コード例 #1
0
  void HeatTransfer::element_time_derivative( bool compute_jacobian,
					      libMesh::FEMContext& context,
					      CachedValues& /*cache*/ )
  {
#ifdef GRINS_USE_GRVY_TIMERS
    this->_timer->BeginTimer("HeatTransfer::element_time_derivative");
#endif

    // The number of local degrees of freedom in each variable.
    const unsigned int n_T_dofs = context.dof_indices_var[_T_var].size();
    const unsigned int n_u_dofs = context.dof_indices_var[_u_var].size();

    //TODO: check n_T_dofs is same as n_u_dofs, n_v_dofs, n_w_dofs

    // We get some references to cell-specific data that
    // will be used to assemble the linear system.

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.element_fe_var[_T_var]->get_JxW();

    // The temperature shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& T_phi =
      context.element_fe_var[_T_var]->get_phi();

    // The velocity shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& vel_phi =
      context.element_fe_var[_u_var]->get_phi();

    // The temperature shape function gradients (in global coords.)
    // at interior quadrature points.
    const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
      context.element_fe_var[_T_var]->get_dphi();

    const std::vector<libMesh::Point>& u_qpoint = 
      context.element_fe_var[this->_u_var]->get_xyz();

    // We do this in the incompressible Navier-Stokes class and need to do it here too
    // since _w_var won't have been defined in the global map.
    if (_dim != 3)
      _w_var = _u_var; // for convenience

    libMesh::DenseSubMatrix<libMesh::Number> &KTT = *context.elem_subjacobians[_T_var][_T_var]; // R_{T},{T}

    libMesh::DenseSubMatrix<libMesh::Number> &KTu = *context.elem_subjacobians[_T_var][_u_var]; // R_{T},{u}
    libMesh::DenseSubMatrix<libMesh::Number> &KTv = *context.elem_subjacobians[_T_var][_v_var]; // R_{T},{v}
    libMesh::DenseSubMatrix<libMesh::Number> &KTw = *context.elem_subjacobians[_T_var][_w_var]; // R_{T},{w}

    libMesh::DenseSubVector<libMesh::Number> &FT = *context.elem_subresiduals[_T_var]; // R_{T}

    // Now we will build the element Jacobian and residual.
    // Constructing the residual requires the solution and its
    // gradient from the previous timestep.  This must be
    // calculated at each quadrature point by summing the
    // solution degree-of-freedom values by the appropriate
    // weight functions.
    unsigned int n_qpoints = context.element_qrule->n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
	// Compute the solution & its gradient at the old Newton iterate.
	libMesh::Number u, v, w;
	u = context.interior_value(_u_var, qp);
	v = context.interior_value(_v_var, qp);
	if (_dim == 3)
	  w = context.interior_value(_w_var, qp);

	libMesh::Gradient grad_T;
	grad_T = context.interior_gradient(_T_var, qp);

	libMesh::NumberVectorValue U (u,v);
	if (_dim == 3)
	  U(2) = w;

        const libMesh::Number r = u_qpoint[qp](0);

        libMesh::Real jac = JxW[qp];

        if( _is_axisymmetric )
          {
            jac *= r;
          }

	// First, an i-loop over the  degrees of freedom.
	for (unsigned int i=0; i != n_T_dofs; i++)
	  {
	    FT(i) += jac *
	      (-_rho*_Cp*T_phi[i][qp]*(U*grad_T)    // convection term
	       -_k*(T_gradphi[i][qp]*grad_T) );  // diffusion term

	    if (compute_jacobian)
	      {
		for (unsigned int j=0; j != n_T_dofs; j++)
		  {
		    // TODO: precompute some terms like:
		    //   _rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*T_grad_phi[j][qp])

		    KTT(i,j) += jac *
		      (-_rho*_Cp*T_phi[i][qp]*(U*T_gradphi[j][qp])  // convection term
		       -_k*(T_gradphi[i][qp]*T_gradphi[j][qp])); // diffusion term
		  } // end of the inner dof (j) loop

		// Matrix contributions for the Tu, Tv and Tw couplings (n_T_dofs same as n_u_dofs, n_v_dofs and n_w_dofs)
		for (unsigned int j=0; j != n_u_dofs; j++)
		  {
		    KTu(i,j) += jac*(-_rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*grad_T(0)));
		    KTv(i,j) += jac*(-_rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*grad_T(1)));
		    if (_dim == 3)
		      KTw(i,j) += jac*(-_rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*grad_T(2)));
		  } // end of the inner dof (j) loop

	      } // end - if (compute_jacobian && context.elem_solution_derivative)

	  } // end of the outer dof (i) loop
      } // end of the quadrature point (qp) loop

#ifdef GRINS_USE_GRVY_TIMERS
    this->_timer->EndTimer("HeatTransfer::element_time_derivative");
#endif

    return;
  }
コード例 #2
0
  void AxisymmetricHeatTransfer<Conductivity>::element_time_derivative( bool compute_jacobian,
									AssemblyContext& context,
									CachedValues& /*cache*/ )
  {
#ifdef GRINS_USE_GRVY_TIMERS
    this->_timer->BeginTimer("AxisymmetricHeatTransfer::element_time_derivative");
#endif

    // The number of local degrees of freedom in each variable.
    const unsigned int n_T_dofs = context.get_dof_indices(_T_var).size();
    const unsigned int n_u_dofs = context.get_dof_indices(_u_r_var).size();

    //TODO: check n_T_dofs is same as n_u_dofs, n_v_dofs, n_w_dofs

    // We get some references to cell-specific data that
    // will be used to assemble the linear system.

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.get_element_fe(_T_var)->get_JxW();

    // The temperature shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& T_phi =
      context.get_element_fe(_T_var)->get_phi();

    // The velocity shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& vel_phi =
      context.get_element_fe(_u_r_var)->get_phi();

    // The temperature shape function gradients (in global coords.)
    // at interior quadrature points.
    const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
      context.get_element_fe(_T_var)->get_dphi();

    // Physical location of the quadrature points
    const std::vector<libMesh::Point>& u_qpoint =
      context.get_element_fe(_u_r_var)->get_xyz();

    // The subvectors and submatrices we need to fill:
    libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(_T_var); // R_{T}

    libMesh::DenseSubMatrix<libMesh::Number> &KTT = context.get_elem_jacobian(_T_var, _T_var); // R_{T},{T}

    libMesh::DenseSubMatrix<libMesh::Number> &KTr = context.get_elem_jacobian(_T_var, _u_r_var); // R_{T},{r}
    libMesh::DenseSubMatrix<libMesh::Number> &KTz = context.get_elem_jacobian(_T_var, _u_z_var); // R_{T},{z}


    // Now we will build the element Jacobian and residual.
    // Constructing the residual requires the solution and its
    // gradient from the previous timestep.  This must be
    // calculated at each quadrature point by summing the
    // solution degree-of-freedom values by the appropriate
    // weight functions.
    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
	const libMesh::Number r = u_qpoint[qp](0);
      
	// Compute the solution & its gradient at the old Newton iterate.
	libMesh::Number u_r, u_z;
	u_r = context.interior_value(_u_r_var, qp);
	u_z = context.interior_value(_u_z_var, qp);

	libMesh::Gradient grad_T;
	grad_T = context.interior_gradient(_T_var, qp);

	libMesh::NumberVectorValue U (u_r,u_z);

	libMesh::Number k = this->_k( context, qp );

        // FIXME - once we have T-dependent k, we'll need its
        // derivatives in Jacobians
	// libMesh::Number dk_dT = this->_k.deriv( T );

	// First, an i-loop over the  degrees of freedom.
	for (unsigned int i=0; i != n_T_dofs; i++)
	  {
	    FT(i) += JxW[qp]*r*
	      (-_rho*_Cp*T_phi[i][qp]*(U*grad_T)    // convection term
	       -k*(T_gradphi[i][qp]*grad_T) );  // diffusion term

	    if (compute_jacobian)
	      {
		libmesh_assert (context.get_elem_solution_derivative() == 1.0);

		for (unsigned int j=0; j != n_T_dofs; j++)
		  {
		    // TODO: precompute some terms like:
		    //   _rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*T_grad_phi[j][qp])

		    KTT(i,j) += JxW[qp] * context.get_elem_solution_derivative() *r*
		      (-_rho*_Cp*T_phi[i][qp]*(U*T_gradphi[j][qp])  // convection term
		       -k*(T_gradphi[i][qp]*T_gradphi[j][qp])); // diffusion term
		  } // end of the inner dof (j) loop

#if 0
		if( dk_dT != 0.0 )
		{
		  for (unsigned int j=0; j != n_T_dofs; j++)
		    {
		      // TODO: precompute some terms like:
		      KTT(i,j) -= JxW[qp] * context.get_elem_solution_derivative() *r*( dk_dT*T_phi[j][qp]*T_gradphi[i][qp]*grad_T );
		    }
		}
#endif

		// Matrix contributions for the Tu, Tv and Tw couplings (n_T_dofs same as n_u_dofs, n_v_dofs and n_w_dofs)
		for (unsigned int j=0; j != n_u_dofs; j++)
		  {
		    KTr(i,j) += JxW[qp] * context.get_elem_solution_derivative() *r*(-_rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*grad_T(0)));
		    KTz(i,j) += JxW[qp] * context.get_elem_solution_derivative() *r*(-_rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*grad_T(1)));
		  } // end of the inner dof (j) loop

	      } // end - if (compute_jacobian && context.get_elem_solution_derivative())

	  } // end of the outer dof (i) loop
      } // end of the quadrature point (qp) loop

#ifdef GRINS_USE_GRVY_TIMERS
    this->_timer->EndTimer("AxisymmetricHeatTransfer::element_time_derivative");
#endif

    return;
  }
コード例 #3
0
ファイル: heat_conduction.C プロジェクト: jcamata/grins
  void HeatConduction<K>::element_time_derivative( bool compute_jacobian,
						AssemblyContext& context,
						CachedValues& /*cache*/ )
  {
    // The number of local degrees of freedom in each variable.
    const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size();

    // We get some references to cell-specific data that
    // will be used to assemble the linear system.

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.get_element_fe(_temp_vars.T_var())->get_JxW();

    // The temperature shape function gradients (in global coords.)
    // at interior quadrature points.
    const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
      context.get_element_fe(_temp_vars.T_var())->get_dphi();

    // The subvectors and submatrices we need to fill:
    //
    // K_{\alpha \beta} = R_{\alpha},{\beta} = \partial{ R_{\alpha} } / \partial{ {\beta} } (where R denotes residual)
    // e.g., for \alpha = T and \beta = v we get: K_{Tu} = R_{T},{u}
    //

    libMesh::DenseSubMatrix<libMesh::Number> &KTT = context.get_elem_jacobian(_temp_vars.T_var(), _temp_vars.T_var()); // R_{T},{T}

    libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(_temp_vars.T_var()); // R_{T}

    // Now we will build the element Jacobian and residual.
    // Constructing the residual requires the solution and its
    // gradient from the previous timestep.  This must be
    // calculated at each quadrature point by summing the
    // solution degree-of-freedom values by the appropriate
    // weight functions.
    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
	// Compute the solution & its gradient at the old Newton iterate.
	libMesh::Gradient grad_T;
	grad_T = context.interior_gradient(_temp_vars.T_var(), qp);

	// Compute the conductivity at this qp
	libMesh::Real _k_qp = this->_k(context, qp);
	
	// First, an i-loop over the  degrees of freedom.
	for (unsigned int i=0; i != n_T_dofs; i++)
	  {
	    FT(i) += JxW[qp]*(-_k_qp*(T_gradphi[i][qp]*grad_T));

	    if (compute_jacobian)
	      {
		for (unsigned int j=0; j != n_T_dofs; j++)
		  {
		    // TODO: precompute some terms like:
		    //   _rho*_Cp*T_phi[i][qp]*(vel_phi[j][qp]*T_grad_phi[j][qp])

		    KTT(i,j) += JxW[qp] * context.get_elem_solution_derivative() *
		      ( -_k_qp*(T_gradphi[i][qp]*T_gradphi[j][qp]) ); // diffusion term
		  } // end of the inner dof (j) loop

	      } // end - if (compute_jacobian && context.get_elem_solution_derivative())

	  } // end of the outer dof (i) loop
      } // end of the quadrature point (qp) loop

    return;
  }