コード例 #1
0
int
fill_fpregs(struct thread *td, struct fpreg *fpregs)
{
	if (td == PCPU_GET(fpcurthread))
		MipsSaveCurFPState(td);
	memcpy(fpregs, &td->td_frame->f0, sizeof(struct fpreg)); 
	return 0;
}
コード例 #2
0
ファイル: pm_machdep.c プロジェクト: RichardsonAlex/cheribsd
int
fill_fpregs(struct thread *td, struct fpreg *fpregs)
{
#if defined(CPU_HAVEFPU)
	if (td == PCPU_GET(fpcurthread))
		MipsSaveCurFPState(td);
	memcpy(fpregs, &td->td_frame->f0, sizeof(struct fpreg)); 
#endif
	return 0;
}
コード例 #3
0
ファイル: freebsd32_machdep.c プロジェクト: outbackdingo/uBSD
/*
 * Send an interrupt to process.
 *
 * Stack is set up to allow sigcode stored
 * at top to call routine, followed by kcall
 * to sigreturn routine below.	After sigreturn
 * resets the signal mask, the stack, and the
 * frame pointer, it returns to the user
 * specified pc, psl.
 */
static void
freebsd32_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
	struct proc *p;
	struct thread *td;
	struct fpreg32 fpregs;
	struct reg32 regs;
	struct sigacts *psp;
	struct sigframe32 sf, *sfp;
	int sig;
	int oonstack;
	unsigned i;

	td = curthread;
	p = td->td_proc;
	PROC_LOCK_ASSERT(p, MA_OWNED);
	sig = ksi->ksi_signo;
	psp = p->p_sigacts;
	mtx_assert(&psp->ps_mtx, MA_OWNED);

	fill_regs32(td, &regs);
	oonstack = sigonstack(td->td_frame->sp);

	/* save user context */
	bzero(&sf, sizeof sf);
	sf.sf_uc.uc_sigmask = *mask;
	sf.sf_uc.uc_stack.ss_sp = (int32_t)(intptr_t)td->td_sigstk.ss_sp;
	sf.sf_uc.uc_stack.ss_size = td->td_sigstk.ss_size;
	sf.sf_uc.uc_stack.ss_flags = td->td_sigstk.ss_flags;
	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
	sf.sf_uc.uc_mcontext.mc_pc = regs.r_regs[PC];
	sf.sf_uc.uc_mcontext.mullo = regs.r_regs[MULLO];
	sf.sf_uc.uc_mcontext.mulhi = regs.r_regs[MULHI];
	sf.sf_uc.uc_mcontext.mc_tls = (int32_t)(intptr_t)td->td_md.md_tls;
	sf.sf_uc.uc_mcontext.mc_regs[0] = UCONTEXT_MAGIC;  /* magic number */
	for (i = 1; i < 32; i++)
		sf.sf_uc.uc_mcontext.mc_regs[i] = regs.r_regs[i];
	sf.sf_uc.uc_mcontext.mc_fpused = td->td_md.md_flags & MDTD_FPUSED;
	if (sf.sf_uc.uc_mcontext.mc_fpused) {
		/* if FPU has current state, save it first */
		if (td == PCPU_GET(fpcurthread))
			MipsSaveCurFPState(td);
		fill_fpregs32(td, &fpregs);
		for (i = 0; i < 33; i++)
			sf.sf_uc.uc_mcontext.mc_fpregs[i] = fpregs.r_regs[i];
	}

	/* Allocate and validate space for the signal handler context. */
	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
		sfp = (struct sigframe32 *)(((uintptr_t)td->td_sigstk.ss_sp +
		    td->td_sigstk.ss_size - sizeof(struct sigframe32))
		    & ~(sizeof(__int64_t) - 1));
	} else
		sfp = (struct sigframe32 *)((vm_offset_t)(td->td_frame->sp - 
		    sizeof(struct sigframe32)) & ~(sizeof(__int64_t) - 1));

	/* Build the argument list for the signal handler. */
	td->td_frame->a0 = sig;
	td->td_frame->a2 = (register_t)(intptr_t)&sfp->sf_uc;
	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
		/* Signal handler installed with SA_SIGINFO. */
		td->td_frame->a1 = (register_t)(intptr_t)&sfp->sf_si;
		/* sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; */

		/* fill siginfo structure */
		sf.sf_si.si_signo = sig;
		sf.sf_si.si_code = ksi->ksi_code;
		sf.sf_si.si_addr = td->td_frame->badvaddr;
	} else {
		/* Old FreeBSD-style arguments. */
		td->td_frame->a1 = ksi->ksi_code;
		td->td_frame->a3 = td->td_frame->badvaddr;
		/* sf.sf_ahu.sf_handler = catcher; */
	}

	mtx_unlock(&psp->ps_mtx);
	PROC_UNLOCK(p);

	/*
	 * Copy the sigframe out to the user's stack.
	 */
	if (copyout(&sf, sfp, sizeof(struct sigframe32)) != 0) {
		/*
		 * Something is wrong with the stack pointer.
		 * ...Kill the process.
		 */
		PROC_LOCK(p);
		sigexit(td, SIGILL);
	}

	td->td_frame->pc = (register_t)(intptr_t)catcher;
	td->td_frame->t9 = (register_t)(intptr_t)catcher;
	td->td_frame->sp = (register_t)(intptr_t)sfp;
	/*
	 * Signal trampoline code is at base of user stack.
	 */
	td->td_frame->ra = (register_t)(intptr_t)p->p_psstrings - *(p->p_sysent->sv_szsigcode);
	PROC_LOCK(p);
	mtx_lock(&psp->ps_mtx);
}
コード例 #4
0
ファイル: vm_machdep.c プロジェクト: lilinj2000/freebsd
/*
 * Finish a fork operation, with process p2 nearly set up.
 * Copy and update the pcb, set up the stack so that the child
 * ready to run and return to user mode.
 */
void
cpu_fork(register struct thread *td1,register struct proc *p2,
    struct thread *td2,int flags)
{
	register struct proc *p1;
	struct pcb *pcb2;

	p1 = td1->td_proc;
	if ((flags & RFPROC) == 0)
		return;
	/* It is assumed that the vm_thread_alloc called
	 * cpu_thread_alloc() before cpu_fork is called.
	 */

	/* Point the pcb to the top of the stack */
	pcb2 = td2->td_pcb;

	/* Copy p1's pcb, note that in this case
	 * our pcb also includes the td_frame being copied
	 * too. The older mips2 code did an additional copy
	 * of the td_frame, for us that's not needed any
	 * longer (this copy does them both) 
	 */
	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));

	/* Point mdproc and then copy over td1's contents
	 * md_proc is empty for MIPS
	 */
	td2->td_md.md_flags = td1->td_md.md_flags & MDTD_FPUSED;

	/*
	 * Set up return-value registers as fork() libc stub expects.
	 */
	td2->td_frame->v0 = 0;
	td2->td_frame->v1 = 1;
	td2->td_frame->a3 = 0;

	if (td1 == PCPU_GET(fpcurthread))
		MipsSaveCurFPState(td1);

	pcb2->pcb_context[PCB_REG_RA] = (register_t)(intptr_t)fork_trampoline;
	/* Make sp 64-bit aligned */
	pcb2->pcb_context[PCB_REG_SP] = (register_t)(((vm_offset_t)td2->td_pcb &
	    ~(sizeof(__int64_t) - 1)) - CALLFRAME_SIZ);
	pcb2->pcb_context[PCB_REG_S0] = (register_t)(intptr_t)fork_return;
	pcb2->pcb_context[PCB_REG_S1] = (register_t)(intptr_t)td2;
	pcb2->pcb_context[PCB_REG_S2] = (register_t)(intptr_t)td2->td_frame;
	pcb2->pcb_context[PCB_REG_SR] = mips_rd_status() &
	    (MIPS_SR_KX | MIPS_SR_UX | MIPS_SR_INT_MASK);
	/*
	 * FREEBSD_DEVELOPERS_FIXME:
	 * Setup any other CPU-Specific registers (Not MIPS Standard)
	 * and/or bits in other standard MIPS registers (if CPU-Specific)
	 *  that are needed.
	 */

	td2->td_md.md_tls = td1->td_md.md_tls;
	td2->td_md.md_saved_intr = MIPS_SR_INT_IE;
	td2->td_md.md_spinlock_count = 1;
#ifdef CPU_CNMIPS
	if (td1->td_md.md_flags & MDTD_COP2USED) {
		if (td1->td_md.md_cop2owner == COP2_OWNER_USERLAND) {
			if (td1->td_md.md_ucop2)
				octeon_cop2_save(td1->td_md.md_ucop2);
			else
				panic("cpu_fork: ucop2 is NULL but COP2 is enabled");
		}
		else {
			if (td1->td_md.md_cop2)
				octeon_cop2_save(td1->td_md.md_cop2);
			else
				panic("cpu_fork: cop2 is NULL but COP2 is enabled");
		}
	}

	if (td1->td_md.md_cop2) {
		td2->td_md.md_cop2 = octeon_cop2_alloc_ctx();
		memcpy(td2->td_md.md_cop2, td1->td_md.md_cop2, 
			sizeof(*td1->td_md.md_cop2));
	}
	if (td1->td_md.md_ucop2) {
		td2->td_md.md_ucop2 = octeon_cop2_alloc_ctx();
		memcpy(td2->td_md.md_ucop2, td1->td_md.md_ucop2, 
			sizeof(*td1->td_md.md_ucop2));
	}
	td2->td_md.md_cop2owner = td1->td_md.md_cop2owner;
	pcb2->pcb_context[PCB_REG_SR] |= MIPS_SR_PX | MIPS_SR_UX | MIPS_SR_KX | MIPS_SR_SX;
	/* Clear COP2 bits for userland & kernel */
	td2->td_frame->sr &= ~MIPS_SR_COP_2_BIT;
	pcb2->pcb_context[PCB_REG_SR] &= ~MIPS_SR_COP_2_BIT;
#endif
}
コード例 #5
0
/*
 * The CheriABI version of sendsig(9) largely borrows from the MIPS version,
 * and it is important to keep them in sync.  It differs primarily in that it
 * must also be aware of user stack-handling ABIs, so is also sensitive to our
 * (fluctuating) design choices in how $stc and $sp interact.  The current
 * design uses ($stc + $sp) for stack-relative references, so early on we have
 * to calculate a 'relocated' version of $sp that we can then use for
 * MIPS-style access.
 *
 * This code, as with the CHERI-aware MIPS code, makes a privilege
 * determination in order to decide whether to trust the stack exposed by the
 * user code for the purposes of signal handling.  We must use the alternative
 * stack if there is any indication that using the user thread's stack state
 * might violate the userspace compartmentalisation model.
 */
static void
cheriabi_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
	struct proc *p;
	struct thread *td;
	struct trapframe *regs;
	struct sigacts *psp;
	struct sigframe_c sf, *sfp;
	uintptr_t stackbase;
	vm_offset_t sp;
	int cheri_is_sandboxed;
	int sig;
	int oonstack;

	td = curthread;
	p = td->td_proc;
	PROC_LOCK_ASSERT(p, MA_OWNED);
	sig = ksi->ksi_signo;
	psp = p->p_sigacts;
	mtx_assert(&psp->ps_mtx, MA_OWNED);

	regs = td->td_frame;

	/*
	 * In CheriABI, $sp is $stc relative, so calculate a relocation base
	 * that must be combined with regs->sp from this point onwards.
	 * Unfortunately, we won't retain bounds and permissions information
	 * (as is the case elsewhere in CheriABI).  While 'stackbase'
	 * suggests that $stc's offset isn't included, in practice it will be,
	 * although we may reasonably assume that it will be zero.
	 *
	 * If it turns out we will be delivering to the alternative signal
	 * stack, we'll recalculate stackbase later.
	 */
	CHERI_CLC(CHERI_CR_CTEMP0, CHERI_CR_KDC, &td->td_pcb->pcb_regs.stc,
	    0);
	CHERI_CTOPTR(stackbase, CHERI_CR_CTEMP0, CHERI_CR_KDC);
	oonstack = sigonstack(stackbase + regs->sp);

	/*
	 * CHERI affects signal delivery in the following ways:
	 *
	 * (1) Additional capability-coprocessor state is exposed via
	 *     extensions to the context frame placed on the stack.
	 *
	 * (2) If the user $pcc doesn't include CHERI_PERM_SYSCALL, then we
	 *     consider user state to be 'sandboxed' and therefore to require
	 *     special delivery handling which includes a domain-switch to the
	 *     thread's context-switch domain.  (This is done by
	 *     cheri_sendsig()).
	 *
	 * (3) If an alternative signal stack is not defined, and we are in a
	 *     'sandboxed' state, then we have two choices: (a) if the signal
	 *     is of type SA_SANDBOX_UNWIND, we will automatically unwind the
	 *     trusted stack by one frame; (b) otherwise, we will terminate
	 *     the process unconditionally.
	 */
	cheri_is_sandboxed = cheri_signal_sandboxed(td);

	/*
	 * We provide the ability to drop into the debugger in two different
	 * circumstances: (1) if the code running is sandboxed; and (2) if the
	 * fault is a CHERI protection fault.  Handle both here for the
	 * non-unwind case.  Do this before we rewrite any general-purpose or
	 * capability register state for the thread.
	 */
#if DDB
	if (cheri_is_sandboxed && security_cheri_debugger_on_sandbox_signal)
		kdb_enter(KDB_WHY_CHERI, "Signal delivery to CHERI sandbox");
	else if (sig == SIGPROT && security_cheri_debugger_on_sigprot)
		kdb_enter(KDB_WHY_CHERI,
		    "SIGPROT delivered outside sandbox");
#endif

	/*
	 * If a thread is running sandboxed, we can't rely on $sp which may
	 * not point at a valid stack in the ambient context, or even be
	 * maliciously manipulated.  We must therefore always use the
	 * alternative stack.  We are also therefore unable to tell whether we
	 * are on the alternative stack, so must clear 'oonstack' here.
	 *
	 * XXXRW: This requires significant further thinking; however, the net
	 * upshot is that it is not a good idea to do an object-capability
	 * invoke() from a signal handler, as with so many other things in
	 * life.
	 */
	if (cheri_is_sandboxed != 0)
		oonstack = 0;

	/* save user context */
	bzero(&sf, sizeof(sf));
	sf.sf_uc.uc_sigmask = *mask;
#if 0
	/*
	 * XXX-BD: stack_t type differs and we can't just fake a capabilty.
	 * We don't restore the value so what purpose does it serve?
	 */
	sf.sf_uc.uc_stack = td->td_sigstk;
#endif
	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
	sf.sf_uc.uc_mcontext.mc_pc = regs->pc;
	sf.sf_uc.uc_mcontext.mullo = regs->mullo;
	sf.sf_uc.uc_mcontext.mulhi = regs->mulhi;
	cheri_capability_copy(&sf.sf_uc.uc_mcontext.mc_tls,
	    &td->td_md.md_tls_cap);
	sf.sf_uc.uc_mcontext.mc_regs[0] = UCONTEXT_MAGIC;  /* magic number */
	bcopy((void *)&regs->ast, (void *)&sf.sf_uc.uc_mcontext.mc_regs[1],
	    sizeof(sf.sf_uc.uc_mcontext.mc_regs) - sizeof(register_t));
	sf.sf_uc.uc_mcontext.mc_fpused = td->td_md.md_flags & MDTD_FPUSED;
#if defined(CPU_HAVEFPU)
	if (sf.sf_uc.uc_mcontext.mc_fpused) {
		/* if FPU has current state, save it first */
		if (td == PCPU_GET(fpcurthread))
			MipsSaveCurFPState(td);
		bcopy((void *)&td->td_frame->f0,
		    (void *)sf.sf_uc.uc_mcontext.mc_fpregs,
		    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
	}
#endif
	/* XXXRW: sf.sf_uc.uc_mcontext.sr seems never to be set? */
	sf.sf_uc.uc_mcontext.cause = regs->cause;
	cheri_trapframe_to_cheriframe(&td->td_pcb->pcb_regs,
	    &sf.sf_uc.uc_mcontext.mc_cheriframe);

	/*
	 * Allocate and validate space for the signal handler context.  For
	 * CheriABI purposes, 'sp' from this point forward is relocated
	 * relative to any pertinent stack capability.  For an alternative
	 * signal context, we need to recalculate stackbase for later use in
	 * calculating a new $sp for the signal-handling context.
	 *
	 * XXXRW: It seems like it would be nice to both the regular and
	 * alternative stack calculations in the same place.  However, we need
	 * oonstack sooner.  We should clean this up later.
	 */
	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
		stackbase = (vm_offset_t)td->td_sigstk.ss_sp;
		sp = (vm_offset_t)(stackbase + td->td_sigstk.ss_size);
	} else {
		/*
		 * Signals delivered when a CHERI sandbox is present must be
		 * delivered on the alternative stack rather than a local one.
		 * If an alternative stack isn't present, then terminate or
		 * risk leaking capabilities (and control) to the sandbox (or
		 * just crashing the sandbox).
		 */
		if (cheri_is_sandboxed) {
			mtx_unlock(&psp->ps_mtx);
			printf("pid %d, tid %d: signal in sandbox without "
			    "alternative stack defined\n", td->td_proc->p_pid,
			    td->td_tid);
			sigexit(td, SIGILL);
			/* NOTREACHED */
		}
		sp = (vm_offset_t)(stackbase + regs->sp);
	}
	sp -= sizeof(struct sigframe_c);
	/* For CHERI, keep the stack pointer capability aligned. */
	sp &= ~(CHERICAP_SIZE - 1);
	sfp = (void *)sp;

	/* Build the argument list for the signal handler. */
	regs->a0 = sig;
	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
		/*
		 * Signal handler installed with SA_SIGINFO.
		 *
		 * XXXRW: We would ideally synthesise these from the
		 * user-originated stack capability, rather than $kdc, to be
		 * on the safe side.
		 */
		cheri_capability_set(&regs->c3, CHERI_CAP_USER_DATA_PERMS,
		    (void *)(intptr_t)&sfp->sf_si, sizeof(sfp->sf_si), 0);
		cheri_capability_set(&regs->c4, CHERI_CAP_USER_DATA_PERMS,
		    (void *)(intptr_t)&sfp->sf_uc, sizeof(sfp->sf_uc), 0);
		/* sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; */

		/* fill siginfo structure */
		sf.sf_si.si_signo = sig;
		sf.sf_si.si_code = ksi->ksi_code;
		/*
		 * Write out badvaddr, but don't create a valid capability
		 * since that might allow privilege amplification.
		 *
		 * XXX-BD: This probably isn't the right method.
		 * XXX-BD: Do we want to set base or offset?
		 *
		 * XXXRW: I think there's some argument that anything
		 * receiving this signal is fairly privileged.  But we could
		 * generate a $ddc-relative (or $pcc-relative) capability, if
		 * possible.  (Using versions if $ddc and $pcc for the
		 * signal-handling context rather than that which caused the
		 * signal).  I'd be tempted to deliver badvaddr as the offset
		 * of that capability.  If badvaddr is not in range, then we
		 * should just deliver an untagged NULL-derived version
		 * (perhaps)?
		 */
		*((uintptr_t *)&sf.sf_si.si_addr) =
		    (uintptr_t)(void *)regs->badvaddr;
	}
	/*
	 * XXX: No support for undocumented arguments to old style handlers.
	 */

	mtx_unlock(&psp->ps_mtx);
	PROC_UNLOCK(p);

	/*
	 * Copy the sigframe out to the user's stack.
	 */
	if (copyoutcap(&sf, (void *)sfp, sizeof(sf)) != 0) {
		/*
		 * Something is wrong with the stack pointer.
		 * ...Kill the process.
		 */
		PROC_LOCK(p);
		printf("pid %d, tid %d: could not copy out sigframe\n",
		    td->td_proc->p_pid, td->td_tid);
		sigexit(td, SIGILL);
		/* NOTREACHED */
	}

	/*
	 * Re-acquire process locks necessary to access suitable pcb fields.
	 * However, arguably, these operations should be atomic with the
	 * initial inspection of 'psp'.
	 */
	PROC_LOCK(p);
	mtx_lock(&psp->ps_mtx);

	/*
	 * Install CHERI signal-delivery register state for handler to run
	 * in.  As we don't install this in the CHERI frame on the user stack,
	 * it will be (generally) be removed automatically on sigreturn().
	 */
	/* XXX-BD: this isn't quite right */
	cheri_sendsig(td);

	/*
	 * Note that $sp must be installed relative to $stc, so re-subtract
	 * the stack base here.
	 */
	regs->pc = (register_t)(intptr_t)catcher;
	regs->sp = (register_t)((intptr_t)sfp - stackbase);

	cheri_capability_copy(&regs->c12, &psp->ps_sigcap[_SIG_IDX(sig)]);
	cheri_capability_copy(&regs->c17,
	    &td->td_pcb->pcb_cherisignal.csig_sigcode);
}
コード例 #6
0
/*
 * Finish a fork operation, with process p2 nearly set up.
 * Copy and update the pcb, set up the stack so that the child
 * ready to run and return to user mode.
 */
void
cpu_fork(register struct thread *td1,register struct proc *p2,
    struct thread *td2,int flags)
{
	register struct proc *p1;
	struct pcb *pcb2;

	p1 = td1->td_proc;
	if ((flags & RFPROC) == 0)
		return;
	/* It is assumed that the vm_thread_alloc called
	 * cpu_thread_alloc() before cpu_fork is called.
	 */

	/* Point the pcb to the top of the stack */
	pcb2 = td2->td_pcb;

	/* Copy p1's pcb, note that in this case
	 * our pcb also includes the td_frame being copied
	 * too. The older mips2 code did an additional copy
	 * of the td_frame, for us thats not needed any
	 * longer (this copy does them both 
	 */
	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));

	/* Point mdproc and then copy over td1's contents
	 * md_proc is empty for MIPS
	 */
	td2->td_md.md_flags = td1->td_md.md_flags & MDTD_FPUSED;

	/*
	 * Set up return-value registers as fork() libc stub expects.
	 */
	td2->td_frame->v0 = 0;
	td2->td_frame->v1 = 1;
	td2->td_frame->a3 = 0;

	if (td1 == PCPU_GET(fpcurthread))
		MipsSaveCurFPState(td1);

	pcb2->pcb_context.val[PCB_REG_RA] = (register_t)fork_trampoline;
	/* Make sp 64-bit aligned */
	pcb2->pcb_context.val[PCB_REG_SP] = (register_t)(((vm_offset_t)td2->td_pcb &
	    ~(sizeof(__int64_t) - 1)) - STAND_FRAME_SIZE);
	pcb2->pcb_context.val[PCB_REG_S0] = (register_t)fork_return;
	pcb2->pcb_context.val[PCB_REG_S1] = (register_t)td2;
	pcb2->pcb_context.val[PCB_REG_S2] = (register_t)td2->td_frame;
	pcb2->pcb_context.val[PCB_REG_SR] = SR_INT_MASK;
	/*
	 * FREEBSD_DEVELOPERS_FIXME:
	 * Setup any other CPU-Specific registers (Not MIPS Standard)
	 * and/or bits in other standard MIPS registers (if CPU-Specific)
	 *  that are needed.
	 */

	td2->td_md.md_saved_intr = MIPS_SR_INT_IE;
	td2->td_md.md_spinlock_count = 1;
#ifdef TARGET_OCTEON
	pcb2->pcb_context.val[PCB_REG_SR] |= MIPS_SR_COP_2_BIT | MIPS32_SR_PX | MIPS_SR_UX | MIPS_SR_KX | MIPS_SR_SX;
#endif

}
コード例 #7
0
ファイル: cheriabi_machdep.c プロジェクト: bkeepers/cheribsd
static void
cheriabi_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
	struct proc *p;
	struct thread *td;
	struct trapframe *regs;
	struct cheri_frame *capreg;
	struct sigacts *psp;
	struct sigframe_c sf, *sfp;
	vm_offset_t sp;
	int cheri_is_sandboxed;
	int sig;
	int oonstack;

	td = curthread;
	p = td->td_proc;
	PROC_LOCK_ASSERT(p, MA_OWNED);
	sig = ksi->ksi_signo;
	psp = p->p_sigacts;
	mtx_assert(&psp->ps_mtx, MA_OWNED);

	regs = td->td_frame;
	capreg = &td->td_pcb->pcb_cheriframe;
	oonstack = sigonstack(regs->sp);

	/*
	 * CHERI affects signal delivery in the following ways:
	 *
	 * (1) Additional capability-coprocessor state is exposed via
	 *     extensions to the context frame placed on the stack.
	 *
	 * (2) If the user $pcc doesn't include CHERI_PERM_SYSCALL, then we
	 *     consider user state to be 'sandboxed' and therefore to require
	 *     special delivery handling which includes a domain-switch to the
	 *     thread's context-switch domain.  (This is done by
	 *     cheri_sendsig()).
	 *
	 * (3) If an alternative signal stack is not defined, and we are in a
	 *     'sandboxed' state, then we have two choices: (a) if the signal
	 *     is of type SA_SANDBOX_UNWIND, we will automatically unwind the
	 *     trusted stack by one frame; (b) otherwise, we will terminate
	 *     the process unconditionally.
	 */
	cheri_is_sandboxed = cheri_signal_sandboxed(td);

	/*
	 * We provide the ability to drop into the sandbox in two different
	 * circumstances: (1) if the code running is sandboxed; and (2) if the
	 * fault is a CHERI protection fault.  Handle both here for the
	 * non-unwind case.  Do this before we rewrite any general-purpose or
	 * capability register state for the thread.
	 */
#if DDB
	if (cheri_is_sandboxed && security_cheri_debugger_on_sandbox_signal)
		kdb_enter(KDB_WHY_CHERI, "Signal delivery to CHERI sandbox");
	else if (sig == SIGPROT && security_cheri_debugger_on_sigprot)
		kdb_enter(KDB_WHY_CHERI,
		    "SIGPROT delivered outside sandbox");
#endif

	/*
	 * If a thread is running sandboxed, we can't rely on $sp which may
	 * not point at a valid stack in the ambient context, or even be
	 * maliciously manipulated.  We must therefore always use the
	 * alternative stack.  We are also therefore unable to tell whether we
	 * are on the alternative stack, so must clear 'oonstack' here.
	 *
	 * XXXRW: This requires significant further thinking; however, the net
	 * upshot is that it is not a good idea to do an object-capability
	 * invoke() from a signal handler, as with so many other things in
	 * life.
	 */
	if (cheri_is_sandboxed != 0)
		oonstack = 0;

	/* save user context */
	bzero(&sf, sizeof(struct sigframe));
	sf.sf_uc.uc_sigmask = *mask;
#if 0
	/*
	 * XXX-BD: stack_t type differs and we can't just fake a capabilty.
	 * We don't restore the value so what purpose does it serve?
	 */
	sf.sf_uc.uc_stack = td->td_sigstk;
#endif
	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
	sf.sf_uc.uc_mcontext.mc_pc = regs->pc;
	sf.sf_uc.uc_mcontext.mullo = regs->mullo;
	sf.sf_uc.uc_mcontext.mulhi = regs->mulhi;
#if 0
	/* XXX-BD: what actually makes sense here? */
	sf.sf_uc.uc_mcontext.mc_tls = td->td_md.md_tls;
#endif
	sf.sf_uc.uc_mcontext.mc_regs[0] = UCONTEXT_MAGIC;  /* magic number */
	bcopy((void *)&regs->ast, (void *)&sf.sf_uc.uc_mcontext.mc_regs[1],
	    sizeof(sf.sf_uc.uc_mcontext.mc_regs) - sizeof(register_t));
	sf.sf_uc.uc_mcontext.mc_fpused = td->td_md.md_flags & MDTD_FPUSED;
	if (sf.sf_uc.uc_mcontext.mc_fpused) {
		/* if FPU has current state, save it first */
		if (td == PCPU_GET(fpcurthread))
			MipsSaveCurFPState(td);
		bcopy((void *)&td->td_frame->f0,
		    (void *)sf.sf_uc.uc_mcontext.mc_fpregs,
		    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
	}
	/* XXXRW: sf.sf_uc.uc_mcontext.sr seems never to be set? */
	sf.sf_uc.uc_mcontext.cause = regs->cause;
	cheri_memcpy(&sf.sf_uc.uc_mcontext.mc_cheriframe,
	    &td->td_pcb->pcb_cheriframe,
	    sizeof(struct cheri_frame));

	/* Allocate and validate space for the signal handler context. */
	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
		sp = (vm_offset_t)(td->td_sigstk.ss_sp +
		    td->td_sigstk.ss_size);
	} else {
		/*
		 * Signals delivered when a CHERI sandbox is present must be
		 * delivered on the alternative stack rather than a local one.
		 * If an alternative stack isn't present, then terminate or
		 * risk leaking capabilities (and control) to the sandbox (or
		 * just crashing the sandbox).
		 */
		if (cheri_is_sandboxed) {
			mtx_unlock(&psp->ps_mtx);
			printf("pid %d, tid %d: signal in sandbox without "
			    "alternative stack defined\n", td->td_proc->p_pid,
			    td->td_tid);
			sigexit(td, SIGILL);
			/* NOTREACHED */
		}
		sp = (vm_offset_t)regs->sp;
	}
	sp -= sizeof(struct sigframe_c);
	/* For CHERI, keep the stack pointer capability aligned. */
	sp &= ~(CHERICAP_SIZE - 1);
	sfp = (void *)sp;

	/* Build the argument list for the signal handler. */
	regs->a0 = sig;
	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
		/* Signal handler installed with SA_SIGINFO. */
		cheri_capability_set(&capreg->cf_c3, CHERI_CAP_USER_DATA_PERMS,
		    CHERI_CAP_USER_DATA_OTYPE, (void *)(intptr_t)&sfp->sf_si,
		    sizeof(sfp->sf_si), 0);
		cheri_capability_set(&capreg->cf_c4, CHERI_CAP_USER_DATA_PERMS,
		    CHERI_CAP_USER_DATA_OTYPE, (void *)(intptr_t)&sfp->sf_uc,
		    sizeof(sfp->sf_uc), 0);
		/* sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; */

		/* fill siginfo structure */
		sf.sf_si.si_signo = sig;
		sf.sf_si.si_code = ksi->ksi_code;
		/*
		 * Write out badvaddr, but don't create a valid capability
		 * since that might allow privlege amplification.
		 *
		 * XXX-BD: This probably isn't the right method.
		 * XXX-BD: Do we want to set base or offset?
		 */
		*((uintptr_t *)&sf.sf_si.si_addr) =
		    (uintptr_t)(void *)regs->badvaddr;
	}
	/*
	 * XXX: No support for undocumented arguments to old style handlers.
	 */

	mtx_unlock(&psp->ps_mtx);
	PROC_UNLOCK(p);

	/*
	 * Copy the sigframe out to the user's stack.
	 */
	if (copyoutcap(&sf, sfp, sizeof(sf)) != 0) {
		/*
		 * Something is wrong with the stack pointer.
		 * ...Kill the process.
		 */
		PROC_LOCK(p);
		sigexit(td, SIGILL);
		/* NOTREACHED */
	}

	/*
	 * Install CHERI signal-delivery register state for handler to run
	 * in.  As we don't install this in the CHERI frame on the user stack,
	 * it will be (generally) be removed automatically on sigreturn().
	 */
	/* XXX-BD: this isn't quite right */
	cheri_sendsig(td);

	regs->pc = (register_t)(intptr_t)catcher;
	regs->sp = (register_t)(intptr_t)sfp;

	cheri_capability_copy(&capreg->cf_c12, &psp->ps_sigcap[_SIG_IDX(sig)]);
	cheri_capability_copy(&capreg->cf_c17,
	    &td->td_pcb->pcb_cherisignal.csig_sigcode);
	PROC_LOCK(p);
	mtx_lock(&psp->ps_mtx);
}
コード例 #8
0
/*
 * Send an interrupt to process.
 *
 * Stack is set up to allow sigcode stored
 * at top to call routine, followed by kcall
 * to sigreturn routine below.	After sigreturn
 * resets the signal mask, the stack, and the
 * frame pointer, it returns to the user
 * specified pc, psl.
 */
void
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
	struct proc *p;
	struct thread *td;
	struct trapframe *regs;
	struct sigacts *psp;
	struct sigframe sf, *sfp;
	int sig;
	int oonstack;

	td = curthread;
	p = td->td_proc;
	PROC_LOCK_ASSERT(p, MA_OWNED);
	sig = ksi->ksi_signo;
	psp = p->p_sigacts;
	mtx_assert(&psp->ps_mtx, MA_OWNED);

	regs = td->td_frame;
	oonstack = sigonstack(regs->sp);

	/* save user context */
	bzero(&sf, sizeof(struct sigframe));
	sf.sf_uc.uc_sigmask = *mask;
	sf.sf_uc.uc_stack = td->td_sigstk;
	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
	sf.sf_uc.uc_mcontext.mc_pc = regs->pc;
	sf.sf_uc.uc_mcontext.mullo = regs->mullo;
	sf.sf_uc.uc_mcontext.mulhi = regs->mulhi;
	sf.sf_uc.uc_mcontext.mc_tls = td->td_md.md_tls;
	sf.sf_uc.uc_mcontext.mc_regs[0] = UCONTEXT_MAGIC;  /* magic number */
	bcopy((void *)&regs->ast, (void *)&sf.sf_uc.uc_mcontext.mc_regs[1],
	    sizeof(sf.sf_uc.uc_mcontext.mc_regs) - sizeof(register_t));
	sf.sf_uc.uc_mcontext.mc_fpused = td->td_md.md_flags & MDTD_FPUSED;
	if (sf.sf_uc.uc_mcontext.mc_fpused) {
		/* if FPU has current state, save it first */
		if (td == PCPU_GET(fpcurthread))
			MipsSaveCurFPState(td);
		bcopy((void *)&td->td_frame->f0,
		    (void *)sf.sf_uc.uc_mcontext.mc_fpregs,
		    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
	}

	/* Allocate and validate space for the signal handler context. */
	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
		sfp = (struct sigframe *)((vm_offset_t)(td->td_sigstk.ss_sp +
		    td->td_sigstk.ss_size - sizeof(struct sigframe))
		    & ~(sizeof(__int64_t) - 1));
	} else
		sfp = (struct sigframe *)((vm_offset_t)(regs->sp - 
		    sizeof(struct sigframe)) & ~(sizeof(__int64_t) - 1));

	/* Translate the signal if appropriate */
	if (p->p_sysent->sv_sigtbl) {
		if (sig <= p->p_sysent->sv_sigsize)
			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
	}

	/* Build the argument list for the signal handler. */
	regs->a0 = sig;
	regs->a2 = (register_t)(intptr_t)&sfp->sf_uc;
	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
		/* Signal handler installed with SA_SIGINFO. */
		regs->a1 = (register_t)(intptr_t)&sfp->sf_si;
		/* sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; */

		/* fill siginfo structure */
		sf.sf_si.si_signo = sig;
		sf.sf_si.si_code = ksi->ksi_code;
		sf.sf_si.si_addr = (void*)(intptr_t)regs->badvaddr;
	} else {
		/* Old FreeBSD-style arguments. */
		regs->a1 = ksi->ksi_code;
		regs->a3 = regs->badvaddr;
		/* sf.sf_ahu.sf_handler = catcher; */
	}

	mtx_unlock(&psp->ps_mtx);
	PROC_UNLOCK(p);

	/*
	 * Copy the sigframe out to the user's stack.
	 */
	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
		/*
		 * Something is wrong with the stack pointer.
		 * ...Kill the process.
		 */
		PROC_LOCK(p);
		sigexit(td, SIGILL);
	}

	regs->pc = (register_t)(intptr_t)catcher;
	regs->t9 = (register_t)(intptr_t)catcher;
	regs->sp = (register_t)(intptr_t)sfp;
	/*
	 * Signal trampoline code is at base of user stack.
	 */
	regs->ra = (register_t)(intptr_t)PS_STRINGS - *(p->p_sysent->sv_szsigcode);
	PROC_LOCK(p);
	mtx_lock(&psp->ps_mtx);
}
コード例 #9
0
ファイル: pm_machdep.c プロジェクト: RichardsonAlex/cheribsd
/*
 * Send an interrupt to process.
 *
 * Stack is set up to allow sigcode stored
 * at top to call routine, followed by kcall
 * to sigreturn routine below.	After sigreturn
 * resets the signal mask, the stack, and the
 * frame pointer, it returns to the user
 * specified pc, psl.
 */
void
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
	struct proc *p;
	struct thread *td;
	struct trapframe *regs;
#ifdef CPU_CHERI
	struct cheri_frame *cfp;
#endif
	struct sigacts *psp;
	struct sigframe sf, *sfp;
	vm_offset_t sp;
#ifdef CPU_CHERI
	size_t cp2_len;
	int cheri_is_sandboxed;
#endif
	int sig;
	int oonstack;

	td = curthread;
	p = td->td_proc;
	PROC_LOCK_ASSERT(p, MA_OWNED);
	sig = ksi->ksi_signo;
	psp = p->p_sigacts;
	mtx_assert(&psp->ps_mtx, MA_OWNED);

	regs = td->td_frame;
	oonstack = sigonstack(regs->sp);

#ifdef CPU_CHERI
	/*
	 * CHERI affects signal delivery in the following ways:
	 *
	 * (1) Additional capability-coprocessor state is exposed via
	 *     extensions to the context frame placed on the stack.
	 *
	 * (2) If the user $pcc doesn't include CHERI_PERM_SYSCALL, then we
	 *     consider user state to be 'sandboxed' and therefore to require
	 *     special delivery handling which includes a domain-switch to the
	 *     thread's context-switch domain.  (This is done by
	 *     cheri_sendsig()).
	 *
	 * (3) If an alternative signal stack is not defined, and we are in a
	 *     'sandboxed' state, then we have two choices: (a) if the signal
	 *     is of type SA_SANDBOX_UNWIND, we will automatically unwind the
	 *     trusted stack by one frame; (b) otherwise, we will terminate
	 *     the process unconditionally.
	 */
	cheri_is_sandboxed = cheri_signal_sandboxed(td);

	/*
	 * We provide the ability to drop into the debugger in two different
	 * circumstances: (1) if the code running is sandboxed; and (2) if the
	 * fault is a CHERI protection fault.  Handle both here for the
	 * non-unwind case.  Do this before we rewrite any general-purpose or
	 * capability register state for the thread.
	 */
#if DDB
	if (cheri_is_sandboxed && security_cheri_debugger_on_sandbox_signal)
		kdb_enter(KDB_WHY_CHERI, "Signal delivery to CHERI sandbox");
	else if (sig == SIGPROT && security_cheri_debugger_on_sigprot)
		kdb_enter(KDB_WHY_CHERI,
		    "SIGPROT delivered outside sandbox");
#endif

	/*
	 * If a thread is running sandboxed, we can't rely on $sp which may
	 * not point at a valid stack in the ambient context, or even be
	 * maliciously manipulated.  We must therefore always use the
	 * alternative stack.  We are also therefore unable to tell whether we
	 * are on the alternative stack, so must clear 'oonstack' here.
	 *
	 * XXXRW: This requires significant further thinking; however, the net
	 * upshot is that it is not a good idea to do an object-capability
	 * invoke() from a signal handler, as with so many other things in
	 * life.
	 */
	if (cheri_is_sandboxed != 0)
		oonstack = 0;
#endif

	/* save user context */
	bzero(&sf, sizeof(sf));
	sf.sf_uc.uc_sigmask = *mask;
	sf.sf_uc.uc_stack = td->td_sigstk;
	sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
	sf.sf_uc.uc_mcontext.mc_pc = regs->pc;
	sf.sf_uc.uc_mcontext.mullo = regs->mullo;
	sf.sf_uc.uc_mcontext.mulhi = regs->mulhi;
	sf.sf_uc.uc_mcontext.mc_tls = td->td_md.md_tls;
	sf.sf_uc.uc_mcontext.mc_regs[0] = UCONTEXT_MAGIC;  /* magic number */
	bcopy((void *)&regs->ast, (void *)&sf.sf_uc.uc_mcontext.mc_regs[1],
	    sizeof(sf.sf_uc.uc_mcontext.mc_regs) - sizeof(register_t));
	sf.sf_uc.uc_mcontext.mc_fpused = td->td_md.md_flags & MDTD_FPUSED;
#if defined(CPU_HAVEFPU)
	if (sf.sf_uc.uc_mcontext.mc_fpused) {
		/* if FPU has current state, save it first */
		if (td == PCPU_GET(fpcurthread))
			MipsSaveCurFPState(td);
		bcopy((void *)&td->td_frame->f0,
		    (void *)sf.sf_uc.uc_mcontext.mc_fpregs,
		    sizeof(sf.sf_uc.uc_mcontext.mc_fpregs));
	}
#endif
	/* XXXRW: sf.sf_uc.uc_mcontext.sr seems never to be set? */
	sf.sf_uc.uc_mcontext.cause = regs->cause;

	/* Allocate and validate space for the signal handler context. */
	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
		sp = (vm_offset_t)((uintptr_t)td->td_sigstk.ss_sp +
		    td->td_sigstk.ss_size);
	} else {
#ifdef CPU_CHERI
		/*
		 * Signals delivered when a CHERI sandbox is present must be
		 * delivered on the alternative stack rather than a local one.
		 * If an alternative stack isn't present, then terminate or
		 * risk leaking capabilities (and control) to the sandbox (or
		 * just crashing the sandbox).
		 */
		if (cheri_is_sandboxed) {
			mtx_unlock(&psp->ps_mtx);
			printf("pid %d, tid %d: signal in sandbox without "
			    "alternative stack defined\n", td->td_proc->p_pid,
			    td->td_tid);
			sigexit(td, SIGILL);
			/* NOTREACHED */
		}
#endif
		sp = (vm_offset_t)regs->sp;
	}
#ifdef CPU_CHERI
	cp2_len = sizeof(*cfp);
	sp -= cp2_len;
	sp &= ~(CHERICAP_SIZE - 1);
	sf.sf_uc.uc_mcontext.mc_cp2state = sp;
	sf.sf_uc.uc_mcontext.mc_cp2state_len = cp2_len;
#endif
	sp -= sizeof(struct sigframe);
#ifdef CPU_CHERI
	/* For CHERI, keep the stack pointer capability aligned. */
	sp &= ~(CHERICAP_SIZE - 1);
#else
	sp &= ~(sizeof(__int64_t) - 1);
#endif
	sfp = (struct sigframe *)sp;

	/* Build the argument list for the signal handler. */
	regs->a0 = sig;
	regs->a2 = (register_t)(intptr_t)&sfp->sf_uc;
	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
		/* Signal handler installed with SA_SIGINFO. */
		regs->a1 = (register_t)(intptr_t)&sfp->sf_si;
		/* sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; */

		/* fill siginfo structure */
		sf.sf_si = ksi->ksi_info;
		sf.sf_si.si_signo = sig;
		sf.sf_si.si_code = ksi->ksi_code;
		sf.sf_si.si_addr = (void*)(intptr_t)regs->badvaddr;
	} else {
		/* Old FreeBSD-style arguments. */
		regs->a1 = ksi->ksi_code;
		regs->a3 = regs->badvaddr;
		/* sf.sf_ahu.sf_handler = catcher; */
	}

	mtx_unlock(&psp->ps_mtx);
	PROC_UNLOCK(p);

	/*
	 * Copy the sigframe out to the user's stack.
	 */
#ifdef CPU_CHERI
	cfp = malloc(sizeof(*cfp), M_TEMP, M_WAITOK);
	cheri_trapframe_to_cheriframe(&td->td_pcb->pcb_regs, cfp);
	if (copyoutcap(cfp,
	    (void *)sf.sf_uc.uc_mcontext.mc_cp2state, cp2_len) != 0) {
		free(cfp, M_TEMP);
		PROC_LOCK(p);
		printf("pid %d, tid %d: could not copy out cheriframe\n",
		    td->td_proc->p_pid, td->td_tid);
		sigexit(td, SIGILL);
		/* NOTREACHED */
	}
	free(cfp, M_TEMP);
#endif
	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
		/*
		 * Something is wrong with the stack pointer.
		 * ...Kill the process.
		 */
		PROC_LOCK(p);
		printf("pid %d, tid %d: could not copy out sigframe\n",
		    td->td_proc->p_pid, td->td_tid);
		sigexit(td, SIGILL);
		/* NOTREACHED */
	}

#ifdef CPU_CHERI
	/*
	 * Install CHERI signal-delivery register state for handler to run
	 * in.  As we don't install this in the CHERI frame on the user stack,
	 * it will be (genrally) be removed automatically on sigreturn().
	 */
	cheri_sendsig(td);
#endif

	regs->pc = (register_t)(intptr_t)catcher;
	regs->t9 = (register_t)(intptr_t)catcher;
	regs->sp = (register_t)(intptr_t)sfp;
	/*
	 * Signal trampoline code is at base of user stack.
	 */
	regs->ra = (register_t)(intptr_t)PS_STRINGS - *(p->p_sysent->sv_szsigcode);
	PROC_LOCK(p);
	mtx_lock(&psp->ps_mtx);
}