static int chacha20_neon(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct chacha20_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; u32 state[16]; int err; if (!may_use_simd() || req->cryptlen <= CHACHA20_BLOCK_SIZE) return crypto_chacha20_crypt(req); err = skcipher_walk_virt(&walk, req, true); crypto_chacha20_init(state, ctx, walk.iv); kernel_neon_begin(); while (walk.nbytes > 0) { unsigned int nbytes = walk.nbytes; if (nbytes < walk.total) nbytes = round_down(nbytes, walk.stride); chacha20_doneon(state, walk.dst.virt.addr, walk.src.virt.addr, nbytes); err = skcipher_walk_done(&walk, walk.nbytes - nbytes); } kernel_neon_end(); return err; }
int crypto_chacha_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm); return chacha_stream_xor(req, ctx, req->iv); }
static int simd_skcipher_init(struct crypto_skcipher *tfm) { struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct cryptd_skcipher *cryptd_tfm; struct simd_skcipher_alg *salg; struct skcipher_alg *alg; unsigned reqsize; alg = crypto_skcipher_alg(tfm); salg = container_of(alg, struct simd_skcipher_alg, alg); cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name, CRYPTO_ALG_INTERNAL, CRYPTO_ALG_INTERNAL); if (IS_ERR(cryptd_tfm)) return PTR_ERR(cryptd_tfm); ctx->cryptd_tfm = cryptd_tfm; reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm)); reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base)); reqsize += sizeof(struct skcipher_request); crypto_skcipher_set_reqsize(tfm, reqsize); return 0; }
static int crypto_rfc3686_setkey(struct crypto_skcipher *parent, const u8 *key, unsigned int keylen) { struct crypto_rfc3686_ctx *ctx = crypto_skcipher_ctx(parent); struct crypto_skcipher *child = ctx->child; int err; /* the nonce is stored in bytes at end of key */ if (keylen < CTR_RFC3686_NONCE_SIZE) return -EINVAL; memcpy(ctx->nonce, key + (keylen - CTR_RFC3686_NONCE_SIZE), CTR_RFC3686_NONCE_SIZE); keylen -= CTR_RFC3686_NONCE_SIZE; crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & CRYPTO_TFM_REQ_MASK); err = crypto_skcipher_setkey(child, key, keylen); crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; }
static int __ecb_crypt(struct skcipher_request *req, void (*fn)(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks)) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, true); kernel_neon_begin(); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; if (walk.nbytes < walk.total) blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk, ctx->rounds, blocks); err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } kernel_neon_end(); return err; }
static int crypto_rfc3686_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_rfc3686_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_skcipher *child = ctx->child; unsigned long align = crypto_skcipher_alignmask(tfm); struct crypto_rfc3686_req_ctx *rctx = (void *)PTR_ALIGN((u8 *)skcipher_request_ctx(req), align + 1); struct skcipher_request *subreq = &rctx->subreq; u8 *iv = rctx->iv; /* set up counter block */ memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE); memcpy(iv + CTR_RFC3686_NONCE_SIZE, req->iv, CTR_RFC3686_IV_SIZE); /* initialize counter portion of counter block */ *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = cpu_to_be32(1); skcipher_request_set_tfm(subreq, child); skcipher_request_set_callback(subreq, req->base.flags, req->base.complete, req->base.data); skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, iv); return crypto_skcipher_encrypt(subreq); }
static int cbc_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, true); kernel_neon_begin(); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; if (walk.nbytes < walk.total) blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk, ctx->key.rounds, blocks, walk.iv); err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } kernel_neon_end(); return err; }
/* check and set the DES key, prepare the mode to be used */ int sun4i_ss_des_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct sun4i_ss_ctx *ss = op->ss; u32 flags; u32 tmp[DES_EXPKEY_WORDS]; int ret; if (unlikely(keylen != DES_KEY_SIZE)) { dev_err(ss->dev, "Invalid keylen %u\n", keylen); crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } flags = crypto_skcipher_get_flags(tfm); ret = des_ekey(tmp, key); if (unlikely(!ret) && (flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) { crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_WEAK_KEY); dev_dbg(ss->dev, "Weak key %u\n", keylen); return -EINVAL; } op->keylen = keylen; memcpy(op->key, key, keylen); return 0; }
/* check and set the AES key, prepare the mode to be used */ int sun4i_ss_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct sun4i_ss_ctx *ss = op->ss; switch (keylen) { case 128 / 8: op->keymode = SS_AES_128BITS; break; case 192 / 8: op->keymode = SS_AES_192BITS; break; case 256 / 8: op->keymode = SS_AES_256BITS; break; default: dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen); crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } op->keylen = keylen; memcpy(op->key, key, keylen); return 0; }
static inline void crypto_cbc_decrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst) { struct crypto_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); crypto_cipher_decrypt_one(ctx->child, dst, src); }
static int ctr_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, true); kernel_fpu_begin(); while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) { aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK, walk.iv); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } if (walk.nbytes) { ctr_crypt_final(ctx, &walk); err = skcipher_walk_done(&walk, 0); } kernel_fpu_end(); return err; }
static void exit_tfm(struct crypto_skcipher *tfm) { struct priv *ctx = crypto_skcipher_ctx(tfm); if (ctx->table) gf128mul_free_64k(ctx->table); crypto_free_skcipher(ctx->child); }
/* * We compute the tweak masks twice (both before and after the ECB encryption or * decryption) to avoid having to allocate a temporary buffer and/or make * mutliple calls to the 'ecb(..)' instance, which usually would be slower than * just doing the next_index() calls again. */ static int xor_tweak(struct skcipher_request *req, bool second_pass) { const int bs = LRW_BLOCK_SIZE; struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct priv *ctx = crypto_skcipher_ctx(tfm); struct rctx *rctx = skcipher_request_ctx(req); be128 t = rctx->t; struct skcipher_walk w; __be32 *iv; u32 counter[4]; int err; if (second_pass) { req = &rctx->subreq; /* set to our TFM to enforce correct alignment: */ skcipher_request_set_tfm(req, tfm); } err = skcipher_walk_virt(&w, req, false); if (err) return err; iv = (__be32 *)w.iv; counter[0] = be32_to_cpu(iv[3]); counter[1] = be32_to_cpu(iv[2]); counter[2] = be32_to_cpu(iv[1]); counter[3] = be32_to_cpu(iv[0]); while (w.nbytes) { unsigned int avail = w.nbytes; be128 *wsrc; be128 *wdst; wsrc = w.src.virt.addr; wdst = w.dst.virt.addr; do { be128_xor(wdst++, &t, wsrc++); /* T <- I*Key2, using the optimization * discussed in the specification */ be128_xor(&t, &t, &ctx->mulinc[next_index(counter)]); } while ((avail -= bs) >= bs); if (second_pass && w.nbytes == w.total) { iv[0] = cpu_to_be32(counter[3]); iv[1] = cpu_to_be32(counter[2]); iv[2] = cpu_to_be32(counter[1]); iv[3] = cpu_to_be32(counter[0]); } err = skcipher_walk_done(&w, avail); } return err; }
static int xts_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm); return glue_xts_req_128bit(&aesni_dec_xts, req, XTS_TWEAK_CAST(aesni_xts_tweak), aes_ctx(ctx->raw_tweak_ctx), aes_ctx(ctx->raw_crypt_ctx)); }
/* CBC AES */ int sun4i_ss_cbc_aes_encrypt(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); }
int sun4i_ss_ecb_des3_decrypt(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_DECRYPTION | op->keymode; return sun4i_ss_cipher_poll(areq); }
static int ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int ret; ret = ce_aes_expandkey(ctx, in_key, key_len); if (!ret) return 0; crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; }
static int crypto_pcbc_init_tfm(struct crypto_skcipher *tfm) { struct skcipher_instance *inst = skcipher_alg_instance(tfm); struct crypto_spawn *spawn = skcipher_instance_ctx(inst); struct crypto_pcbc_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_cipher *cipher; cipher = crypto_spawn_cipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; return 0; }
static int crypto_pcbc_setkey(struct crypto_skcipher *parent, const u8 *key, unsigned int keylen) { struct crypto_pcbc_ctx *ctx = crypto_skcipher_ctx(parent); struct crypto_cipher *child = ctx->child; int err; crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_cipher_set_flags(child, crypto_skcipher_get_flags(parent) & CRYPTO_TFM_REQ_MASK); err = crypto_cipher_setkey(child, key, keylen); crypto_skcipher_set_flags(parent, crypto_cipher_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; }
/* check and set the 3DES key, prepare the mode to be used */ int sun4i_ss_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct sun4i_ss_ctx *ss = op->ss; if (unlikely(keylen != 3 * DES_KEY_SIZE)) { dev_err(ss->dev, "Invalid keylen %u\n", keylen); crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } op->keylen = keylen; memcpy(op->key, key, keylen); return 0; }
static int chacha_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keysize, int nrounds) { struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm); int i; if (keysize != CHACHA_KEY_SIZE) return -EINVAL; for (i = 0; i < ARRAY_SIZE(ctx->key); i++) ctx->key[i] = get_unaligned_le32(key + i * sizeof(u32)); ctx->nrounds = nrounds; return 0; }
static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int key_len) { struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_skcipher *child = &ctx->cryptd_tfm->base; int err; crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); err = crypto_skcipher_setkey(child, key, key_len); crypto_skcipher_set_flags(tfm, crypto_skcipher_get_flags(child) & CRYPTO_TFM_RES_MASK); return err; }
static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm); struct crypto_blkcipher *blkcipher = *ctx; int err; crypto_blkcipher_clear_flags(blkcipher, ~0); crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); err = crypto_blkcipher_setkey(blkcipher, key, keylen); crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) & CRYPTO_TFM_RES_MASK); return err; }
static int init_tfm(struct crypto_skcipher *tfm) { struct skcipher_instance *inst = skcipher_alg_instance(tfm); struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst); struct priv *ctx = crypto_skcipher_ctx(tfm); struct crypto_skcipher *cipher; cipher = crypto_spawn_skcipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) + sizeof(struct rctx)); return 0; }
static void init_crypt(struct skcipher_request *req) { struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); struct rctx *rctx = skcipher_request_ctx(req); struct skcipher_request *subreq = &rctx->subreq; skcipher_request_set_tfm(subreq, ctx->child); skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req); /* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */ skcipher_request_set_crypt(subreq, req->dst, req->dst, req->cryptlen, req->iv); /* calculate first value of T */ memcpy(&rctx->t, req->iv, sizeof(rctx->t)); /* T <- I*Key2 */ gf128mul_64k_bbe(&rctx->t, ctx->table); }
static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm); int err; err = crypto_aes_expand_key(&ctx->fallback, in_key, key_len); if (err) return err; ctx->key.rounds = 6 + key_len / 4; kernel_neon_begin(); aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds); kernel_neon_end(); return 0; }
static int ecb_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int blocks; int err; err = skcipher_walk_virt(&walk, req, true); kernel_neon_begin(); while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key_dec, num_rounds(ctx), blocks); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } kernel_neon_end(); return err; }
static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int ret; ret = xts_verify_key(tfm, in_key, key_len); if (ret) return ret; ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2); if (!ret) ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2], key_len / 2); if (!ret) return 0; crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; }
static int simd_skcipher_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_request *subreq; struct crypto_skcipher *child; subreq = skcipher_request_ctx(req); *subreq = *req; if (!crypto_simd_usable() || (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm))) child = &ctx->cryptd_tfm->base; else child = cryptd_skcipher_child(ctx->cryptd_tfm); skcipher_request_set_tfm(subreq, child); return crypto_skcipher_decrypt(subreq); }
int crypto_xchacha_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm); struct chacha_ctx subctx; u32 state[16]; u8 real_iv[16]; /* Compute the subkey given the original key and first 128 nonce bits */ crypto_chacha_init(state, ctx, req->iv); hchacha_block(state, subctx.key, ctx->nrounds); subctx.nrounds = ctx->nrounds; /* Build the real IV */ memcpy(&real_iv[0], req->iv + 24, 8); /* stream position */ memcpy(&real_iv[8], req->iv + 16, 8); /* remaining 64 nonce bits */ /* Generate the stream and XOR it with the data */ return chacha_stream_xor(req, &subctx, real_iv); }