ sConfig.ICPolarity = TIM_ICPOLARITY_RISING; sConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; if(HAL_TIM_IC_ConfigChannel(&TimHandle, &sConfig, TIM_CHANNEL_2) != HAL_OK) { /* Configuration Error */ ErrorHandler(); } /*##-3- Configure the slave mode ###########################################*/ /* Select the slave Mode: Reset Mode */ sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET; sSlaveConfig.InputTrigger = TIM_TS_TI2FP2; if(HAL_TIM_SlaveConfigSynchronization(&TimHandle, &sSlaveConfig) != HAL_OK) { /* Configuration Error */ ErrorHandler(); } /*##-4- Start the Input Capture in interrupt mode ##########################*/ if(HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ ErrorHandler(); } /*##-5- Start the Input Capture in interrupt mode ##########################*/ if(HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { /* Starting Error */ ErrorHandler(); } while (1) { } }
/** * @brief Main program * @param None * @retval None */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization: global MSP (MCU Support Package) initialization */ HAL_Init(); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /* Configure LED3 */ BSP_LED_Init(LED3); /*##-1- Configure the TIM peripheral #######################################*/ /* TIM1 configuration: Input Capture mode --------------------- The external signal is connected to TIM1 CH2 pin (PA.09 - ) The Rising edge is used as active edge, The TIM1 CCR2 is used to compute the frequency value ------------------------------------------------------------ */ /* Set TIMx instance */ TimHandle.Instance = TIMx; /* Initialize TIMx peripheral as follows: + Period = 0xFFFF + Prescaler = 0 + ClockDivision = 0 + Counter direction = Up */ TimHandle.Init.Period = 0xFFFF; TimHandle.Init.Prescaler = 0; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimHandle.Init.RepetitionCounter = 0; if(HAL_TIM_IC_Init(&TimHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-2- Configure the Input Capture channel ################################*/ /* Configure the Input Capture of channel 2 */ sICConfig.ICPolarity = TIM_ICPOLARITY_RISING; sICConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; sICConfig.ICPrescaler = TIM_ICPSC_DIV1; sICConfig.ICFilter = 0; if(HAL_TIM_IC_ConfigChannel(&TimHandle, &sICConfig, TIM_CHANNEL_2) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /*##-3- Start the Input Capture in interrupt mode ##########################*/ if(HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ Error_Handler(); } while (1) { } }
/** * @brief Main program * @param None * @retval None */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch, instruction and Data caches - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Global MSP (MCU Support Package) initialization */ HAL_Init(); /* Configure the system clock to 180 MHz */ SystemClock_Config(); /* Configure LED3 */ BSP_LED_Init(LED3); /*##-1- Configure the TIM peripheral #######################################*/ /* Set TIMx instance */ TimHandle.Instance = TIMx; /* Initialize TIMx peripheral as follows: + Period = 0xFFFF + Prescaler = 0 + ClockDivision = 0 + Counter direction = Up */ TimHandle.Init.Period = 0xFFFF; TimHandle.Init.Prescaler = 0; TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimHandle.Init.RepetitionCounter = 0; if(HAL_TIM_IC_Init(&TimHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-2- Configure the Input Capture channel ################################*/ /* Configure the Input Capture of channel 2 */ sICConfig.ICPolarity = TIM_ICPOLARITY_RISING; sICConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; sICConfig.ICPrescaler = TIM_ICPSC_DIV1; sICConfig.ICFilter = 0; if(HAL_TIM_IC_ConfigChannel(&TimHandle, &sICConfig, TIM_CHANNEL_2) != HAL_OK) { /* Configuration Error */ Error_Handler(); } /*##-3- Start the Input Capture in interrupt mode ##########################*/ if(HAL_TIM_IC_Start_IT(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ Error_Handler(); } /* Infinite loop */ while (1) { } }
int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration----------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_I2C1_Init(); MX_USART1_UART_Init(); MX_TIM16_Init(); MX_TIM17_Init(); /* USER CODE BEGIN 2 */ g_config = g_config_default; #ifdef USE_I2C g_i2c = I2cMaster_Init(&hi2c1); InitializeDisplay(g_i2c); I2cEEPROM_Init(&g_eeprom, g_i2c, EEPROMADDR, 1, 8); #endif #ifdef USE_SERIAL UsartInit(&huart1); #endif #if defined(USE_I2C) && defined(USE_LCD) I2cLcd_Clear(&g_lcd); I2cLcd_PrintStr(&g_lcd, "Hello"); #endif #if defined(USE_SERIAL) && defined(USE_EEPROM) #define TESTSIZE 2048/8 HAL_StatusTypeDef st; uint8_t i2cBuffer[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /* for(uint16_t i = 0; i < TESTSIZE; i += sizeof(i2cBuffer)) { if(!(i & (sizeof(i2cBuffer)-1))) { st = I2cEEPROM_Write(&g_eeprom, i, i2cBuffer, sizeof(i2cBuffer)); } } for (uint16_t i = 0; i < TESTSIZE; ++i) { if(!(i & (sizeof(i2cBuffer)-1))) { st = I2cEEPROM_Read(&g_eeprom, i, i2cBuffer, sizeof(i2cBuffer)); UsartSendStr("\r\n", 1); UsartPrintUint(i, 4, 1); UsartSendStr(" ", 1); } UsartPrintByte(i2cBuffer[i&(sizeof(i2cBuffer)-1)], 2, 1); UsartSendStr(" ", 1); } UsartSendStr("\r\n", 1); for(uint16_t i = 0; i < TESTSIZE; i += sizeof(i2cBuffer)) { if(!(i & (sizeof(i2cBuffer)-1))) { for(uint16_t j = 0; j<sizeof(i2cBuffer); ++j) i2cBuffer[j] = i+j; st = I2cEEPROM_Write(&g_eeprom, i, i2cBuffer, sizeof(i2cBuffer)); } } for (uint16_t i = 0; i < TESTSIZE; ++i) { if(!(i & (sizeof(i2cBuffer)-1))) { st = I2cEEPROM_Read(&g_eeprom, i, i2cBuffer, sizeof(i2cBuffer)); UsartSendStr("\r\n", 1); UsartPrintUint(i, 4, 1); UsartSendStr(" ", 1); } UsartPrintByte(i2cBuffer[i&(sizeof(i2cBuffer)-1)], 2, 1); UsartSendStr(" ", 1); } UsartSendStr("\r\n", 1); */ { LIVECONFIG config; if (I2cEEPROM_Read(&g_eeprom, EESTART, &config, sizeof(config)) == HAL_OK) { I2cMaster_WaitCallback(g_i2c); if (config.magic == 0xA5) g_config = config; } } for (uint16_t i = 0; i < TESTSIZE; ++i) { if(!(i & (sizeof(i2cBuffer)-1))) { st = I2cEEPROM_Read(&g_eeprom, i, i2cBuffer, sizeof(i2cBuffer)); UsartSendStr("\r\n", 1); UsartPrintUint(i, 4, 1); UsartSendStr(" ", 1); } UsartPrintByte(i2cBuffer[i&(sizeof(i2cBuffer)-1)], 2, 1); UsartSendStr(" ", 1); } UsartSendStr("\r\n", 1); #endif HAL_TIM_IC_Start_IT(&htim16, TIM_CHANNEL_1); HAL_TIM_IC_Start_IT(&htim17, TIM_CHANNEL_1); HAL_UART_Receive_IT(&huart1, g_lineBuffer, sizeof(g_lineBuffer)); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { if (g_lineReceived) { ProcessInput(&g_config, (char*) g_lineBuffer); //DisplayInput(&i2clcd); g_lineReceived = 0; HAL_UART_Receive_IT(&huart1, g_lineBuffer, sizeof(g_lineBuffer)); } if(g_statuses[0].trigger) { DisplayResults(0); g_statuses[0].trigger = 0; } if(g_statuses[1].trigger) { DisplayResults(1); g_statuses[1].trigger = 0; } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ }
void wheelencoder_init(void) { TIM_IC_InitTypeDef sICConfig; TimHandle[0].Instance = TIM17; TimHandle[0].Init.Period = PERIOD - 1; TimHandle[0].Init.Prescaler = PRESCALER - 1; TimHandle[0].Init.ClockDivision = 0; TimHandle[0].Init.CounterMode = TIM_COUNTERMODE_UP; if(HAL_TIM_IC_Init(&TimHandle[0]) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-2- Configure the Input Capture channel ################################*/ /* Configure the Input Capture of channel 2 */ sICConfig.ICPolarity = TIM_ICPOLARITY_RISING; sICConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; sICConfig.ICPrescaler = TIM_ICPSC_DIV1; sICConfig.ICFilter = 15; // Use max filter to avoid jitter if(HAL_TIM_IC_ConfigChannel(&TimHandle[0], &sICConfig, TIM_CHANNEL_1) != HAL_OK) { /* Configuration Error */ Error_Handler(); } if(HAL_TIM_IC_Start_IT(&TimHandle[0], TIM_CHANNEL_1) != HAL_OK) { /* Starting Error */ Error_Handler(); } if(HAL_TIM_Base_Start_IT(&TimHandle[0]) != HAL_OK) { /* Starting Error */ Error_Handler(); } TimHandle[1].Instance = TIM1; TimHandle[1].Init.Period = PERIOD - 1; TimHandle[1].Init.Prescaler = PRESCALER - 1; TimHandle[1].Init.ClockDivision = 0; TimHandle[1].Init.CounterMode = TIM_COUNTERMODE_UP; if(HAL_TIM_IC_Init(&TimHandle[1]) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /*##-2- Configure the Input Capture channel ################################*/ /* Configure the Input Capture of channel 2 */ sICConfig.ICPolarity = TIM_ICPOLARITY_RISING; sICConfig.ICSelection = TIM_ICSELECTION_DIRECTTI; sICConfig.ICPrescaler = TIM_ICPSC_DIV1; sICConfig.ICFilter = 15; // Use max filter to avoid jitter if(HAL_TIM_IC_ConfigChannel(&TimHandle[1], &sICConfig, TIM_CHANNEL_2) != HAL_OK) { /* Configuration Error */ Error_Handler(); } if(HAL_TIM_IC_Start_IT(&TimHandle[1], TIM_CHANNEL_2) != HAL_OK) { /* Starting Error */ Error_Handler(); } if(HAL_TIM_Base_Start_IT(&TimHandle[1]) != HAL_OK) { /* Starting Error */ Error_Handler(); } }
/** * @brief Configures TIM5 to measure the LSI oscillator frequency. * @param None * @retval LSI Frequency */ static uint32_t GetLSIFrequency(void) { uint32_t pclk1 = 0, latency = 0; TIM_IC_InitTypeDef timinputconfig = {0}; RCC_OscInitTypeDef oscinit = {0}; RCC_ClkInitTypeDef clkinit = {0}; /* Enable LSI Oscillator */ oscinit.OscillatorType = RCC_OSCILLATORTYPE_LSI; oscinit.LSIState = RCC_LSI_ON; oscinit.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&oscinit)!= HAL_OK) { Error_Handler(); } /* Configure the TIM peripheral */ /* Set TIMx instance */ TimInputCaptureHandle.Instance = TIMx; /* TIMx configuration: Input Capture mode --------------------- The LSI clock is connected to TIM5 CH4. The Rising edge is used as active edge. The TIM5 CCR4 is used to compute the frequency value. ------------------------------------------------------------ */ TimInputCaptureHandle.Init.Prescaler = 0; TimInputCaptureHandle.Init.CounterMode = TIM_COUNTERMODE_UP; TimInputCaptureHandle.Init.Period = 0xFFFF; TimInputCaptureHandle.Init.ClockDivision = 0; TimInputCaptureHandle.Init.RepetitionCounter = 0; if (HAL_TIM_IC_Init(&TimInputCaptureHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* Connect internally the TIM5 CH4 Input Capture to the LSI clock output */ HAL_TIMEx_RemapConfig(&TimInputCaptureHandle, TIMx_REMAP); /* Configure the Input Capture of channel 4 */ timinputconfig.ICPolarity = TIM_ICPOLARITY_RISING; timinputconfig.ICSelection = TIM_ICSELECTION_DIRECTTI; timinputconfig.ICPrescaler = TIM_ICPSC_DIV8; timinputconfig.ICFilter = 0; if (HAL_TIM_IC_ConfigChannel(&TimInputCaptureHandle, &timinputconfig, TIM_CHANNEL_4) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* Reset the flags */ TimInputCaptureHandle.Instance->SR = 0; /* Start the TIM Input Capture measurement in interrupt mode */ if (HAL_TIM_IC_Start_IT(&TimInputCaptureHandle, TIM_CHANNEL_4) != HAL_OK) { /* Starting Error */ Error_Handler(); } /* Wait until the TIM5 get 2 LSI edges (refer to TIM5_IRQHandler() in stm32f4xx_it.c file) */ while (uwMeasurementDone == 0) { } uwCaptureNumber = 0; /* Deinitialize the TIM5 peripheral registers to their default reset values */ HAL_TIM_IC_DeInit(&TimInputCaptureHandle); /* Compute the LSI frequency, depending on TIM5 input clock frequency (PCLK1)*/ /* Get PCLK1 frequency */ pclk1 = HAL_RCC_GetPCLK1Freq(); HAL_RCC_GetClockConfig(&clkinit, &latency); /* Get PCLK1 prescaler */ if ((clkinit.APB1CLKDivider) == RCC_HCLK_DIV1) { /* PCLK1 prescaler equal to 1 => TIMCLK = PCLK1 */ return ((pclk1 / uwPeriodValue) * 8); } else { /* PCLK1 prescaler different from 1 => TIMCLK = 2 * PCLK1 */ return (((2 * pclk1) / uwPeriodValue) * 8) ; } }
/** * @brief Configures TIM14 to measure the LSI oscillator frequency. * @param None * @retval LSI Frequency */ static uint32_t GetLSIFrequency(void) { TIM_IC_InitTypeDef TIMInput_Config; /* Configure the TIM peripheral *********************************************/ /* Set TIMx instance */ Input_Handle.Instance = TIM14; /* TIM14 configuration: Input Capture mode --------------------- The LSI oscillator is connected to TIM14 CH1. The Rising edge is used as active edge. The TIM14 CCR1 is used to compute the frequency value. ------------------------------------------------------------ */ Input_Handle.Init.Prescaler = 0; Input_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; Input_Handle.Init.Period = 0xFFFF; Input_Handle.Init.ClockDivision = 0; Input_Handle.Init.RepetitionCounter = 0; if(HAL_TIM_IC_Init(&Input_Handle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* Connect internally the TIM14_CH1 Input Capture to the LSI clock output */ Input_Handle.Instance->OR |= 0x3; // TIM14_OR linked to MCO HAL_RCC_MCOConfig(RCC_MCO, RCC_MCO1SOURCE_LSI, RCC_MCODIV_1); /* Configure the Input Capture of channel 1 */ TIMInput_Config.ICPolarity = TIM_ICPOLARITY_RISING; TIMInput_Config.ICSelection = TIM_ICSELECTION_DIRECTTI; TIMInput_Config.ICPrescaler = TIM_ICPSC_DIV8; TIMInput_Config.ICFilter = 0; if(HAL_TIM_IC_ConfigChannel(&Input_Handle, &TIMInput_Config, TIM_CHANNEL_1) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /* Reset the flags */ Input_Handle.Instance->SR = 0; /* Start the TIM Input Capture measurement in interrupt mode */ if(HAL_TIM_IC_Start_IT(&Input_Handle, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } /* Wait until the TIM14 get 2 LSI edges (refer to TIM14_IRQHandler() in stm32f3xx_it.c file) ******************************************************/ while(uwCaptureNumber != 2) { } /* Disable TIM14 CC1 Interrupt Request */ HAL_TIM_IC_Stop_IT(&Input_Handle, TIM_CHANNEL_1); /* Deinitialize the TIM14 peripheral registers to their default reset values */ HAL_TIM_IC_DeInit(&Input_Handle); return uwLsiFreq/*0*/; }