コード例 #1
0
ファイル: dat1.cpp プロジェクト: karottenreibe/FIFE
	DAT1::DAT1(VFS* vfs, const std::string& file) : VFSSource(vfs), m_datpath(file), m_data(vfs->open(file))  {
		FL_LOG(_log, LMsg("MFFalloutDAT1") 
			<< "loading: " << file 
			<< " filesize: " << m_data->getDataLength());

		m_data->setIndex(0);

		const uint32_t dircount = m_data->read32Big();
		m_data->moveIndex(4*3);

		FL_LOG(_log, LMsg("MFFalloutDAT1") 
			<< "number of directories " << dircount);

		// Sanity check. Each dir entry needs min. 16 bytes.
		if( dircount*16 > m_data->getDataLength() ) {
			throw InvalidFormat("directory count larger than filesize.");
		}

		std::list<std::string> dir_names;
		for (uint32_t i = 0; i < dircount; ++i) {
			std::string name = readString();
			if (name == ".") {
				name = "";
			}
			dir_names.push_back(name);
		}

		for(std::list<std::string>::iterator i= dir_names.begin(); i!= dir_names.end(); ++i)
			loadFileList(*i);
	}
コード例 #2
0
ファイル: mainwindow.cpp プロジェクト: Konosprod/Pikture
mainWindow::mainWindow(QWidget *parent) :
    QMainWindow(parent),
    ui(new Ui::mainWindow)
{
    ui->setupUi(this);
    sc = new QScrollArea(this);
    m_label = new QLabel("", this);
    m_image = new QImage();
    m_animated = new QMovie(m_label);
    m_current = -1;

    QStringList args = QApplication::arguments();

    if(args.count() > 1)
    {
        loadFileList(args);
    }

    sc->setWidget(m_label);
    sc->setHorizontalScrollBarPolicy(Qt::ScrollBarAsNeeded);
    sc->setVerticalScrollBarPolicy(Qt::ScrollBarAsNeeded);
    this->setCentralWidget(sc);
    this->resize(800, 600);
    m_oldSize = this->size();

    setupConnexions();
}
コード例 #3
0
bool SRTMProvider::fillTile(int index, SRTMTile **tile){

    bool tileFilled = false;

    QString fileName;   // Name incl. Pfad (wird aus _cachedir und Index erstellt)

    loadFileList();     // per loadFilelist(): fileListe vorhanden? falls nicht: erstellen!

    if (fileList.contains(index)){

        fileName = _cachedir+fileList[index];

        QFile zipFile(fileName);

        int fileIndex = index; //Bugfixversuch: fileIndex

        if(!zipFile.open(QIODevice::ReadOnly) && !downloadZipFile(fileIndex, fileName, zipFile)){ //Bugfixversuch: fileIndex

            return tileFilled;

        }

        tileFilled = (*tile)->fillTile(fileName);
    }

    return tileFilled;
}
コード例 #4
0
ファイル: vfh.cpp プロジェクト: AshwinChandlapur/perception
void VFH::loadTrainingData()
{
	if (!boost::filesystem::exists ("training_data.h5") || !boost::filesystem::exists ("training_data.list"))
	{
		pcl::console::print_error ("Could not find training data models files %s and %s!\n", 
				training_data_h5_file_name.c_str (), training_data_list_file_name.c_str ());
		return;
	}
	else
	{
		loadFileList (models, training_data_list_file_name);
		flann::load_from_file (data, training_data_h5_file_name, "training_data");
		pcl::console::print_highlight ("Training data found. Loaded %d VFH models from %s/%s.\n", 
				(int)data.rows, training_data_h5_file_name.c_str (), training_data_list_file_name.c_str ());
	}
	
	if (!boost::filesystem::exists (kdtree_idx_file_name))
	{
		pcl::console::print_error ("Could not find kd-tree index in file %s!", kdtree_idx_file_name.c_str ());
		return;
	}
	else
	{
		flann::Index<flann::ChiSquareDistance<float> > index (data, flann::SavedIndexParams (kdtree_idx_file_name));
		index.buildIndex ();
	}
}
コード例 #5
0
ファイル: soundkonverter.cpp プロジェクト: EQ4/soundkonverter
void soundKonverter::setupActions()
{
    KStandardAction::quit( this, SLOT(close()), actionCollection() );
    KStandardAction::preferences( this, SLOT(showConfigDialog()), actionCollection() );

    KAction *logviewer = actionCollection()->addAction("logviewer");
    logviewer->setText(i18n("View logs..."));
    logviewer->setIcon(KIcon("view-list-text"));
    connect( logviewer, SIGNAL(triggered()), this, SLOT(showLogViewer()) );

    KAction *replaygainscanner = actionCollection()->addAction("replaygainscanner");
    replaygainscanner->setText(i18n("Replay Gain tool..."));
    replaygainscanner->setIcon(KIcon("soundkonverter-replaygain"));
    connect( replaygainscanner, SIGNAL(triggered()), this, SLOT(showReplayGainScanner()) );

    KAction *aboutplugins = actionCollection()->addAction("aboutplugins");
    aboutplugins->setText(i18n("About plugins..."));
    aboutplugins->setIcon(KIcon("preferences-plugin"));
    connect( aboutplugins, SIGNAL(triggered()), this, SLOT(showAboutPlugins()) );

    KAction *add_files = actionCollection()->addAction("add_files");
    add_files->setText(i18n("Add files..."));
    add_files->setIcon(KIcon("audio-x-generic"));
    connect( add_files, SIGNAL(triggered()), m_view, SLOT(showFileDialog()) );

    KAction *add_folder = actionCollection()->addAction("add_folder");
    add_folder->setText(i18n("Add folder..."));
    add_folder->setIcon(KIcon("folder"));
    connect( add_folder, SIGNAL(triggered()), m_view, SLOT(showDirDialog()) );

    KAction *add_audiocd = actionCollection()->addAction("add_audiocd");
    add_audiocd->setText(i18n("Add CD tracks..."));
    add_audiocd->setIcon(KIcon("media-optical-audio"));
    connect( add_audiocd, SIGNAL(triggered()), m_view, SLOT(showCdDialog()) );

    KAction *add_url = actionCollection()->addAction("add_url");
    add_url->setText(i18n("Add url..."));
    add_url->setIcon(KIcon("network-workgroup"));
    connect( add_url, SIGNAL(triggered()), m_view, SLOT(showUrlDialog()) );

    KAction *add_playlist = actionCollection()->addAction("add_playlist");
    add_playlist->setText(i18n("Add playlist..."));
    add_playlist->setIcon(KIcon("view-media-playlist"));
    connect( add_playlist, SIGNAL(triggered()), m_view, SLOT(showPlaylistDialog()) );

    KAction *load = actionCollection()->addAction("load");
    load->setText(i18n("Load file list"));
    load->setIcon(KIcon("document-open"));
    connect( load, SIGNAL(triggered()), m_view, SLOT(loadFileList()) );

    KAction *save = actionCollection()->addAction("save");
    save->setText(i18n("Save file list"));
    save->setIcon(KIcon("document-save"));
    connect( save, SIGNAL(triggered()), m_view, SLOT(saveFileList()) );

    actionCollection()->addAction("start", m_view->start());
    actionCollection()->addAction("stop_menu", m_view->stopMenu());
}
コード例 #6
0
PlotAlignmentValidation::PlotAlignmentValidation(const char *inputFile,std::string legendName, int lineColor, int lineStyle)
{
  setOutputDir("$TMPDIR");
  setTreeBaseDir();
  sourcelist = NULL;

  loadFileList( inputFile, legendName, lineColor, lineStyle);
  moreThanOneSource=false;
}
コード例 #7
0
//------------------------------------------------------------------------------
PlotAlignmentValidation::PlotAlignmentValidation(const char *inputFile,std::string legendName, int lineColor, int lineStyle)
{
  setOutputDir("$TMPDIR");
  setTreeBaseDir();
  sourcelist = NULL;
  
  loadFileList( inputFile, legendName, lineColor, lineStyle);
  moreThanOneSource=false;
  useFit_ = false;

  // Force ROOT to use scientific notation even with smaller datasets
  TGaxis::SetMaxDigits(4);
  // (This sets a static variable: correct in .eps-images but must be set
  // again manually when viewing the .root-files)
}
コード例 #8
0
CoaDebugSettingsModel::CoaDebugSettingsModel ( QObject *parent )
:CoaAbstractItemModel ( parent )
{
//   BEGIN;


   m_columns = 2;

   loadFileList();

   connect (CoaDebugThread::getInstance(), SIGNAL(gotNewFileForDebugging(const QString, const int)),
            this, SLOT (setNewFile(const QString, const int)),
            Qt::QueuedConnection
            );

}
コード例 #9
0
ファイル: filelistmodel.cpp プロジェクト: fcitx/fcitx-qt5
fcitx::FileListModel::FileListModel(QObject *parent)
    : QAbstractListModel(parent) {
    loadFileList();
}
コード例 #10
0
FileListModel::FileListModel(QObject* parent): QAbstractListModel(parent)
    ,m_langType(LPLT_Simplified)
{
    loadFileList();
}
コード例 #11
0
int main (int argc, char** argv)
{	
	PointCloudT::Ptr cloud (new PointCloudT);
	PointCloudT::Ptr new_cloud (new PointCloudT);
	bool new_cloud_available_flag = false;
	//pcl::Grabber* grab = new pcl::OpenNIGrabber ();

	PointCloudT::Ptr ddd;

	boost::function<void (const PointCloudT::ConstPtr&)> f =
		boost::bind(&grabberCallback, _1, cloud, &new_cloud_available_flag);
	grab->registerCallback (f);
	viewer->registerKeyboardCallback(keyboardEventOccurred);
	grab->start ();
	
	bool first_time = true;

	FILE* objects;
	objects = fopen ("objects.txt","a");

	while(!new_cloud_available_flag)
		boost::this_thread::sleep(boost::posix_time::milliseconds(1));

	new_cloud_available_flag=false;


	////////////////////
	// invert correction
	////////////////////
				
	Eigen::Matrix4f transMat = Eigen::Matrix4f::Identity(); 
	transMat (1,1) = -1;

    ////////////////////
	// pass filter
	////////////////////

	PointCloudT::Ptr passed_cloud;
	pcl::PassThrough<PointT> pass;
	passed_cloud = boost::shared_ptr<PointCloudT>(new PointCloudT);

	
	////////////////////
	// voxel grid
	////////////////////
	PointCloudT::Ptr voxelized_cloud;
	voxelized_cloud = boost::shared_ptr<PointCloudT>(new PointCloudT);
	pcl::VoxelGrid<PointT> vg;
	vg.setLeafSize (0.001, 0.001, 0.001);
	

	////////////////////
	// sac segmentation
	////////////////////
	
	PointCloudT::Ptr cloud_f;
	PointCloudT::Ptr cloud_plane;
	PointCloudT::Ptr cloud_filtered;
	cloud_f = boost::shared_ptr<PointCloudT>(new PointCloudT);	
	cloud_plane = boost::shared_ptr<PointCloudT> (new PointCloudT);	
	cloud_filtered = boost::shared_ptr<PointCloudT> (new PointCloudT);

	pcl::SACSegmentation<PointT> seg;
	pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
	pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
	seg.setOptimizeCoefficients (true);
	seg.setModelType (pcl::SACMODEL_PLANE);
	seg.setMethodType (pcl::SAC_RANSAC);
	seg.setMaxIterations (100);
	seg.setDistanceThreshold (0.02);

	////////////////////
	// euclidean clustering
	////////////////////
	std::vector<pcl::PointIndices> cluster_indices;
	std::vector<PointCloudT::Ptr> extracted_clusters;
	pcl::search::KdTree<PointT>::Ptr eucl_tree (new pcl::search::KdTree<PointT>);
	pcl::EuclideanClusterExtraction<PointT> ec;
	ec.setClusterTolerance (0.04);
	ec.setMinClusterSize (100);
	ec.setMaxClusterSize (25000);
	ec.setSearchMethod (eucl_tree);

	PointCloudT::Ptr cloud_cluster;

	////////////////////
	// vfh estimate
	////////////////////
	pcl::NormalEstimation<PointT, pcl::Normal> ne;
	pcl::search::KdTree<PointT>::Ptr vfh_tree1 (new pcl::search::KdTree<PointT> ());
	pcl::VFHEstimation<PointT, pcl::Normal, pcl::VFHSignature308> vfh;
	pcl::search::KdTree<PointT>::Ptr vfh_tree2 (new pcl::search::KdTree<PointT> ());
	std::vector<pcl::PointCloud<pcl::VFHSignature308>::Ptr> computed_vfhs;	
	
	ne.setSearchMethod (vfh_tree1);
	ne.setRadiusSearch (0.05);
	vfh.setSearchMethod (vfh_tree2);
	vfh.setRadiusSearch (0.05);
	pcl::PointCloud<pcl::Normal>::Ptr normals;
	pcl::PointCloud<pcl::VFHSignature308>::Ptr vfhs;


	////////////////////
	// nearest neighbour
	////////////////////
	int k = 6;

	std::string kdtree_idx_file_name = "kdtree.idx";
	std::string training_data_h5_file_name = "training_data.h5";
	std::string training_data_list_file_name = "training_data.list";

//	std::vector<vfh_model> models;
//	flann::Matrix<float> data;

//	loadFileList (models, training_data_list_file_name);
//	flann::load_from_file (data, 
//						   training_data_h5_file_name, 
//						   "training_data");
//	
//	flann::Index<flann::ChiSquareDistance<float> > index (data, 
//														  flann::SavedIndexParams 
//														  ("kdtree.idx"));


    ////////////////////
	// process nearest neighbour
	////////////////////
	std::vector<hypothesis> final_hypothesis;
	final_hypothesis.clear();



	double last = pcl::getTime();

	while (! viewer->wasStopped())
	{
		if (new_cloud_available_flag)
		{

			new_cloud_available_flag = false;
			double now = pcl::getTime();

			////////////////////
			// pass filter
			////////////////////
					  
			//passed_cloud = boost::shared_ptr<PointCloudT>(new PointCloudT);

			////////////////////
			// voxel grid
			////////////////////
			//voxelized_cloud = boost::shared_ptr<PointCloudT>(new PointCloudT);

			////////////////////
			// sac segmentation
			////////////////////
	
			//cloud_f = boost::shared_ptr<PointCloudT>(new PointCloudT);	
			//cloud_plane = boost::shared_ptr<PointCloudT> (new PointCloudT);	
			//cloud_filtered = boost::shared_ptr<PointCloudT> (new PointCloudT);

			////////////////////
			// euclidean clustering
			////////////////////
			extracted_clusters.clear();
			cluster_indices.clear();

			////////////////////
			// vfh estimate
			////////////////////
			computed_vfhs.clear();


            ////////////////////
			// nearest neighbour
			////////////////////
			
			cloud_mutex.lock();
			
			//displayCloud(viewer,cloud);
			boost::thread displayCloud_(displayCloud,viewer,cloud);

			if(now-last > 13 || first_time)
			{
				first_time = false;

				last=now;

                ////////////////////
				// invert correction
				////////////////////

				pcl::transformPointCloud(*cloud,*new_cloud,transMat);
				
				////////////////////
				// pass filter
				////////////////////
				
				pass.setInputCloud (new_cloud);
				pass.setFilterFieldName ("x");
				pass.setFilterLimits (-0.5, 0.5);
				//pass.setFilterLimitsNegative (true);
				pass.filter (*passed_cloud);


				////////////////////
				// voxel grid
				////////////////////

				vg.setInputCloud (passed_cloud);
				vg.filter (*voxelized_cloud);

				////////////////////
				// sac segmentation
				////////////////////
			
				*cloud_filtered = *voxelized_cloud;

				int i=0, nr_points = (int) voxelized_cloud->points.size ();
				while (cloud_filtered->points.size () > 0.3 * nr_points)
				{
					// Segment the largest planar component from the remaining cloud
					seg.setInputCloud (cloud_filtered);
					seg.segment (*inliers, *coefficients);
					if (inliers->indices.size () == 0)
					{
						std::cout << "Couldnt estimate a planar model for the dataset.\n";
						break;
					}

					// Extract the planar inliers from the input cloud
					pcl::ExtractIndices<PointT> extract;
					extract.setInputCloud (cloud_filtered);
					extract.setIndices (inliers);
					extract.setNegative (false);

					// Get the points associated with the planar surface
					extract.filter (*cloud_plane);

					// Remove the planar inliers, extract the rest
					extract.setNegative (true);
					extract.filter (*cloud_f);
					*cloud_filtered = *cloud_f;
				}

                ////////////////////
				// euclidean clustering
				////////////////////
				
				// Creating the KdTree object for the search method of the extraction
				eucl_tree->setInputCloud (cloud_filtered);

				ec.setInputCloud (cloud_filtered);
				ec.extract (cluster_indices);

				
				for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
				{
					//PointCloudT::Ptr cloud_cluster (new PointCloudT);
					cloud_cluster = boost::shared_ptr<PointCloudT>(new PointCloudT);
					for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++)
						cloud_cluster->points.push_back (cloud_filtered->points [*pit]);
					cloud_cluster->width = cloud_cluster->points.size ();
					cloud_cluster->height = 1;
					cloud_cluster->is_dense = true;
					
					extracted_clusters.push_back(cloud_cluster);
				}
				cloud_cluster.reset();

							
				////////////////////
				// vfh estimate
				////////////////////
				for (int z=0; z<extracted_clusters.size(); ++z)
				{
					vfhs = boost::shared_ptr<pcl::PointCloud<pcl::VFHSignature308> > (new pcl::PointCloud<pcl::VFHSignature308>);
					normals = boost::shared_ptr<pcl::PointCloud<pcl::Normal> > (new pcl::PointCloud<pcl::Normal>);

					ne.setInputCloud (extracted_clusters.at(z));
					ne.compute (*normals);
					vfh.setInputCloud (extracted_clusters.at(z));
					vfh.setInputNormals (normals);
					vfh.compute (*vfhs);
					computed_vfhs.push_back(vfhs);
	
				}
				vfhs.reset();
				normals.reset();

				////////////////////
				// nearest neighbour
				////////////////////	

				std::vector<vfh_model> models;
				flann::Matrix<int> k_indices;
				flann::Matrix<float> k_distances;
				flann::Matrix<float> data;


				loadFileList (models, training_data_list_file_name);
				flann::load_from_file (data, 
									   training_data_h5_file_name, 
									   "training_data");
	
				flann::Index<flann::ChiSquareDistance<float> > index 
					(data, 
					 flann::SavedIndexParams 
					 ("kdtree.idx"));


				for(int z=0; z<computed_vfhs.size(); ++z)
				{
					vfh_model histogram;
					histogram.second.resize(308);
	
					for (size_t i = 0; i < 308; ++i)
					{
						histogram.second[i] = computed_vfhs.at(z)->points[0].histogram[i];
					}

					index.buildIndex ();
					nearestKSearch (index, histogram, k, k_indices, k_distances);
					
					hypothesis x;
					x.distance = k_distances[0][0];
					size_t index = models.at(k_indices[0][0]).first.find("_v",5);

					x.object_name = models.at(k_indices[0][0]).first.substr(5,index-5);

					ddd = boost::shared_ptr<PointCloudT>(new PointCloudT);
					pcl::transformPointCloud(*extracted_clusters.at(z),*ddd,transMat);
					x.cluster = ddd;
					ddd.reset();

					std::string filename ="";
					filename += "inputcloud_" + boost::lexical_cast<std::string>(j+1);
					filename += "_" + boost::lexical_cast<std::string>(z) + ".pcd";
					x.cluster_name = filename.c_str();

					final_hypothesis.push_back(x);

					x.cluster.reset();
					//delete x;
					
//                    std::string filename ="";
//					filename += "inputcloud_" + boost::lexical_cast<std::string>(j+1);
//					filename += "_" + boost::lexical_cast<std::string>(z) + ".pcd";
//					const char* filen = filename.c_str();
//					fprintf(objects,"%s",filen);
//					fprintf(objects,"::");
//					fprintf(objects,models.at (k_indices[0][0]).first.c_str());
//					fprintf(objects,"::");
//					fprintf(objects,"%f",k_distances[0][0]);
//					fprintf(objects,"\n");					
				}				
				delete[] k_indices.ptr ();
				delete[] k_distances.ptr ();
				delete[] data.ptr ();
				
				std::cout << final_hypothesis.size() << std::endl;
				
				viewer->removeAllShapes();

				for(int z=0; z<final_hypothesis.size();++z)
				{
					if(final_hypothesis.at(z).distance < 100)
					{
						fprintf(objects,"%s",final_hypothesis.at(z).cluster_name.c_str());
						fprintf(objects,"::");
						fprintf(objects,"%s",final_hypothesis.at(z).object_name.c_str());
						fprintf(objects,"::");
						fprintf(objects,"%f",final_hypothesis.at(z).distance);
						fprintf(objects,"\n");
					std::stringstream ddd;
						ddd << final_hypothesis.at(z).object_name;
						ddd << "\n" << "(";
						ddd << final_hypothesis.at(z).distance;
						ddd << ")";

						viewer->addText3D(ddd.str().c_str(),
										 final_hypothesis.at(z).cluster->points[0],
										 0.02,1,1,1,
										 boost::lexical_cast<std::string>(z));
						drawBoundingBox(final_hypothesis.at(z).cluster,viewer,z);
					}
				}
				//boost::thread allBoxes_(allBoxes,viewer,final_hypothesis);		
				//allBoxes_.join();
				viewer->spinOnce();
				final_hypothesis.clear();
				j++;
			}

//			for(int z=0; z<extracted_clusters.size(); ++z)
//			{
//				//viewer->addPointCloud<PointT>(extracted_clusters.at(z),
//				//							 boost::lexical_cast<std::string>(z));
//
//				std::string filename ="";
//				filename += "inputcloud_" + boost::lexical_cast<std::string>(j);
//				filename += "_" + boost::lexical_cast<std::string>(z) + ".pcd";
//				pcl::io::savePCDFile(filename,*extracted_clusters.at(z),false);
//			}	


//			for(int z=0; z<computed_vfhs.size(); ++z)
//			{
//				//viewer->addPointCloud<PointT>(extracted_clusters.at(z),
//				//							 boost::lexical_cast<std::string>(z));
//
//				std::string filename ="";
//				filename += "inputcloud_" + boost::lexical_cast<std::string>(j);
//				filename += "_" + boost::lexical_cast<std::string>(z) + "_vfhs.pcd";
//				pcl::io::savePCDFileASCII<pcl::VFHSignature308> (filename, *computed_vfhs.at(z));
//			}			


			//viewer->removeAllShapes();
//			viewer->removeAllPointClouds();
//			viewer->setCameraPosition(0, 0, 0, 0, 0, 1, 0, -1, 0); 
//			pcl::visualization::PointCloudColorHandlerRGBField<PointT> rgb(cloud);
//			viewer->addPointCloud<PointT>(cloud,rgb,"input_cloud");
//			viewer->spinOnce();
		

			//std::cout << final_hypothesis.at(0).cluster->points[0];

			//boost::this_thread::sleep(boost::posix_time::milliseconds(10));
			displayCloud_.join();
			cloud_mutex.unlock();
		}
    }
	grab->stop();
	return 0;
}
コード例 #12
0
ファイル: resource.cpp プロジェクト: chrisws/scummvm
bool Resource::reset() {
	unloadAllPakFiles();

	Common::FSNode dir(ConfMan.get("path"));

	if (!dir.exists() || !dir.isDirectory())
		error("invalid game path '%s'", dir.getPath().c_str());

	if (_vm->game() == GI_KYRA1) {
		// We only need kyra.dat for the demo.
		if (_vm->gameFlags().isDemo && !_vm->gameFlags().isTalkie)
			return true;

		if (!_vm->gameFlags().isDemo && _vm->gameFlags().isTalkie) {
			// List of files in the talkie version, which can never be unload.
			static const char * const list[] = {
				"ADL.PAK", "CHAPTER1.VRM", "COL.PAK", "FINALE.PAK", "INTRO1.PAK", "INTRO2.PAK",
				"INTRO3.PAK", "INTRO4.PAK", "MISC.PAK", "SND.PAK", "STARTUP.PAK", "XMI.PAK",
				"CAVE.APK", "DRAGON1.APK", "DRAGON2.APK", "LAGOON.APK", 0
			};

			loadProtectedFiles(list);
		} else {
			Common::ArchiveMemberList files;

			_files.listMatchingMembers(files, "*.PAK");
			_files.listMatchingMembers(files, "*.APK");

			for (Common::ArchiveMemberList::const_iterator i = files.begin(); i != files.end(); ++i) {
				Common::String name = (*i)->getName();
				name.toUppercase();

				// No PAK file
				if (name == "TWMUSIC.PAK")
					continue;

				// We need to only load the script archive for the language the user specified
				if (name == ((_vm->gameFlags().lang == Common::EN_ANY) ? "JMC.PAK" : "EMC.PAK"))
					continue;

				Common::Archive *archive = loadArchive(name, *i);
				if (archive)
					_files.add(name, archive, 0, false);
				else
					error("Couldn't load PAK file '%s'", name.c_str());
			}
		}
	} else if (_vm->game() == GI_KYRA2) {
		if (_vm->gameFlags().useInstallerPackage)
			_files.add("installer", loadInstallerArchive("WESTWOOD", "%03d", 6), 2, false);

		// mouse pointer, fonts, etc. required for initialization
		if (_vm->gameFlags().isDemo && !_vm->gameFlags().isTalkie) {
			loadPakFile("GENERAL.PAK");
		} else {
			loadPakFile("INTROGEN.PAK");
			loadPakFile("OTHER.PAK");
		}
	} else if (_vm->game() == GI_KYRA3) {
		if (_vm->gameFlags().useInstallerPackage) {
			if (!loadPakFile("WESTWOOD.001"))
				error("Couldn't load file: 'WESTWOOD.001'");
		}

		if (!loadFileList("FILEDATA.FDT"))
			error("Couldn't load file: 'FILEDATA.FDT'");
	} else if (_vm->game() == GI_LOL) {
		if (_vm->gameFlags().useInstallerPackage)
			_files.add("installer", loadInstallerArchive("WESTWOOD", "%d", 0), 2, false);

		if (!_vm->gameFlags().isTalkie && !_vm->gameFlags().isDemo) {
			static const char * const list[] = {
				"GENERAL.PAK", 0
			};

			loadProtectedFiles(list);
		}
	} else {
		error("Unknown game id: %d", _vm->game());
		return false;	// for compilers that don't support NORETURN
	}

	return true;
}
コード例 #13
0
ファイル: finder.cpp プロジェクト: RStravinsky/PdfFinder
void Finder::findFiles()
{
    if(!QDir(m_targetFolder).mkdir("Pliki_PDF")) {
        emit finished(false, "Folder \"Pliki_PDF\" już istnieje.");
        return;
    }

    bool isFileListLoaded = loadFileList();
    if(!isFileListLoaded)
        return;

    if(isFileListLoaded && m_fileList.size() == 0) {
        removeCopiedFiles();
        emit finished(false, "Nie znaleziono pasujących pozycji w harmonogramie.");
        return;
    }

    emit signalProgress( 100, "Określenie liczby plików do przeszukania ...");
    QDir dir(m_searchedFolder, QString("*.pdf"), QDir::NoSort, QDir::Files | QDir::NoSymLinks);
    QDirIterator counterIt(dir, QDirIterator::Subdirectories);
    filesCounter = 0;
    while (counterIt.hasNext()) {
            bool abort = m_abort;
            if (abort) {
                removeCopiedFiles();
                emit finished(false);
                return;
            }
            filesCounter++;
            counterIt.next();
    }
    if(filesCounter == 0) {
        emit finished(false, "Nie znaleziono plików PDF w wybranej lokalizacji.");
        return;
    }

    QStringList indexList;
    QStringList copiedFilesList;
    QString renamedFile;
    int count = 0;
    QDirIterator finalIt(dir, QDirIterator::Subdirectories);
    while (finalIt.hasNext()) {

        bool abort = m_abort;
        if (abort) {
            removeCopiedFiles();
            emit finished(false);
            return;
        }

        if(m_fileList.contains(QFileInfo(finalIt.filePath()).fileName(), Qt::CaseInsensitive)) {

            indexList = getFileListIdx(QFileInfo(finalIt.filePath()).fileName());

            for(int i = 0; i < indexList.size(); ++i) {

                renamedFile = renameFile(indexList.at(i).toInt(), QFileInfo(finalIt.filePath()).fileName());

                if(!QFile(m_targetFolder + "/Pliki_PDF/" + renamedFile).exists()) {
                    QFile::copy(QFileInfo(finalIt.filePath()).filePath(), m_targetFolder + "/Pliki_PDF/" + renamedFile);
                    copiedFilesList.append(renamedFile);
                    emit itemFound(renamedFile, true);
                }
            }
        }

        finalIt.next();
        count++;
        emit signalProgress( int((double(count)/double(filesCounter)*100)),
                         "Przeszukiwanie plików: " + QString::number(count) + "/" +
                         QString::number(filesCounter));
    }

    QStringList missedFiless = checkMissingFiles(copiedFilesList);

    QString information = generateCSV(missedFiless,copiedFilesList);
    emit finished(true,information);
}
コード例 #14
0
int
main (int argc, char** argv)
{
  int k = 6;

  double thresh = DBL_MAX;     // No threshold, disabled by default

  if (argc < 2)
  {
    pcl::console::print_error 
      ("Need at least three parameters! Syntax is: %s <query_vfh_model.pcd> [options] {kdtree.idx} {training_data.h5} {training_data.list}\n", argv[0]);
    pcl::console::print_info ("    where [options] are:  -k      = number of nearest neighbors to search for in the tree (default: "); 
    pcl::console::print_value ("%d", k); pcl::console::print_info (")\n");
    pcl::console::print_info ("                          -thresh = maximum distance threshold for a model to be considered VALID (default: "); 
    pcl::console::print_value ("%f", thresh); pcl::console::print_info (")\n\n");
    return (-1);
  }

  // this won't be needed for flann > 1.6.10
  flann::ObjectFactory<flann::IndexParams, flann_algorithm_t>::instance().register_<flann::LinearIndexParams>(FLANN_INDEX_LINEAR);

  std::string extension (".pcd");
  transform (extension.begin (), extension.end (), extension.begin (), (int(*)(int))tolower);

  // Load the test histogram
  std::vector<int> pcd_indices = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
  vfh_model histogram;
  if (!loadHist (argv[pcd_indices.at (0)], histogram))
  {
    pcl::console::print_error ("Cannot load test file %s\n", argv[pcd_indices.at (0)]);
    return (-1);
  }

  pcl::console::parse_argument (argc, argv, "-thresh", thresh);
  // Search for the k closest matches
  pcl::console::parse_argument (argc, argv, "-k", k);
  pcl::console::print_highlight ("Using "); pcl::console::print_value ("%d", k); pcl::console::print_info (" nearest neighbors.\n");

  std::string kdtree_idx_file_name = "kdtree.idx";
  std::string training_data_h5_file_name = "training_data.h5";
  std::string training_data_list_file_name = "training_data.list";

  std::vector<vfh_model> models;
  flann::Matrix<int> k_indices;
  flann::Matrix<float> k_distances;
  flann::Matrix<float> data;
  // Check if the data has already been saved to disk
  if (!boost::filesystem::exists ("training_data.h5") || !boost::filesystem::exists ("training_data.list"))
  {
    pcl::console::print_error ("Could not find training data models files %s and %s!\n", 
        training_data_h5_file_name.c_str (), training_data_list_file_name.c_str ());
    return (-1);
  }
  else
  {
    loadFileList (models, training_data_list_file_name);
    flann::load_from_file (data, training_data_h5_file_name, "training_data");
    pcl::console::print_highlight ("Training data found. Loaded %d VFH models from %s/%s.\n", 
        (int)data.rows, training_data_h5_file_name.c_str (), training_data_list_file_name.c_str ());
  }

  // Check if the tree index has already been saved to disk
  if (!boost::filesystem::exists (kdtree_idx_file_name))
  {
    pcl::console::print_error ("Could not find kd-tree index in file %s!", kdtree_idx_file_name.c_str ());
    return (-1);
  }
  else
  {
    flann::Index<flann::ChiSquareDistance<float> > index (data, flann::SavedIndexParams ("kdtree.idx"));
    index.buildIndex ();
    nearestKSearch (index, histogram, k, k_indices, k_distances);
  }

  // Output the results on screen
  pcl::console::print_highlight ("The closest %d neighbors for %s are:\n", k, argv[pcd_indices[0]]);
  for (int i = 0; i < k; ++i)
    pcl::console::print_info ("    %d - %s (%d) with a distance of: %f\n", 
        i, models.at (k_indices[0][i]).first.c_str (), k_indices[0][i], k_distances[0][i]);

  // Load the results
  pcl::visualization::PCLVisualizer p (argc, argv, "VFH Cluster Classifier");
  int y_s = (int)floor (sqrt ((double)k));
  int x_s = y_s + (int)ceil ((k / (double)y_s) - y_s);
  double x_step = (double)(1 / (double)x_s);
  double y_step = (double)(1 / (double)y_s);
  pcl::console::print_highlight ("Preparing to load "); 
  pcl::console::print_value ("%d", k); 
  pcl::console::print_info (" files ("); 
  pcl::console::print_value ("%d", x_s);    
  pcl::console::print_info ("x"); 
  pcl::console::print_value ("%d", y_s); 
  pcl::console::print_info (" / ");
  pcl::console::print_value ("%f", x_step); 
  pcl::console::print_info ("x"); 
  pcl::console::print_value ("%f", y_step); 
  pcl::console::print_info (")\n");

  int viewport = 0, l = 0, m = 0;
  for (int i = 0; i < k; ++i)
  {
    std::string cloud_name = models.at (k_indices[0][i]).first;
    boost::replace_last (cloud_name, "_vfh", "");

    p.createViewPort (l * x_step, m * y_step, (l + 1) * x_step, (m + 1) * y_step, viewport);
    l++;
    if (l >= x_s)
    {
      l = 0;
      m++;
    }

    sensor_msgs::PointCloud2 cloud;
    pcl::console::print_highlight (stderr, "Loading "); pcl::console::print_value (stderr, "%s ", cloud_name.c_str ());
    if (pcl::io::loadPCDFile (cloud_name, cloud) == -1)
      break;

    // Convert from blob to PointCloud
    pcl::PointCloud<pcl::PointXYZ> cloud_xyz;
    pcl::fromROSMsg (cloud, cloud_xyz);

    if (cloud_xyz.points.size () == 0)
      break;

    pcl::console::print_info ("[done, "); 
    pcl::console::print_value ("%d", (int)cloud_xyz.points.size ()); 
    pcl::console::print_info (" points]\n");
    pcl::console::print_info ("Available dimensions: "); 
    pcl::console::print_value ("%s\n", pcl::getFieldsList (cloud).c_str ());

    // Demean the cloud
    Eigen::Vector4f centroid;
    pcl::compute3DCentroid (cloud_xyz, centroid);
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_xyz_demean (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::demeanPointCloud<pcl::PointXYZ> (cloud_xyz, centroid, *cloud_xyz_demean);
    // Add to renderer*
    p.addPointCloud (cloud_xyz_demean, cloud_name, viewport);
    
    // Check if the model found is within our inlier tolerance
    std::stringstream ss;
    ss << k_distances[0][i];
    if (k_distances[0][i] > thresh)
    {
      p.addText (ss.str (), 20, 30, 1, 0, 0, ss.str (), viewport);  // display the text with red

      // Create a red line
      pcl::PointXYZ min_p, max_p;
      pcl::getMinMax3D (*cloud_xyz_demean, min_p, max_p);
      std::stringstream line_name;
      line_name << "line_" << i;
      p.addLine (min_p, max_p, 1, 0, 0, line_name.str (), viewport);
      p.setShapeRenderingProperties (pcl::visualization::PCL_VISUALIZER_LINE_WIDTH, 5, line_name.str (), viewport);
    }
    else
      p.addText (ss.str (), 20, 30, 0, 1, 0, ss.str (), viewport);

    // Increase the font size for the score*
    p.setShapeRenderingProperties (pcl::visualization::PCL_VISUALIZER_FONT_SIZE, 18, ss.str (), viewport);

    // Add the cluster name
    p.addText (cloud_name, 20, 10, cloud_name, viewport);
  }
  // Add coordianate systems to all viewports
  p.addCoordinateSystem (0.1, 0);

  p.spin ();
  return (0);
}