コード例 #1
0
int FeaturesMiner::findBlackBorder(int orientation) {

	if (image == NULL) {
		return -1;
	}
	int sum;
	unsigned int val;

		if (orientation == HORIZONTAL) {
			for (int i = 0; i < width; i++) {
				val = sum = 0;
				for (int j = 0; j < height; j++) {
					pixGetPixel(image, i, j, &val);
					sum += val;
				}
				if ((sum) >= 200 * height) {
					return i;
				}
			}
		} else if (orientation == VERTICAL) {
			for (int i = 0; i < height; i++) {
				val = sum = 0;
				for (int j = 0; j < width; j++) {
					pixGetPixel(image, j, i, &val);
					sum += val;
				}
				if ((sum) >= 200 * width) {
					return i;
				}
			}
		}
	return -1;
}
コード例 #2
0
ファイル: quadtree.c プロジェクト: 0xkasun/Dummy_Tes
/*!
 *  pixMeanInRectangle()
 *
 *      Input:  pix (8 bpp)
 *              box (region to compute mean value)
 *              pixma (mean accumulator)
 *              &val (<return> mean value
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This function is intended to be used for many rectangles
 *          on the same image.  It can find the mean within a
 *          rectangle in O(1), independent of the size of the rectangle.
 */
l_int32
pixMeanInRectangle(PIX        *pixs,
                   BOX        *box,
                   PIX        *pixma,
                   l_float32  *pval)
{
l_int32    w, h, bx, by, bw, bh;
l_uint32   val00, val01, val10, val11;
l_float32  norm;
BOX       *boxc;

    PROCNAME("pixMeanInRectangle");

    if (!pval)
        return ERROR_INT("&val not defined", procName, 1);
    *pval = 0.0;
    if (!pixs || pixGetDepth(pixs) != 8)
        return ERROR_INT("pixs not defined", procName, 1);
    if (!box)
        return ERROR_INT("box not defined", procName, 1);
    if (!pixma)
        return ERROR_INT("pixma not defined", procName, 1);

        /* Clip rectangle to image */
    pixGetDimensions(pixs, &w, &h, NULL);
    boxc = boxClipToRectangle(box, w, h);
    boxGetGeometry(boxc, &bx, &by, &bw, &bh);
    boxDestroy(&boxc);

    if (bw == 0 || bh == 0)
        return ERROR_INT("no pixels in box", procName, 1);

        /* Use up to 4 points in the accumulator */
    norm = 1.0 / (bw * bh);
    if (bx > 0 && by > 0) {
        pixGetPixel(pixma, bx + bw - 1, by + bh - 1, &val11);
        pixGetPixel(pixma, bx + bw - 1, by - 1, &val10);
        pixGetPixel(pixma, bx - 1, by + bh - 1, &val01);
        pixGetPixel(pixma, bx - 1, by - 1, &val00);
        *pval = norm * (val11 - val01 + val00 - val10);
    }
    else if (by > 0) {  /* bx == 0 */
        pixGetPixel(pixma, bw - 1, by + bh - 1, &val11);
        pixGetPixel(pixma, bw - 1, by - 1, &val10);
        *pval = norm * (val11 - val10);
    }
    else if (bx > 0) {  /* by == 0 */
        pixGetPixel(pixma, bx + bw - 1, bh - 1, &val11);
        pixGetPixel(pixma, bx - 1, bh - 1, &val01);
        *pval = norm * (val11 - val01);
    }
    else {  /* bx == 0 && by == 0 */
        pixGetPixel(pixma, bw - 1, bh - 1, &val11);
        *pval = norm * val11;
    }

    return 0;
}
コード例 #3
0
ファイル: blobbox.cpp プロジェクト: 0ximDigital/appsScanner
// Helper to compute edge offsets for  all the blobs on the list.
// See coutln.h for an explanation of edge offsets.
void BLOBNBOX::ComputeEdgeOffsets(Pix* thresholds, Pix* grey,
                                  BLOBNBOX_LIST* blobs) {
  int grey_height = 0;
  int thr_height = 0;
  int scale_factor = 1;
  if (thresholds != NULL && grey != NULL) {
    grey_height = pixGetHeight(grey);
    thr_height = pixGetHeight(thresholds);
    scale_factor =
        IntCastRounded(static_cast<double>(grey_height) / thr_height);
  }
  BLOBNBOX_IT blob_it(blobs);
  for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
    BLOBNBOX* blob = blob_it.data();
    if (blob->cblob() != NULL) {
      // Get the threshold that applies to this blob.
      l_uint32 threshold = 128;
      if (thresholds != NULL && grey != NULL) {
        const TBOX& box = blob->cblob()->bounding_box();
        // Transform the coordinates if required.
        TPOINT pt((box.left() + box.right()) / 2,
                  (box.top() + box.bottom()) / 2);
        pixGetPixel(thresholds, pt.x / scale_factor,
                    thr_height - 1 - pt.y / scale_factor, &threshold);
      }
      blob->cblob()->ComputeEdgeOffsets(threshold, grey);
    }
  }
}
コード例 #4
0
ファイル: kernel.c プロジェクト: 0ximDigital/appsScanner
/*!
 *  kernelCreateFromPix()
 *
 *      Input:  pix
 *              cy, cx (origin of kernel)
 *      Return: kernel, or null on error
 *
 *  Notes:
 *      (1) The origin must be positive and within the dimensions of the pix.
 */
L_KERNEL *
kernelCreateFromPix(PIX         *pix,
                    l_int32      cy,
                    l_int32      cx)
{
l_int32    i, j, w, h, d;
l_uint32   val;
L_KERNEL  *kel;

    PROCNAME("kernelCreateFromPix");

    if (!pix)
        return (L_KERNEL *)ERROR_PTR("pix not defined", procName, NULL);
    pixGetDimensions(pix, &w, &h, &d);
    if (d != 8)
        return (L_KERNEL *)ERROR_PTR("pix not 8 bpp", procName, NULL);
    if (cy < 0 || cx < 0 || cy >= h || cx >= w)
        return (L_KERNEL *)ERROR_PTR("(cy, cx) invalid", procName, NULL);

    kel = kernelCreate(h, w);
    kernelSetOrigin(kel, cy, cx);
    for (i = 0; i < h; i++) {
        for (j = 0; j < w; j++) {
            pixGetPixel(pix, j, i, &val);
            kernelSetElement(kel, i, j, (l_float32)val);
        }
    }

    return kel;
}
コード例 #5
0
ファイル: rasterop_reg.c プロジェクト: ErfanHasmin/scope-ocr
main(int    argc,
     char **argv)
{
l_int32      i, j, w, h, same, width, height, cx, cy;
l_uint32     val;
PIX         *pixs, *pixse, *pixd1, *pixd2;
SEL         *sel;
static char  mainName[] = "rasterop_reg";

    if (argc != 1)
	return ERROR_INT(" Syntax:  rasterop_reg", mainName, 1);
    pixs = pixRead("feyn.tif");

    for (width = 1; width <= 25; width += 3) {
	for (height = 1; height <= 25; height += 4) {

	    cx = width / 2;
	    cy = height / 2;

		/* Dilate using an actual sel */
	    sel = selCreateBrick(height, width, cy, cx, SEL_HIT);
	    pixd1 = pixDilate(NULL, pixs, sel);

		/* Dilate using a pix as a sel */
	    pixse = pixCreate(width, height, 1);
	    pixSetAll(pixse);
	    pixd2 = pixCopy(NULL, pixs);
	    w = pixGetWidth(pixs);
	    h = pixGetHeight(pixs);
	    for (i = 0; i < h; i++) {
		for (j = 0; j < w; j++) {
		    pixGetPixel(pixs, j, i, &val);
		    if (val)
			pixRasterop(pixd2, j - cx, i - cy, width, height,
				    PIX_SRC | PIX_DST, pixse, 0, 0);
		}
	    }

	    pixEqual(pixd1, pixd2, &same);
	    if (same == 1)
		fprintf(stderr, "Correct for (%d,%d)\n", width, height);
	    else {
		fprintf(stderr, "Error: results are different!\n");
		fprintf(stderr, "SE: width = %d, height = %d\n", width, height);
		pixWrite("/tmp/junkout1", pixd1, IFF_PNG);
		pixWrite("/tmp/junkout2", pixd2, IFF_PNG);
                return 1;
	    }

	    pixDestroy(&pixse);
	    pixDestroy(&pixd1);
	    pixDestroy(&pixd2);
	    selDestroy(&sel);
	}
    }
    pixDestroy(&pixs);
    return 0;
}
コード例 #6
0
ファイル: binarize.c プロジェクト: TigerZhag/ScanTranslation
/*!
 *  pixOtsuThreshOnBackgroundNorm()
 *
 *      Input:  pixs (8 bpp grayscale; not colormapped)
 *              pixim (<optional> 1 bpp 'image' mask; can be null)
 *              sx, sy (tile size in pixels)
 *              thresh (threshold for determining foreground)
 *              mincount (min threshold on counts in a tile)
 *              bgval (target bg val; typ. > 128)
 *              smoothx (half-width of block convolution kernel width)
 *              smoothy (half-width of block convolution kernel height)
 *              scorefract (fraction of the max Otsu score; typ. 0.1)
 *              &thresh (<optional return> threshold value that was
 *                       used on the normalized image)
 *      Return: pixd (1 bpp thresholded image), or null on error
 *
 *  Notes:
 *      (1) This does background normalization followed by Otsu
 *          thresholding.  Otsu binarization attempts to split the
 *          image into two roughly equal sets of pixels, and it does
 *          a very poor job when there are large amounts of dark
 *          background.  By doing a background normalization first,
 *          to get the background near 255, we remove this problem.
 *          Then we use a modified Otsu to estimate the best global
 *          threshold on the normalized image.
 *      (2) See pixBackgroundNorm() for meaning and typical values
 *          of input parameters.  For a start, you can try:
 *            sx, sy = 10, 15
 *            thresh = 100
 *            mincount = 50
 *            bgval = 255
 *            smoothx, smoothy = 2
 */
PIX *
pixOtsuThreshOnBackgroundNorm(PIX       *pixs,
                              PIX       *pixim,
                              l_int32    sx,
                              l_int32    sy,
                              l_int32    thresh,
                              l_int32    mincount,
                              l_int32    bgval,
                              l_int32    smoothx,
                              l_int32    smoothy,
                              l_float32  scorefract,
                              l_int32   *pthresh)
{
l_int32   w, h;
l_uint32  val;
PIX      *pixn, *pixt, *pixd;

    PROCNAME("pixOtsuThreshOnBackgroundNorm");

    if (pthresh) *pthresh = 0;
    if (!pixs || pixGetDepth(pixs) != 8)
        return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", procName, NULL);
    if (pixGetColormap(pixs))
        return (PIX *)ERROR_PTR("pixs is colormapped", procName, NULL);
    if (sx < 4 || sy < 4)
        return (PIX *)ERROR_PTR("sx and sy must be >= 4", procName, NULL);
    if (mincount > sx * sy) {
        L_WARNING("mincount too large for tile size\n", procName);
        mincount = (sx * sy) / 3;
    }

    pixn = pixBackgroundNorm(pixs, pixim, NULL, sx, sy, thresh,
                             mincount, bgval, smoothx, smoothy);
    if (!pixn)
        return (PIX *)ERROR_PTR("pixn not made", procName, NULL);

        /* Just use 1 tile for a global threshold, which is stored
         * as a single pixel in pixt. */
    pixGetDimensions(pixn, &w, &h, NULL);
    pixOtsuAdaptiveThreshold(pixn, w, h, 0, 0, scorefract, &pixt, &pixd);
    pixDestroy(&pixn);

    if (pixt && pthresh) {
        pixGetPixel(pixt, 0, 0, &val);
        *pthresh = val;
    }
    pixDestroy(&pixt);

    if (!pixd)
        return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
    else
        return pixd;
}
コード例 #7
0
ファイル: numaranktest.c プロジェクト: ErfanHasmin/scope-ocr
main(int    argc,
     char **argv)
{
char        *filein;
l_int32      i, j, w, h, d, sampling;
l_float32    rank, rval;
l_uint32     val;
NUMA        *na, *nah, *nar, *nav;
PIX         *pix;
static char  mainName[] = "numaranktest";

    if (argc != 3)
	exit(ERROR_INT(" Syntax:  numaranktest filein sampling", mainName, 1));

    filein = argv[1];
    sampling = atoi(argv[2]);

    if ((pix = pixRead(filein)) == NULL)
	exit(ERROR_INT("pix not made", mainName, 1));
    pixGetDimensions(pix, &w, &h, &d);
    if (d != 8)
	return ERROR_INT("d != 8 bpp", mainName, 1);

    na = numaCreate(0);
    for (i = 0; i < h; i += sampling) {
        for (j = 0; j < w; j += sampling) {
	    pixGetPixel(pix, j, i, &val);
	    numaAddNumber(na, val);
	}
    }
    nah = numaMakeHistogramClipped(na, BIN_SIZE, 255);

    nar = numaCreate(0);
    for (rval = 0.0; rval < 256.0; rval += 2.56) {
        numaHistogramGetRankFromVal(nah, rval, &rank);
	numaAddNumber(nar, rank);
    }
    gplotSimple1(nar, GPLOT_X11, "/tmp/junkroot1", "rank vs val");

    nav = numaCreate(0);
    for (rank = 0.0; rank <= 1.0; rank += 0.01) {
        numaHistogramGetValFromRank(nah, rank, &rval);
	numaAddNumber(nav, rval);
    }
    gplotSimple1(nav, GPLOT_X11, "/tmp/junkroot2", "val vs rank");

    pixDestroy(&pix);
    numaDestroy(&na);
    numaDestroy(&nah);
    numaDestroy(&nar);
    numaDestroy(&nav);
    return 0;
}
コード例 #8
0
ファイル: maze.c プロジェクト: ansgri/rsdt-students
/*!
 *  localSearchForBackground()
 *
 *      Input:  &x, &y (starting position for search; return found position)
 *              maxrad (max distance to search from starting location)
 *      Return: 0 if bg pixel found; 1 if not found
 */
static l_int32
localSearchForBackground(PIX  *pix,
                         l_int32  *px,
                         l_int32  *py,
                         l_int32  maxrad)
{
l_int32   x, y, w, h, r, i, j;
l_uint32  val;

    x = *px;
    y = *py;
    pixGetPixel(pix, x, y, &val);
    if (val == 0) return 0;

        /* For each value of r, restrict the search to the boundary
         * pixels in a square centered on (x,y), clipping to the
         * image boundaries if necessary.  */
    pixGetDimensions(pix, &w, &h, NULL);
    for (r = 1; r < maxrad; r++) {
        for (i = -r; i <= r; i++) {
            if (y + i < 0 || y + i >= h)
                continue;
            for (j = -r; j <= r; j++) {
                if (x + j < 0 || x + j >= w)
                    continue;
                if (L_ABS(i) != r && L_ABS(j) != r)  /* not on "r ring" */
                    continue;
                pixGetPixel(pix, x + j, y + i, &val);
                if (val == 0) {
                    *px = x + j;
                    *py = y + i;
                    return 0;
                }
            }
        }
    }
    return 1;
}
コード例 #9
0
int main(){

	int i,j,k, n,pixl, count=0;
	PIX *pixs;
	glob_t *flist;
    FILE *file=fopen("train_file.trn","w");
for(n=0;n<10;n++){
	flist=list_files(n);
    if(flist->gl_pathc==0) {
        fprintf(stderr,"No files in directory %d... Exiting...\n",n);
        exit(1);
    }



	for(i=0;i<flist->gl_pathc;i++){
		pixs=loadimage(flist->gl_pathv[i]);
		if(pixs==NULL){
            		fprintf(stderr,"Pix error... Exiting...\n");
			exit(1);
		}
 		for(j=0;j<pixGetHeight(pixs);j++){
        		for(k=0;k<pixGetWidth(pixs);k++){
            			pixGetPixel(pixs,k,j,&pixl);
            			fprintf(file,"%d",pixl); /* funny transformation of rows/columns. TODO: works with intels, but others??? */
        		}
				fprintf(file,"\n");
    		}
        count++;
		fprintf(file," %d\n",n);

	}
	globfree(flist);
	free(flist);
}
    fclose(file);
//    *file=fopen("train_file.trn","r");
    FILE *file1=fopen("train_file_header.trn","w");
    insert_header(file1,count);
    fclose(file1);
	return (0);
    
}
コード例 #10
0
ファイル: selgen.c プロジェクト: 0xkasun/Dummy_Tes
/*!
 *  adjacentOnPixelInRaster()
 *
 *      Input:  pixs (1 bpp)
 *              x, y (current pixel)
 *              xa, ya (adjacent ON pixel, found by simple CCW search)
 *      Return: 1 if a pixel is found; 0 otherwise or on error
 *
 *  Notes:
 *      (1) Search is in 4-connected directions first; then on diagonals.
 *          This allows traversal along a 4-connected boundary.
 */
l_int32
adjacentOnPixelInRaster(PIX      *pixs,
                        l_int32   x,
                        l_int32   y,
                        l_int32  *pxa,
                        l_int32  *pya)
{
l_int32   w, h, i, xa, ya, found;
l_int32   xdel[] = {-1, 0, 1, 0, -1, 1, 1, -1};
l_int32   ydel[] = {0, 1, 0, -1, 1, 1, -1, -1};
l_uint32  val;

    PROCNAME("adjacentOnPixelInRaster");

    if (!pixs)
        return ERROR_INT("pixs not defined", procName, 0);
    if (pixGetDepth(pixs) != 1)
        return ERROR_INT("pixs not 1 bpp", procName, 0);
    w = pixGetWidth(pixs);
    h = pixGetHeight(pixs);
    found = 0;
    for (i = 0; i < 8; i++) {
        xa = x + xdel[i];
        ya = y + ydel[i];
        if (xa < 0 || xa >= w || ya < 0 || ya >= h)
            continue;
        pixGetPixel(pixs, xa, ya, &val);
        if (val == 1) {
            found = 1;
            *pxa = xa;
            *pya = ya;
            break;
        }
    }
    return found;
}
コード例 #11
0
char* _process_frame_white_basic(struct lib_hardsubx_ctx *ctx, AVFrame *frame, int width, int height, int index)
{
	//printf("frame : %04d\n", index);
	PIX *im;
	PIX *edge_im;
	PIX *lum_im;
	PIX *feat_im;
	char *subtitle_text=NULL;
	im = pixCreate(width,height,32);
	lum_im = pixCreate(width,height,32);
	feat_im = pixCreate(width,height,32);
	int i,j;
	for(i=(3*height)/4;i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			int p=j*3+i*frame->linesize[0];
			int r=frame->data[0][p];
			int g=frame->data[0][p+1];
			int b=frame->data[0][p+2];
			pixSetRGBPixel(im,j,i,r,g,b);
			float L,A,B;
			rgb_to_lab((float)r,(float)g,(float)b,&L,&A,&B);
			if(L > ctx->lum_thresh)
				pixSetRGBPixel(lum_im,j,i,255,255,255);
			else
				pixSetRGBPixel(lum_im,j,i,0,0,0);
		}
	}

	//Handle the edge image
	edge_im = pixCreate(width,height,8);
	edge_im = pixConvertRGBToGray(im,0.0,0.0,0.0);
	edge_im = pixSobelEdgeFilter(edge_im, L_VERTICAL_EDGES);
	edge_im = pixDilateGray(edge_im, 21, 11);
	edge_im = pixThresholdToBinary(edge_im,50);

	for(i=3*(height/4);i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			unsigned int p1,p2,p3;
			pixGetPixel(edge_im,j,i,&p1);
			// pixGetPixel(pixd,j,i,&p2);
			pixGetPixel(lum_im,j,i,&p3);
			if(p1==0&&p3>0)
				pixSetRGBPixel(feat_im,j,i,255,255,255);
			else
				pixSetRGBPixel(feat_im,j,i,0,0,0);
		}
	}

	if(ctx->detect_italics)
	{
		ctx->ocr_mode = HARDSUBX_OCRMODE_WORD;
	}

	// TESSERACT OCR FOR THE FRAME HERE
	switch(ctx->ocr_mode)
	{
		case HARDSUBX_OCRMODE_WORD:
			if(ctx->conf_thresh > 0)
				subtitle_text = get_ocr_text_wordwise_threshold(ctx, lum_im, ctx->conf_thresh);
			else
				subtitle_text = get_ocr_text_wordwise(ctx, lum_im);
			break;
		case HARDSUBX_OCRMODE_LETTER:
			if(ctx->conf_thresh > 0)
				subtitle_text = get_ocr_text_letterwise_threshold(ctx, lum_im, ctx->conf_thresh);
			else
				subtitle_text = get_ocr_text_letterwise(ctx, lum_im);
			break;
		case HARDSUBX_OCRMODE_FRAME:
			if(ctx->conf_thresh > 0)
				subtitle_text = get_ocr_text_simple_threshold(ctx, lum_im, ctx->conf_thresh);
			else
				subtitle_text = get_ocr_text_simple(ctx, lum_im);
			break;
		default:
			fatal(EXIT_MALFORMED_PARAMETER,"Invalid OCR Mode");
	}

	pixDestroy(&lum_im);
	pixDestroy(&im);
	pixDestroy(&edge_im);
	pixDestroy(&feat_im);

	return subtitle_text;
}
コード例 #12
0
char *_process_frame_color_basic(struct lib_hardsubx_ctx *ctx, AVFrame *frame, int width, int height, int index)
{
	char *subtitle_text=NULL;
	PIX *im;
	im = pixCreate(width,height,32);
	PIX *hue_im = pixCreate(width,height,32);

	int i,j;
	for(i=0;i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			int p=j*3+i*frame->linesize[0];
			int r=frame->data[0][p];
			int g=frame->data[0][p+1];
			int b=frame->data[0][p+2];
			pixSetRGBPixel(im,j,i,r,g,b);
			float H,S,V;
			rgb_to_hsv((float)r,(float)g,(float)b,&H,&S,&V);
			if(abs(H-ctx->hue)<20)
			{
				pixSetRGBPixel(hue_im,j,i,r,g,b);
			}
		}
	}

	PIX *edge_im = pixCreate(width,height,8),*edge_im_2 = pixCreate(width,height,8);
	edge_im = pixConvertRGBToGray(im,0.0,0.0,0.0);
	edge_im = pixSobelEdgeFilter(edge_im, L_VERTICAL_EDGES);
	edge_im = pixDilateGray(edge_im, 21, 1);
	edge_im = pixThresholdToBinary(edge_im,50);
	PIX *pixd = pixCreate(width,height,1);
	pixSauvolaBinarize(pixConvertRGBToGray(hue_im,0.0,0.0,0.0), 15, 0.3, 1, NULL, NULL, NULL, &pixd);

	edge_im_2 = pixConvertRGBToGray(hue_im,0.0,0.0,0.0);
	edge_im_2 = pixDilateGray(edge_im_2, 5, 5);

	PIX *feat_im = pixCreate(width,height,32);
	for(i=3*(height/4);i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			unsigned int p1,p2,p3,p4;
			pixGetPixel(edge_im,j,i,&p1);
			pixGetPixel(pixd,j,i,&p2);
			// pixGetPixel(hue_im,j,i,&p3);
			pixGetPixel(edge_im_2,j,i,&p4);
			if(p1==0&&p2==0&&p4>0)//if(p4>0&&p1==0)//if(p2==0&&p1==0&&p3>0)
			{
				pixSetRGBPixel(feat_im,j,i,255,255,255);
			}
		}
	}


	if(ctx->detect_italics)
	{
		ctx->ocr_mode = HARDSUBX_OCRMODE_WORD;
	}

	// TESSERACT OCR FOR THE FRAME HERE
	switch(ctx->ocr_mode)
	{
		case HARDSUBX_OCRMODE_WORD:
			if(ctx->conf_thresh > 0)
				subtitle_text = get_ocr_text_wordwise_threshold(ctx, feat_im, ctx->conf_thresh);
			else
				subtitle_text = get_ocr_text_wordwise(ctx, feat_im);
			break;
		case HARDSUBX_OCRMODE_LETTER:
			if(ctx->conf_thresh > 0)
				subtitle_text = get_ocr_text_letterwise_threshold(ctx, feat_im, ctx->conf_thresh);
			else
				subtitle_text = get_ocr_text_letterwise(ctx, feat_im);
			break;
		case HARDSUBX_OCRMODE_FRAME:
			if(ctx->conf_thresh > 0)
				subtitle_text = get_ocr_text_simple_threshold(ctx, feat_im, ctx->conf_thresh);
			else
				subtitle_text = get_ocr_text_simple(ctx, feat_im);
			break;
		default:
			fatal(EXIT_MALFORMED_PARAMETER,"Invalid OCR Mode");
	}

	pixDestroy(&feat_im);
	pixDestroy(&im);
	pixDestroy(&edge_im);
	pixDestroy(&hue_im);

	return subtitle_text;
}
コード例 #13
0
ファイル: binarize.c プロジェクト: TigerZhag/ScanTranslation
/*!
 *  pixMaskedThreshOnBackgroundNorm()
 *
 *      Input:  pixs (8 bpp grayscale; not colormapped)
 *              pixim (<optional> 1 bpp 'image' mask; can be null)
 *              sx, sy (tile size in pixels)
 *              thresh (threshold for determining foreground)
 *              mincount (min threshold on counts in a tile)
 *              smoothx (half-width of block convolution kernel width)
 *              smoothy (half-width of block convolution kernel height)
 *              scorefract (fraction of the max Otsu score; typ. ~ 0.1)
 *              &thresh (<optional return> threshold value that was
 *                       used on the normalized image)
 *      Return: pixd (1 bpp thresholded image), or null on error
 *
 *  Notes:
 *      (1) This begins with a standard background normalization.
 *          Additionally, there is a flexible background norm, that
 *          will adapt to a rapidly varying background, and this
 *          puts white pixels in the background near regions with
 *          significant foreground.  The white pixels are turned into
 *          a 1 bpp selection mask by binarization followed by dilation.
 *          Otsu thresholding is performed on the input image to get an
 *          estimate of the threshold in the non-mask regions.
 *          The background normalized image is thresholded with two
 *          different values, and the result is combined using
 *          the selection mask.
 *      (2) Note that the numbers 255 (for bgval target) and 190 (for
 *          thresholding on pixn) are tied together, and explicitly
 *          defined in this function.
 *      (3) See pixBackgroundNorm() for meaning and typical values
 *          of input parameters.  For a start, you can try:
 *            sx, sy = 10, 15
 *            thresh = 100
 *            mincount = 50
 *            smoothx, smoothy = 2
 */
PIX *
pixMaskedThreshOnBackgroundNorm(PIX       *pixs,
                                PIX       *pixim,
                                l_int32    sx,
                                l_int32    sy,
                                l_int32    thresh,
                                l_int32    mincount,
                                l_int32    smoothx,
                                l_int32    smoothy,
                                l_float32  scorefract,
                                l_int32   *pthresh)
{
l_int32   w, h;
l_uint32  val;
PIX      *pixn, *pixm, *pixd, *pixt1, *pixt2, *pixt3, *pixt4;

    PROCNAME("pixMaskedThreshOnBackgroundNorm");

    if (pthresh) *pthresh = 0;
    if (!pixs || pixGetDepth(pixs) != 8)
        return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", procName, NULL);
    if (pixGetColormap(pixs))
        return (PIX *)ERROR_PTR("pixs is colormapped", procName, NULL);
    if (sx < 4 || sy < 4)
        return (PIX *)ERROR_PTR("sx and sy must be >= 4", procName, NULL);
    if (mincount > sx * sy) {
        L_WARNING("mincount too large for tile size\n", procName);
        mincount = (sx * sy) / 3;
    }

        /* Standard background normalization */
    pixn = pixBackgroundNorm(pixs, pixim, NULL, sx, sy, thresh,
                             mincount, 255, smoothx, smoothy);
    if (!pixn)
        return (PIX *)ERROR_PTR("pixn not made", procName, NULL);

        /* Special background normalization for adaptation to quickly
         * varying background.  Threshold on the very light parts,
         * which tend to be near significant edges, and dilate to
         * form a mask over regions that are typically text.  The
         * dilation size is chosen to cover the text completely,
         * except for very thick fonts. */
    pixt1 = pixBackgroundNormFlex(pixs, 7, 7, 1, 1, 20);
    pixt2 = pixThresholdToBinary(pixt1, 240);
    pixInvert(pixt2, pixt2);
    pixm = pixMorphSequence(pixt2, "d21.21", 0);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);

        /* Use Otsu to get a global threshold estimate for the image,
         * which is stored as a single pixel in pixt3. */
    pixGetDimensions(pixs, &w, &h, NULL);
    pixOtsuAdaptiveThreshold(pixs, w, h, 0, 0, scorefract, &pixt3, NULL);
    if (pixt3 && pthresh) {
        pixGetPixel(pixt3, 0, 0, &val);
        *pthresh = val;
    }
    pixDestroy(&pixt3);

        /* Threshold the background normalized images differentially,
         * using a high value correlated with the background normalization
         * for the part of the image under the mask (i.e., near the
         * darker, thicker foreground), and a value that depends on the Otsu
         * threshold for the rest of the image.  This gives a solid
         * (high) thresholding for the foreground parts of the image,
         * while allowing the background and light foreground to be
         * reasonably well cleaned using a threshold adapted to the
         * input image. */
    pixd = pixThresholdToBinary(pixn, val + 30);  /* for bg and light fg */
    pixt4 = pixThresholdToBinary(pixn, 190);  /* for heavier fg */
    pixCombineMasked(pixd, pixt4, pixm);
    pixDestroy(&pixt4);
    pixDestroy(&pixm);
    pixDestroy(&pixn);

    if (!pixd)
        return (PIX *)ERROR_PTR("pixd not made", procName, NULL);
    else
        return pixd;
}
コード例 #14
0
ファイル: rasterop_reg.c プロジェクト: chewi/leptonica
int main(int    argc,
         char **argv)
{
l_int32       i, j, w, h, same, width, height, cx, cy;
l_uint32      val;
BOX          *box;
PIX          *pix0, *pixs, *pixse, *pixd1, *pixd2;
SEL          *sel;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    pix0 = pixRead("feyn-fract.tif");
    box = boxCreate(293, 37, pixGetWidth(pix0) - 691, pixGetHeight(pix0) -145);
    pixs = pixClipRectangle(pix0, box, NULL);
    boxDestroy(&box);
    if (rp->display) pixDisplay(pixs, 100, 100);

        /* Test 63 different sizes */
    for (width = 1; width <= 25; width += 3) {   /* 9 values */
	for (height = 1; height <= 25; height += 4) {  /* 7 values */

	    cx = width / 2;
	    cy = height / 2;

		/* Dilate using an actual sel */
	    sel = selCreateBrick(height, width, cy, cx, SEL_HIT);
	    pixd1 = pixDilate(NULL, pixs, sel);

		/* Dilate using a pix as a sel */
	    pixse = pixCreate(width, height, 1);
	    pixSetAll(pixse);
	    pixd2 = pixCopy(NULL, pixs);
	    w = pixGetWidth(pixs);
	    h = pixGetHeight(pixs);
	    for (i = 0; i < h; i++) {
		for (j = 0; j < w; j++) {
		    pixGetPixel(pixs, j, i, &val);
		    if (val)
			pixRasterop(pixd2, j - cx, i - cy, width, height,
				    PIX_SRC | PIX_DST, pixse, 0, 0);
		}
	    }

	    pixEqual(pixd1, pixd2, &same);
            regTestCompareValues(rp, 1, same, 0.0);  /* 0 - 62 */
	    if (same == 0) {
		fprintf(stderr,
                        "Results differ for SE (width,height) = (%d,%d)\n",
                        width, height);
            }

	    pixDestroy(&pixse);
	    pixDestroy(&pixd1);
	    pixDestroy(&pixd2);
	    selDestroy(&sel);
	}
    }
    pixDestroy(&pix0);
    pixDestroy(&pixs);
    return regTestCleanup(rp);
}
コード例 #15
0
ファイル: binarize.c プロジェクト: TigerZhag/ScanTranslation
/*!
 *  pixOtsuAdaptiveThreshold()
 *
 *      Input:  pixs (8 bpp)
 *              sx, sy (desired tile dimensions; actual size may vary)
 *              smoothx, smoothy (half-width of convolution kernel applied to
 *                                threshold array: use 0 for no smoothing)
 *              scorefract (fraction of the max Otsu score; typ. 0.1;
 *                          use 0.0 for standard Otsu)
 *              &pixth (<optional return> array of threshold values
 *                      found for each tile)
 *              &pixd (<optional return> thresholded input pixs, based on
 *                     the threshold array)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) The Otsu method finds a single global threshold for an image.
 *          This function allows a locally adapted threshold to be
 *          found for each tile into which the image is broken up.
 *      (2) The array of threshold values, one for each tile, constitutes
 *          a highly downscaled image.  This array is optionally
 *          smoothed using a convolution.  The full width and height of the
 *          convolution kernel are (2 * @smoothx + 1) and (2 * @smoothy + 1).
 *      (3) The minimum tile dimension allowed is 16.  If such small
 *          tiles are used, it is recommended to use smoothing, because
 *          without smoothing, each small tile determines the splitting
 *          threshold independently.  A tile that is entirely in the
 *          image bg will then hallucinate fg, resulting in a very noisy
 *          binarization.  The smoothing should be large enough that no
 *          tile is only influenced by one type (fg or bg) of pixels,
 *          because it will force a split of its pixels.
 *      (4) To get a single global threshold for the entire image, use
 *          input values of @sx and @sy that are larger than the image.
 *          For this situation, the smoothing parameters are ignored.
 *      (5) The threshold values partition the image pixels into two classes:
 *          one whose values are less than the threshold and another
 *          whose values are greater than or equal to the threshold.
 *          This is the same use of 'threshold' as in pixThresholdToBinary().
 *      (6) The scorefract is the fraction of the maximum Otsu score, which
 *          is used to determine the range over which the histogram minimum
 *          is searched.  See numaSplitDistribution() for details on the
 *          underlying method of choosing a threshold.
 *      (7) This uses enables a modified version of the Otsu criterion for
 *          splitting the distribution of pixels in each tile into a
 *          fg and bg part.  The modification consists of searching for
 *          a minimum in the histogram over a range of pixel values where
 *          the Otsu score is within a defined fraction, @scorefract,
 *          of the max score.  To get the original Otsu algorithm, set
 *          @scorefract == 0.
 */
l_int32
pixOtsuAdaptiveThreshold(PIX       *pixs,
                         l_int32    sx,
                         l_int32    sy,
                         l_int32    smoothx,
                         l_int32    smoothy,
                         l_float32  scorefract,
                         PIX      **ppixth,
                         PIX      **ppixd)
{
l_int32     w, h, nx, ny, i, j, thresh;
l_uint32    val;
PIX        *pixt, *pixb, *pixthresh, *pixth, *pixd;
PIXTILING  *pt;

    PROCNAME("pixOtsuAdaptiveThreshold");

    if (!ppixth && !ppixd){
        return ERROR_INT("neither &pixth nor &pixd defined", procName, 1);
	    LOGE("neither &pixth nor &pixd defined");
	}
    if (ppixth) *ppixth = NULL;
    if (ppixd) *ppixd = NULL;
    if (!pixs || pixGetDepth(pixs) != 8){
        return ERROR_INT("pixs not defined or not 8 bpp", procName, 1);
		LOGE("pixs not defined or not 8 bpp");
	}
    if (sx < 16 || sy < 16){
        return ERROR_INT("sx and sy must be >= 16", procName, 1);
		LOGE("sx and sy must be >= 16");
	}
        /* Compute the threshold array for the tiles */
    pixGetDimensions(pixs, &w, &h, NULL);
    nx = L_MAX(1, w / sx);
    ny = L_MAX(1, h / sy);

    smoothx = L_MIN(smoothx, (nx - 1) / 2);
    smoothy = L_MIN(smoothy, (ny - 1) / 2);

    pt = pixTilingCreate(pixs, nx, ny, 0, 0, 0, 0);
    pixthresh = pixCreate(nx, ny, 8);
    for (i = 0; i < ny; i++) {
        for (j = 0; j < nx; j++) {
            pixt = pixTilingGetTile(pt, i, j);
            pixSplitDistributionFgBg(pixt, scorefract, 1, &thresh,
                                     NULL, NULL, 0);
            pixSetPixel(pixthresh, j, i, thresh);  /* see note (4) */
            pixDestroy(&pixt);
        }
    }

        /* Optionally smooth the threshold array */
    if (smoothx > 0 || smoothy > 0)
        pixth = pixBlockconv(pixthresh, smoothx, smoothy);
    else
        pixth = pixClone(pixthresh);
    pixDestroy(&pixthresh);

        /* Optionally apply the threshold array to binarize pixs */
    if (ppixd) {
        pixd = pixCreate(w, h, 1);
        for (i = 0; i < ny; i++) {
            for (j = 0; j < nx; j++) {
                pixt = pixTilingGetTile(pt, i, j);
                pixGetPixel(pixth, j, i, &val);
                pixb = pixThresholdToBinary(pixt, val);
                pixTilingPaintTile(pixd, i, j, pixb, pt);
                pixDestroy(&pixt);
                pixDestroy(&pixb);
            }
        }
        *ppixd = pixd;
    }

    if (ppixth)
        *ppixth = pixth;
    else
        pixDestroy(&pixth);

    pixTilingDestroy(&pt);

    return 0;
}
コード例 #16
0
int main(int    argc,
         char **argv)
{
l_int32      w, h, ystart, yend, y, ymax, ymid, i, window, sum1, sum2, rankx;
l_uint32     uval;
l_float32    ave, rankval, maxvar, variance, norm, conf, angle, radangle;
NUMA        *na1;
PIX         *pix1, *pix2, *pix3, *pix4, *pix5, *pix6, *pix7;
PIXA        *pixa;
static char  mainName[] = "findbinding";

    if (argc != 1)
        return ERROR_INT(" Syntax:  findbinding", mainName, 1);

    lept_mkdir("lept/binding");
    pixa = pixaCreate(0);

    pix1 = pixRead("binding-example.45.jpg");
    pix2 = pixConvertTo8(pix1, 0);

        /* Find the skew angle */
    pix3 = pixConvertTo1(pix2, 150);
    pixFindSkewSweepAndSearch(pix3, &angle, &conf, 2, 2, 7.0, 1.0, 0.01);
    fprintf(stderr, "angle = %f, conf = %f\n", angle, conf);

        /* Deskew, bringing in black pixels at the edges */
    if (L_ABS(angle) < 0.1 || conf < 1.5) {
        pix4 = pixClone(pix2);
    } else {
        radangle = 3.1416 * angle / 180.0;
        pix4 = pixRotate(pix2, radangle, L_ROTATE_AREA_MAP,
                         L_BRING_IN_BLACK, 0, 0);
    }

        /* Rotate 90 degrees to make binding horizontal */
    pix5 = pixRotateOrth(pix4, 1);

        /* Sort pixels in each row by their gray value.
         * Dark pixels on the left, light ones on the right. */
    pix6 = pixRankRowTransform(pix5);
    pixDisplay(pix5, 0, 0);
    pixDisplay(pix6, 550, 0);
    pixaAddPix(pixa, pix4, L_COPY);
    pixaAddPix(pixa, pix5, L_COPY);
    pixaAddPix(pixa, pix6, L_COPY);

        /* Make an a priori estimate of the y-interval within which the
         * binding will be found.  The search will be done in this interval. */
    pixGetDimensions(pix6, &w, &h, NULL);
    ystart = 0.25 * h;
    yend = 0.75 * h;

        /* Choose a very light rank value; close to white, which
         * corresponds to a column in pix6 near the right side. */
    rankval = 0.98;
    rankx = (l_int32)(w * rankval);

        /* Investigate variance in a small window (vertical, size = 5)
         * of the pixels in that column.  These are the %rankval
         * pixels in each raster of pix6.  Find the y-location of
         * maximum variance. */
    window = 5;
    norm = 1.0 / window;
    maxvar = 0.0;
    na1 = numaCreate(0);
    numaSetParameters(na1, ystart, 1);
    for (y = ystart; y <= yend; y++) {
        sum1 = sum2 = 0;
        for (i = 0; i < window; i++) {
            pixGetPixel(pix6, rankx, y + i, &uval);
            sum1 += uval;
            sum2 += uval * uval;
        }
        ave = norm * sum1;
        variance = norm * sum2 - ave * ave;
        numaAddNumber(na1, variance);
        ymid = y + window / 2;
        if (variance > maxvar) {
            maxvar = variance;
            ymax = ymid;
        }
    }

        /* Plot the windowed variance as a function of the y-value
         * of the window location */
    fprintf(stderr, "maxvar = %f, ymax = %d\n", maxvar, ymax);
    gplotSimple1(na1, GPLOT_PNG, "/tmp/lept/binding/root", NULL);
    pix7 = pixRead("/tmp/lept/binding/root.png");
    pixDisplay(pix7, 0, 800);
    pixaAddPix(pixa, pix7, L_COPY);

        /* Superimpose the variance plot over the image.
         * The variance peak is at the binding. */
    pixRenderPlotFromNumaGen(&pix5, na1, L_VERTICAL_LINE, 3, w - 120, 100, 1,
                                                           0x0000ff00);
    pixDisplay(pix5, 1050, 0);
    pixaAddPix(pixa, pix5, L_COPY);

        /* Bundle the results up in a pdf */
    fprintf(stderr, "Writing pdf output file: /tmp/lept/binding/binding.pdf\n");
    pixaConvertToPdf(pixa, 45, 1.0, 0, 0, "Binding locator",
                     "/tmp/lept/binding/binding.pdf");

    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);
    pixDestroy(&pix5);
    pixDestroy(&pix6);
    pixDestroy(&pix7);
    pixaDestroy(&pixa);
    numaDestroy(&na1);
    return 0;
}
コード例 #17
0
ファイル: seedfilltest.c プロジェクト: mehulsbhatt/MyOCRTEST
int main(int argc,
         char **argv) {
    char *filein, *fileout;
    l_int32 i;
    l_uint32 val;
    l_float32 size;
    PIX *pixs, *pixd, *pixm, *pixmi, *pixt1, *pixt2, *pixt3;
    static char mainName[] = "seedfilltest";

    if (argc != 3)
        return ERROR_INT(" Syntax:  seedfilltest filein fileout", mainName, 1);

    filein = argv[1];
    fileout = argv[2];
    pixd = NULL;

    if ((pixm = pixRead(filein)) == NULL)
        return ERROR_INT("pixm not made", mainName, 1);
    pixmi = pixInvert(NULL, pixm);

    size = pixGetWidth(pixm) * pixGetHeight(pixm);
    pixs = pixCreateTemplate(pixm);
    for (i = 0; i < 100; i++) {
        pixGetPixel(pixm, XS + 5 * i, YS + 5 * i, &val);
        if (val == 0) break;
    }
    if (i == 100)
        return ERROR_INT("no seed pixel found", mainName, 1);
    pixSetPixel(pixs, XS + 5 * i, YS + 5 * i, 1);

#if 0
    /* hole filling; use "hole-filler.png" */
pixt1 = pixHDome(pixmi, 100, 4);
pixt2 = pixThresholdToBinary(pixt1, 10);
/*    pixInvert(pixt1, pixt1); */
pixDisplay(pixt1, 100, 500);
pixDisplay(pixt2, 600, 500);
pixt3 = pixHolesByFilling(pixt2, 4);
pixDilateBrick(pixt3, pixt3, 7, 7);
pixd = pixConvertTo8(pixt3, FALSE);
pixDisplay(pixd, 0, 100);
pixSeedfillGray(pixd, pixmi, CONNECTIVITY);
pixInvert(pixd, pixd);
pixDisplay(pixmi, 500, 100);
pixDisplay(pixd, 1000, 100);
pixWrite("/tmp/junkpixm.png", pixmi, IFF_PNG);
pixWrite("/tmp/junkpixd.png", pixd, IFF_PNG);
#endif

#if 0
    /* hole filling; use "hole-filler.png" */
pixt1 = pixThresholdToBinary(pixm, 110);
pixInvert(pixt1, pixt1);
pixDisplay(pixt1, 100, 500);
pixt2 = pixHolesByFilling(pixt1, 4);
pixd = pixConvertTo8(pixt2, FALSE);
pixDisplay(pixd, 0, 100);
pixSeedfillGray(pixd, pixmi, CONNECTIVITY);
pixInvert(pixd, pixd);
pixDisplay(pixmi, 500, 100);
pixDisplay(pixd, 1000, 100);
pixWrite("/tmp/junkpixm.png", pixmi, IFF_PNG);
pixWrite("/tmp/junkpixd.png", pixd, IFF_PNG);
#endif

#if 0
    /* hole filling; use "hole-filler.png" */
pixd = pixInvert(NULL, pixm);
pixAddConstantGray(pixd, -50);
pixDisplay(pixd, 0, 100);
/*    pixt1 = pixThresholdToBinary(pixd, 20);
pixDisplayWithTitle(pixt1, 600, 600, "pixt1", DFLAG); */
pixSeedfillGray(pixd, pixmi, CONNECTIVITY);
/*    pixInvert(pixd, pixd); */
pixDisplay(pixmi, 500, 100);
pixDisplay(pixd, 1000, 100);
pixWrite("/tmp/junkpixm.png", pixmi, IFF_PNG);
pixWrite("/tmp/junkpixd.png", pixd, IFF_PNG);
#endif

#if 0
    /* test in-place seedfill for speed */
pixd = pixClone(pixs);
startTimer();
pixSeedfillBinary(pixs, pixs, pixmi, CONNECTIVITY);
fprintf(stderr, "Filling rate: %7.4f Mpix/sec\n",
    (size/1000000.) / stopTimer());

pixWrite(fileout, pixd, IFF_PNG);
pixOr(pixd, pixd, pixm);
pixWrite("/tmp/junkout1.png", pixd, IFF_PNG);
#endif

#if 0
    /* test seedfill to dest for speed */
pixd = pixCreateTemplate(pixm);
startTimer();
for (i = 0; i < NTIMES; i++) {
    pixSeedfillBinary(pixd, pixs, pixmi, CONNECTIVITY);
}
fprintf(stderr, "Filling rate: %7.4f Mpix/sec\n",
    (size/1000000.) * NTIMES / stopTimer());

pixWrite(fileout, pixd, IFF_PNG);
pixOr(pixd, pixd, pixm);
pixWrite("/tmp/junkout1.png", pixd, IFF_PNG);
#endif

    /* use same connectivity to compare with the result of the
     * slow parallel operation */
#if 1
    pixDestroy(&pixd);
    pixd = pixSeedfillMorph(pixs, pixmi, 100, CONNECTIVITY);
    pixOr(pixd, pixd, pixm);
    pixWrite("/tmp/junkout2.png", pixd, IFF_PNG);
#endif

    pixDestroy(&pixs);
    pixDestroy(&pixm);
    pixDestroy(&pixmi);
    pixDestroy(&pixd);
    return 0;
}
コード例 #18
0
ファイル: lowaccess_reg.c プロジェクト: chewi/leptonica
int main(int    argc,
         char **argv)
{
l_int32       i, j, k, w, h, w2, w4, w8, w16, w32, wpl;
l_int32       count1, count2, count3;
l_uint32      val32, val1, val2;
l_uint32     *data1, *line1, *data2, *line2;
void        **lines1, **linet1, **linet2;
PIX          *pixs, *pix1, *pix2;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    pixs = pixRead("feyn-fract.tif");
    pixGetDimensions(pixs, &w, &h, NULL);
    data1 = pixGetData(pixs);
    wpl = pixGetWpl(pixs);
    lines1 = pixGetLinePtrs(pixs, NULL);

        /* Get timing for the 3 different methods */
    startTimer();
    for (k = 0; k < 10; k++) {
        count1 = 0;
        for (i = 0; i < h; i++) {
            for (j = 0; j < w; j++) {
                if (GET_DATA_BIT(lines1[i], j))
                    count1++;
            }
        }
    }
    fprintf(stderr, "Time with line ptrs     = %5.3f sec, count1 = %d\n",
            stopTimer(), count1);

    startTimer();
    for (k = 0; k < 10; k++) {
        count2 = 0;
        for (i = 0; i < h; i++) {
            line1 = data1 + i * wpl;
            for (j = 0; j < w; j++) {
               if (l_getDataBit(line1, j))
                    count2++;
            }
        }
    }
    fprintf(stderr, "Time with l_get*        = %5.3f sec, count2 = %d\n",
            stopTimer(), count2);

    startTimer();
    for (k = 0; k < 10; k++) {
        count3 = 0;
        for (i = 0; i < h; i++) {
            for (j = 0; j < w; j++) {
                pixGetPixel(pixs, j, i, &val32);
                count3 += val32;
            }
        }
    }
    fprintf(stderr, "Time with pixGetPixel() = %5.3f sec, count3 = %d\n",
            stopTimer(), count3);

    pix1 = pixCreateTemplate(pixs);
    linet1 = pixGetLinePtrs(pix1, NULL);
    pix2 = pixCreateTemplate(pixs);
    data2 = pixGetData(pix2);
    linet2 = pixGetLinePtrs(pix2, NULL);

        /* ------------------------------------------------- */
        /*           Test different methods for 1 bpp        */
        /* ------------------------------------------------- */
    count1 = 0;
    for (i = 0; i < h; i++) {
        for (j = 0; j < w; j++) {
            val1 = GET_DATA_BIT(lines1[i], j);
            count1 += val1;
            if (val1) SET_DATA_BIT(linet1[i], j);
        }
    }
    count2 = 0;
    for (i = 0; i < h; i++) {
        line1 = data1 + i * wpl;
        line2 = data2 + i * wpl;
        for (j = 0; j < w; j++) {
            val2 = l_getDataBit(line1, j);
            count2 += val2;
            if (val2) l_setDataBit(line2, j);
        }
    }
    CompareResults(pixs, pix1, pix2, count1, count2, "1 bpp", rp);

        /* ------------------------------------------------- */
        /*           Test different methods for 2 bpp        */
        /* ------------------------------------------------- */
    count1 = 0;
    w2 = w / 2;
    for (i = 0; i < h; i++) {
        for (j = 0; j < w2; j++) {
            val1 = GET_DATA_DIBIT(lines1[i], j);
            count1 += val1;
            val1 += 0xbbbbbbbc;
            SET_DATA_DIBIT(linet1[i], j, val1);
        }
    }
    count2 = 0;
    for (i = 0; i < h; i++) {
        line1 = data1 + i * wpl;
        line2 = data2 + i * wpl;
        for (j = 0; j < w2; j++) {
            val2 = l_getDataDibit(line1, j);
            count2 += val2;
            val2 += 0xbbbbbbbc;
            l_setDataDibit(line2, j, val2);
        }
    }
    CompareResults(pixs, pix1, pix2, count1, count2, "2 bpp", rp);

        /* ------------------------------------------------- */
        /*           Test different methods for 4 bpp        */
        /* ------------------------------------------------- */
    count1 = 0;
    w4 = w / 4;
    for (i = 0; i < h; i++) {
        for (j = 0; j < w4; j++) {
            val1 = GET_DATA_QBIT(lines1[i], j);
            count1 += val1;
            val1 += 0xbbbbbbb0;
            SET_DATA_QBIT(linet1[i], j, val1);
        }
    }
    count2 = 0;
    for (i = 0; i < h; i++) {
        line1 = data1 + i * wpl;
        line2 = data2 + i * wpl;
        for (j = 0; j < w4; j++) {
            val2 = l_getDataQbit(line1, j);
            count2 += val2;
            val2 += 0xbbbbbbb0;
            l_setDataQbit(line2, j, val2);
        }
    }
    CompareResults(pixs, pix1, pix2, count1, count2, "4 bpp", rp);

        /* ------------------------------------------------- */
        /*           Test different methods for 8 bpp        */
        /* ------------------------------------------------- */
    count1 = 0;
    w8 = w / 8;
    for (i = 0; i < h; i++) {
        for (j = 0; j < w8; j++) {
            val1 = GET_DATA_BYTE(lines1[i], j);
            count1 += val1;
            val1 += 0xbbbbbb00;
            SET_DATA_BYTE(linet1[i], j, val1);
        }
    }
    count2 = 0;
    for (i = 0; i < h; i++) {
        line1 = data1 + i * wpl;
        line2 = data2 + i * wpl;
        for (j = 0; j < w8; j++) {
            val2 = l_getDataByte(line1, j);
            count2 += val2;
            val2 += 0xbbbbbb00;
            l_setDataByte(line2, j, val2);
        }
    }
    CompareResults(pixs, pix1, pix2, count1, count2, "8 bpp", rp);

        /* ------------------------------------------------- */
        /*          Test different methods for 16 bpp        */
        /* ------------------------------------------------- */
    count1 = 0;
    w16 = w / 16;
    for (i = 0; i < h; i++) {
        for (j = 0; j < w16; j++) {
            val1 = GET_DATA_TWO_BYTES(lines1[i], j);
            count1 += val1;
            val1 += 0xbbbb0000;
            SET_DATA_TWO_BYTES(linet1[i], j, val1);
        }
    }
    count2 = 0;
    for (i = 0; i < h; i++) {
        line1 = data1 + i * wpl;
        line2 = data2 + i * wpl;
        for (j = 0; j < w16; j++) {
            val2 = l_getDataTwoBytes(line1, j);
            count2 += val2;
            val2 += 0xbbbb0000;
            l_setDataTwoBytes(line2, j, val2);
        }
    }
    CompareResults(pixs, pix1, pix2, count1, count2, "16 bpp", rp);

        /* ------------------------------------------------- */
        /*          Test different methods for 32 bpp        */
        /* ------------------------------------------------- */
    count1 = 0;
    w32 = w / 32;
    for (i = 0; i < h; i++) {
        for (j = 0; j < w32; j++) {
            val1 = GET_DATA_FOUR_BYTES(lines1[i], j);
            count1 += val1 & 0xfff;
            SET_DATA_FOUR_BYTES(linet1[i], j, val1);
        }
    }
    count2 = 0;
    for (i = 0; i < h; i++) {
        line1 = data1 + i * wpl;
        line2 = data2 + i * wpl;
        for (j = 0; j < w32; j++) {
            val2 = l_getDataFourBytes(line1, j);
            count2 += val2 & 0xfff;
            l_setDataFourBytes(line2, j, val2);
        }
    }
    CompareResults(pixs, pix1, pix2, count1, count2, "32 bpp", rp);
    pixDestroy(&pixs);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    lept_free(lines1);
    lept_free(linet1);
    lept_free(linet2);
    return regTestCleanup(rp);
}
コード例 #19
0
void _display_frame(struct lib_hardsubx_ctx *ctx, AVFrame *frame, int width, int height, int timestamp)
{
	// Debug: Display the frame after processing
	PIX *im;
	im = pixCreate(width,height,32);
	PIX *hue_im = pixCreate(width,height,32);

	int i,j;
	for(i=0;i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			int p=j*3+i*frame->linesize[0];
			int r=frame->data[0][p];
			int g=frame->data[0][p+1];
			int b=frame->data[0][p+2];
			pixSetRGBPixel(im,j,i,r,g,b);
			float H,S,V;
			rgb_to_hsv((float)r,(float)g,(float)b,&H,&S,&V);
			if(abs(H-ctx->hue)<20)
			{
				pixSetRGBPixel(hue_im,j,i,r,g,b);
			}
		}
	}

	PIX *edge_im = pixCreate(width,height,8),*edge_im_2 = pixCreate(width,height,8);
	edge_im = pixConvertRGBToGray(im,0.0,0.0,0.0);
	edge_im = pixSobelEdgeFilter(edge_im, L_VERTICAL_EDGES);
	edge_im = pixDilateGray(edge_im, 21, 1);
	edge_im = pixThresholdToBinary(edge_im,50);
	PIX *pixd = pixCreate(width,height,1);
	pixSauvolaBinarize(pixConvertRGBToGray(hue_im,0.0,0.0,0.0), 15, 0.3, 1, NULL, NULL, NULL, &pixd);

	edge_im_2 = pixConvertRGBToGray(hue_im,0.0,0.0,0.0);
	edge_im_2 = pixDilateGray(edge_im_2, 5, 5);

	PIX *feat_im = pixCreate(width,height,32);
	for(i=3*(height/4);i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			unsigned int p1,p2,p3,p4;
			pixGetPixel(edge_im,j,i,&p1);
			pixGetPixel(pixd,j,i,&p2);
			// pixGetPixel(hue_im,j,i,&p3);
			pixGetPixel(edge_im_2,j,i,&p4);
			if(p1==0&&p2==0&&p4>0)//if(p4>0&&p1==0)//if(p2==0&&p1==0&&p3>0)
			{
				pixSetRGBPixel(feat_im,j,i,255,255,255);
			}
		}
	}

	char *txt=NULL;
	// txt = get_ocr_text_simple(ctx, feat_im);
	// txt=get_ocr_text_wordwise_threshold(ctx, feat_im, ctx->conf_thresh);
	// if(txt != NULL)printf("%s\n", txt);

	pixDestroy(&im);
	pixDestroy(&edge_im);
	pixDestroy(&feat_im);
	pixDestroy(&edge_im_2);
	pixDestroy(&pixd);
}
コード例 #20
0
ファイル: maze.c プロジェクト: ansgri/rsdt-students
/*!
 *  pixSearchBinaryMaze()
 *
 *      Input:  pixs (1 bpp, maze)
 *              xi, yi  (beginning point; use same initial point
 *                       that was used to generate the maze)
 *              xf, yf  (end point, or close to it)
 *              &ppixd (<optional return> maze with path illustrated, or
 *                     if no path possible, the part of the maze
 *                     that was searched)
 *      Return: pta (shortest path), or null if either no path
 *              exists or on error
 *
 *  Notes:
 *      (1) Because of the overhead in calling pixGetPixel() and
 *          pixSetPixel(), we have used raster line pointers and the
 *          GET_DATA* and SET_DATA* macros for many of the pix accesses.
 *      (2) Commentary:
 *            The goal is to find the shortest path between beginning and
 *          end points, without going through walls, and there are many
 *          ways to solve this problem.
 *            We use a queue to implement a breadth-first search.  Two auxiliary
 *          "image" data structures can be used: one to mark the visited
 *          pixels and one to give the direction to the parent for each
 *          visited pixels.  The first structure is used to avoid putting
 *          pixels on the queue more than once, and the second is used
 *          for retracing back to the origin, like the breadcrumbs in
 *          Hansel and Gretel.  Each pixel taken off the queue is destroyed
 *          after it is used to locate the allowed neighbors.  In fact,
 *          only one distance image is required, if you initialize it
 *          to some value that signifies "not yet visited."  (We use
 *          a binary image for marking visited pixels because it is clearer.)
 *          This method for a simple search of a binary maze is implemented in
 *          searchBinaryMaze().
 *            An alternative method would store the (manhattan) distance
 *          from the start point with each pixel on the queue.  The children
 *          of each pixel get a distance one larger than the parent.  These
 *          values can be stored in an auxiliary distance map image
 *          that is constructed simultaneously with the search.  Once the
 *          end point is reached, the distance map is used to backtrack
 *          along a minimum path.  There may be several equal length
 *          minimum paths, any one of which can be chosen this way.
 */
PTA *
pixSearchBinaryMaze(PIX     *pixs,
                    l_int32  xi,
                    l_int32  yi, 
                    l_int32  xf,
                    l_int32  yf,
                    PIX    **ppixd)
{
l_int32    i, j, x, y, w, h, d, found;
l_uint32   val, rpixel, gpixel, bpixel;
void     **lines1, **linem1, **linep8, **lined32;
MAZEEL    *el, *elp;
PIX       *pixd;  /* the shortest path written on the maze image */
PIX       *pixm;  /* for bookkeeping, to indicate pixels already visited */
PIX       *pixp;  /* for bookkeeping, to indicate direction to parent */
L_QUEUE   *lq;
PTA       *pta;

    PROCNAME("pixSearchBinaryMaze");

    if (ppixd) *ppixd = NULL;
    if (!pixs)
        return (PTA *)ERROR_PTR("pixs not defined", procName, NULL);
    pixGetDimensions(pixs, &w, &h, &d);
    if (d != 1)
        return (PTA *)ERROR_PTR("pixs not 1 bpp", procName, NULL);
    if (xi <= 0 || xi >= w)
        return (PTA *)ERROR_PTR("xi not valid", procName, NULL);
    if (yi <= 0 || yi >= h)
        return (PTA *)ERROR_PTR("yi not valid", procName, NULL);
    pixGetPixel(pixs, xi, yi, &val);
    if (val != 0)
        return (PTA *)ERROR_PTR("(xi,yi) not bg pixel", procName, NULL);
    pixd = NULL;
    pta = NULL;

        /* Find a bg pixel near input point (xf, yf) */
    localSearchForBackground(pixs, &xf, &yf, 5);

#if  DEBUG_MAZE
    fprintf(stderr, "(xi, yi) = (%d, %d), (xf, yf) = (%d, %d)\n",
            xi, yi, xf, yf);
#endif  /* DEBUG_MAZE */

    pixm = pixCreate(w, h, 1);  /* initialized to OFF */
    pixp = pixCreate(w, h, 8);  /* direction to parent stored as enum val */
    lines1 = pixGetLinePtrs(pixs, NULL);
    linem1 = pixGetLinePtrs(pixm, NULL);
    linep8 = pixGetLinePtrs(pixp, NULL);

    lq = lqueueCreate(0);

        /* Prime the queue with the first pixel; it is OFF */
    el = mazeelCreate(xi, yi, 0);  /* don't need direction here */
    pixSetPixel(pixm, xi, yi, 1);  /* mark visited */
    lqueueAdd(lq, el);

        /* Fill up the pix storing directions to parents,
         * stopping when we hit the point (xf, yf)  */
    found = FALSE;
    while (lqueueGetCount(lq) > 0) {
        elp = (MAZEEL *)lqueueRemove(lq);
        x = elp->x;
        y = elp->y;
        if (x == xf && y == yf) {
            found = TRUE;
            FREE(elp);
            break;
        }
            
        if (x > 0) {  /* check to west */
            val = GET_DATA_BIT(linem1[y], x - 1);
            if (val == 0) {  /* not yet visited */
                SET_DATA_BIT(linem1[y], x - 1);  /* mark visited */
                val = GET_DATA_BIT(lines1[y], x - 1);
                if (val == 0) {  /* bg, not a wall */
                    SET_DATA_BYTE(linep8[y], x - 1, DIR_EAST);  /* parent E */
                    el = mazeelCreate(x - 1, y, 0);
                    lqueueAdd(lq, el);
                }
            }
        }
        if (y > 0) {  /* check north */
            val = GET_DATA_BIT(linem1[y - 1], x);
            if (val == 0) {  /* not yet visited */
                SET_DATA_BIT(linem1[y - 1], x);  /* mark visited */
                val = GET_DATA_BIT(lines1[y - 1], x);
                if (val == 0) {  /* bg, not a wall */
                    SET_DATA_BYTE(linep8[y - 1], x, DIR_SOUTH);  /* parent S */
                    el = mazeelCreate(x, y - 1, 0);
                    lqueueAdd(lq, el);
                }
            }
        }
        if (x < w - 1) {  /* check east */
            val = GET_DATA_BIT(linem1[y], x + 1);
            if (val == 0) {  /* not yet visited */
                SET_DATA_BIT(linem1[y], x + 1);  /* mark visited */
                val = GET_DATA_BIT(lines1[y], x + 1);
                if (val == 0) {  /* bg, not a wall */
                    SET_DATA_BYTE(linep8[y], x + 1, DIR_WEST);  /* parent W */
                    el = mazeelCreate(x + 1, y, 0);
                    lqueueAdd(lq, el);
                }
            }
        }
        if (y < h - 1) {  /* check south */
            val = GET_DATA_BIT(linem1[y + 1], x);
            if (val == 0) {  /* not yet visited */
                SET_DATA_BIT(linem1[y + 1], x);  /* mark visited */
                val = GET_DATA_BIT(lines1[y + 1], x);
                if (val == 0) {  /* bg, not a wall */
                    SET_DATA_BYTE(linep8[y + 1], x, DIR_NORTH);  /* parent N */
                    el = mazeelCreate(x, y + 1, 0);
                    lqueueAdd(lq, el);
                }
            }
        }
        FREE(elp);
    }

    lqueueDestroy(&lq, TRUE);
    pixDestroy(&pixm);
    FREE(linem1);

    if (ppixd) {
        pixd = pixUnpackBinary(pixs, 32, 1);
        *ppixd = pixd;
    }
    composeRGBPixel(255, 0, 0, &rpixel);  /* start point */
    composeRGBPixel(0, 255, 0, &gpixel);
    composeRGBPixel(0, 0, 255, &bpixel);  /* end point */


    if (!found) {
        L_INFO(" No path found", procName);
        if (pixd) {  /* paint all visited locations */
            lined32 = pixGetLinePtrs(pixd, NULL);
            for (i = 0; i < h; i++) {
                for (j = 0; j < w; j++) {
                    val = GET_DATA_BYTE(linep8[i], j);
                    if (val != 0 && pixd)
                        SET_DATA_FOUR_BYTES(lined32[i], j, gpixel);
                }
            }
            FREE(lined32);
        }
    }
    else {   /* write path onto pixd */
        L_INFO(" Path found", procName);
        pta = ptaCreate(0);
        x = xf;
        y = yf;
        while (1) {
            ptaAddPt(pta, x, y);
            if (x == xi && y == yi)
                break;
            if (pixd)
                pixSetPixel(pixd, x, y, gpixel);
            pixGetPixel(pixp, x, y, &val);
            if (val == DIR_NORTH)
                y--;
            else if (val == DIR_SOUTH)
                y++;
            else if (val == DIR_EAST)
                x++;
            else if (val == DIR_WEST)
                x--;
        }
    }
    if (pixd) {
        pixSetPixel(pixd, xi, yi, rpixel);
        pixSetPixel(pixd, xf, yf, bpixel);
    }

    pixDestroy(&pixp);
    FREE(lines1);
    FREE(linep8);
    return pta;
}
コード例 #21
0
ファイル: maze.c プロジェクト: ansgri/rsdt-students
/*!
 *  generateBinaryMaze()
 *
 *      Input:  w, h  (size of maze)
 *              xi, yi  (initial location)
 *              wallps (probability that a pixel to the side is ON)
 *              ranis (ratio of prob that pixel in forward direction
 *                     is a wall to the probability that pixel in
 *                     side directions is a wall)
 *      Return: pix, or null on error
 *
 *  Notes:
 *      (1) We have two input probability factors that determine the
 *          density of walls and average length of straight passages.
 *          When ranis < 1.0, you are more likely to generate a wall
 *          to the side than going forward.  Enter 0.0 for either if
 *          you want to use the default values.
 *      (2) This is a type of percolation problem, and exhibits
 *          different phases for different parameters wallps and ranis.
 *          For larger values of these parameters, regions in the maze
 *          are not explored because the maze generator walls them
 *          off and cannot get through.  The boundary between the
 *          two phases in this two-dimensional parameter space goes
 *          near these values:
 *                wallps       ranis
 *                0.35         1.00
 *                0.40         0.85
 *                0.45         0.70
 *                0.50         0.50
 *                0.55         0.40
 *                0.60         0.30
 *                0.65         0.25
 *                0.70         0.19
 *                0.75         0.15
 *                0.80         0.11
 *      (3) Because here is a considerable amount of overhead in calling
 *          pixGetPixel() and pixSetPixel(), this function can be sped
 *          up with little effort using raster line pointers and the
 *          GET_DATA* and SET_DATA* macros.
 */
PIX *
generateBinaryMaze(l_int32  w,
                   l_int32  h,
                   l_int32  xi,
                   l_int32  yi,
                   l_float32  wallps,
                   l_float32  ranis)
{
l_int32    x, y, dir;
l_uint32   val;
l_float32  frand, wallpf, testp;
MAZEEL    *el, *elp;
PIX       *pixd;  /* the destination maze */
PIX       *pixm;  /* for bookkeeping, to indicate pixels already visited */
L_QUEUE   *lq;

    /* On Windows, seeding is apparently necessary to get decent mazes.
     * Windows rand() returns a value up to 2^15 - 1, whereas unix
     * rand() returns a value up to 2^31 - 1.  Therefore the generated
     * mazes will differ on the two platforms. */
#ifdef _WIN32
    srand(28*333);
#endif /* _WIN32 */

    if (w < MIN_MAZE_WIDTH)
        w = MIN_MAZE_WIDTH;
    if (h < MIN_MAZE_HEIGHT)
        h = MIN_MAZE_HEIGHT;
    if (xi <= 0 || xi >= w)
        xi = w / 6;
    if (yi <= 0 || yi >= h)
        yi = h / 5;
    if (wallps < 0.05 || wallps > 0.95)
        wallps = DEFAULT_WALL_PROBABILITY;
    if (ranis < 0.05 || ranis > 1.0)
        ranis = DEFAULT_ANISOTROPY_RATIO;
    wallpf = wallps * ranis;

#if  DEBUG_MAZE
    fprintf(stderr, "(w, h) = (%d, %d), (xi, yi) = (%d, %d)\n", w, h, xi, yi);
    fprintf(stderr, "Using: prob(wall) = %7.4f, anisotropy factor = %7.4f\n",
            wallps, ranis);
#endif  /* DEBUG_MAZE */

        /* These are initialized to OFF */
    pixd = pixCreate(w, h, 1);
    pixm = pixCreate(w, h, 1);

    lq = lqueueCreate(0);

        /* Prime the queue with the first pixel; it is OFF */
    el = mazeelCreate(xi, yi, START_LOC);
    pixSetPixel(pixm, xi, yi, 1);  /* mark visited */
    lqueueAdd(lq, el);

        /* While we're at it ... */
    while (lqueueGetCount(lq) > 0) {
        elp = (MAZEEL *)lqueueRemove(lq);
        x = elp->x;
        y = elp->y;
        dir = elp->dir;
        if (x > 0) {  /* check west */
            pixGetPixel(pixm, x - 1, y, &val);
            if (val == 0) {  /* not yet visited */
                pixSetPixel(pixm, x - 1, y, 1);  /* mark visited */
                frand = (l_float32)rand() / (l_float32)RAND_MAX;
                testp = wallps;
                if (dir == DIR_WEST)
                    testp = wallpf;
                if (frand <= testp) {  /* make it a wall */
                    pixSetPixel(pixd, x - 1, y, 1);
                }
                else {  /* not a wall */
                    el = mazeelCreate(x - 1, y, DIR_WEST);
                    lqueueAdd(lq, el);
                }
            }
        }
        if (y > 0) {  /* check north */
            pixGetPixel(pixm, x, y - 1, &val);
            if (val == 0) {  /* not yet visited */
                pixSetPixel(pixm, x, y - 1, 1);  /* mark visited */
                frand = (l_float32)rand() / (l_float32)RAND_MAX;
                testp = wallps;
                if (dir == DIR_NORTH)
                    testp = wallpf;
                if (frand <= testp) {  /* make it a wall */
                    pixSetPixel(pixd, x, y - 1, 1);
                }
                else {  /* not a wall */
                    el = mazeelCreate(x, y - 1, DIR_NORTH);
                    lqueueAdd(lq, el);
                }
            }
        }
        if (x < w - 1) {  /* check east */
            pixGetPixel(pixm, x + 1, y, &val);
            if (val == 0) {  /* not yet visited */
                pixSetPixel(pixm, x + 1, y, 1);  /* mark visited */
                frand = (l_float32)rand() / (l_float32)RAND_MAX;
                testp = wallps;
                if (dir == DIR_EAST)
                    testp = wallpf;
                if (frand <= testp) {  /* make it a wall */
                    pixSetPixel(pixd, x + 1, y, 1);
                }
                else {  /* not a wall */
                    el = mazeelCreate(x + 1, y, DIR_EAST);
                    lqueueAdd(lq, el);
                }
            }
        }
        if (y < h - 1) {  /* check south */
            pixGetPixel(pixm, x, y + 1, &val);
            if (val == 0) {  /* not yet visited */
                pixSetPixel(pixm, x, y + 1, 1);  /* mark visited */
                frand = (l_float32)rand() / (l_float32)RAND_MAX;
                testp = wallps;
                if (dir == DIR_SOUTH)
                    testp = wallpf;
                if (frand <= testp) {  /* make it a wall */
                    pixSetPixel(pixd, x, y + 1, 1);
                }
                else {  /* not a wall */
                    el = mazeelCreate(x, y + 1, DIR_SOUTH);
                    lqueueAdd(lq, el);
                }
            }
        }
        FREE(elp);
    }

    lqueueDestroy(&lq, TRUE);
    pixDestroy(&pixm);
    return pixd;
}
コード例 #22
0
ファイル: watershed.c プロジェクト: mehulsbhatt/MyOCRTEST
/*!
 *  wshedApply()
 *
 *      Input:  wshed (generated from wshedCreate())
 *      Return: 0 if OK, 1 on error
 *
 *  Iportant note:
 *      (1) This is buggy.  It seems to locate watersheds that are
 *          duplicates.  The watershed extraction after complete fill
 *          grabs some regions belonging to existing watersheds.
 *          See prog/watershedtest.c for testing.
 */
l_int32
wshedApply(L_WSHED *wshed) {
    char two_new_watersheds[] = "Two new watersheds";
    char seed_absorbed_into_seeded_basin[] = "Seed absorbed into seeded basin";
    char one_new_watershed_label[] = "One new watershed (label)";
    char one_new_watershed_index[] = "One new watershed (index)";
    char minima_absorbed_into_seeded_basin[] =
            "Minima absorbed into seeded basin";
    char minima_absorbed_by_filler_or_another[] =
            "Minima absorbed by filler or another";
    l_int32 nseeds, nother, nboth, arraysize;
    l_int32 i, j, val, x, y, w, h, index, mindepth;
    l_int32 imin, imax, jmin, jmax, cindex, clabel, nindex;
    l_int32 hindex, hlabel, hmin, hmax, minhindex, maxhindex;
    l_int32 *lut;
    l_uint32 ulabel, uval;
    void **lines8, **linelab32;
    NUMA *nalut, *nalevels, *nash, *namh, *nasi;
    NUMA **links;
    L_HEAP *lh;
    PIX *pixmin, *pixsd;
    PIXA *pixad;
    L_STACK *rstack;
    PTA *ptas, *ptao;

    PROCNAME("wshedApply");

    if (!wshed)
        return ERROR_INT("wshed not defined", procName, 1);

    /* ------------------------------------------------------------ *
     *  Initialize priority queue and pixlab with seeds and minima  *
     * ------------------------------------------------------------ */

    lh = lheapCreate(0, L_SORT_INCREASING);  /* remove lowest values first */
    rstack = lstackCreate(0);  /* for reusing the WSPixels */
    pixGetDimensions(wshed->pixs, &w, &h, NULL);
    lines8 = wshed->lines8;  /* wshed owns this */
    linelab32 = wshed->linelab32;  /* ditto */

    /* Identify seed (marker) pixels, 1 for each c.c. in pixm */
    pixSelectMinInConnComp(wshed->pixs, wshed->pixm, &ptas, &nash);
    pixsd = pixGenerateFromPta(ptas, w, h);
    nseeds = ptaGetCount(ptas);
    for (i = 0; i < nseeds; i++) {
        ptaGetIPt(ptas, i, &x, &y);
        uval = GET_DATA_BYTE(lines8[y], x);
        pushWSPixel(lh, rstack, (l_int32) uval, x, y, i);
    }
    wshed->ptas = ptas;
    nasi = numaMakeConstant(1, nseeds);  /* indicator array */
    wshed->nasi = nasi;
    wshed->nash = nash;
    wshed->nseeds = nseeds;

    /* Identify minima that are not seeds.  Use these 4 steps:
     *  (1) Get the local minima, which can have components
     *      of arbitrary size.  This will be a clipping mask.
     *  (2) Get the image of the actual seeds (pixsd)
     *  (3) Remove all elements of the clipping mask that have a seed.
     *  (4) Shrink each of the remaining elements of the minima mask
     *      to a single pixel.  */
    pixLocalExtrema(wshed->pixs, 200, 0, &pixmin, NULL);
    pixRemoveSeededComponents(pixmin, pixsd, pixmin, 8, 2);
    pixSelectMinInConnComp(wshed->pixs, pixmin, &ptao, &namh);
    nother = ptaGetCount(ptao);
    for (i = 0; i < nother; i++) {
        ptaGetIPt(ptao, i, &x, &y);
        uval = GET_DATA_BYTE(lines8[y], x);
        pushWSPixel(lh, rstack, (l_int32) uval, x, y, nseeds + i);
    }
    wshed->namh = namh;

    /* ------------------------------------------------------------ *
     *                Initialize merging lookup tables              *
     * ------------------------------------------------------------ */

    /* nalut should always give the current after-merging index.
     * links are effectively backpointers: they are numas associated with
     * a dest index of all indices in nalut that point to that index. */
    mindepth = wshed->mindepth;
    nboth = nseeds + nother;
    arraysize = 2 * nboth;
    wshed->arraysize = arraysize;
    nalut = numaMakeSequence(0, 1, arraysize);
    lut = numaGetIArray(nalut);
    wshed->lut = lut;  /* wshed owns this */
    links = (NUMA **) CALLOC(arraysize, sizeof(NUMA * ));
    wshed->links = links;  /* wshed owns this */
    nindex = nseeds + nother;  /* the next unused index value */

    /* ------------------------------------------------------------ *
     *              Fill the basins, using the priority queue       *
     * ------------------------------------------------------------ */

    pixad = pixaCreate(nseeds);
    wshed->pixad = pixad;  /* wshed owns this */
    nalevels = numaCreate(nseeds);
    wshed->nalevels = nalevels;  /* wshed owns this */
    L_INFO("nseeds = %d, nother = %d\n", procName, nseeds, nother);
    while (lheapGetCount(lh) > 0) {
        popWSPixel(lh, rstack, &val, &x, &y, &index);
/*        fprintf(stderr, "x = %d, y = %d, index = %d\n", x, y, index); */
        ulabel = GET_DATA_FOUR_BYTES(linelab32[y], x);
        if (ulabel == MAX_LABEL_VALUE)
            clabel = ulabel;
        else
            clabel = lut[ulabel];
        cindex = lut[index];
        if (clabel == cindex) continue;  /* have already seen this one */
        if (clabel == MAX_LABEL_VALUE) {  /* new one; assign index and try to
                                           * propagate to all neighbors */
            SET_DATA_FOUR_BYTES(linelab32[y], x, cindex);
            imin = L_MAX(0, y - 1);
            imax = L_MIN(h - 1, y + 1);
            jmin = L_MAX(0, x - 1);
            jmax = L_MIN(w - 1, x + 1);
            for (i = imin; i <= imax; i++) {
                for (j = jmin; j <= jmax; j++) {
                    if (i == y && j == x) continue;
                    uval = GET_DATA_BYTE(lines8[i], j);
                    pushWSPixel(lh, rstack, (l_int32) uval, j, i, cindex);
                }
            }
        } else {  /* pixel is already labeled (differently); must resolve */

            /* If both indices are seeds, check if the min height is
             * greater than mindepth.  If so, we have two new watersheds;
             * locate them and assign to both regions a new index
             * for further waterfill.  If not, absorb the shallower
             * watershed into the deeper one and continue filling it. */
            pixGetPixel(pixsd, x, y, &uval);
            if (clabel < nseeds && cindex < nseeds) {
                wshedGetHeight(wshed, val, clabel, &hlabel);
                wshedGetHeight(wshed, val, cindex, &hindex);
                hmin = L_MIN(hlabel, hindex);
                hmax = L_MAX(hlabel, hindex);
                if (hmin == hmax) {
                    hmin = hlabel;
                    hmax = hindex;
                }
                if (wshed->debug) {
                    fprintf(stderr, "clabel,hlabel = %d,%d\n", clabel, hlabel);
                    fprintf(stderr, "hmin = %d, hmax = %d\n", hmin, hmax);
                    fprintf(stderr, "cindex,hindex = %d,%d\n", cindex, hindex);
                    if (hmin < mindepth)
                        fprintf(stderr, "Too shallow!\n");
                }

                if (hmin >= mindepth) {
                    debugWshedMerge(wshed, two_new_watersheds,
                                    x, y, clabel, cindex);
                    wshedSaveBasin(wshed, cindex, val - 1);
                    wshedSaveBasin(wshed, clabel, val - 1);
                    numaSetValue(nasi, cindex, 0);
                    numaSetValue(nasi, clabel, 0);

                    if (wshed->debug) fprintf(stderr, "nindex = %d\n", nindex);
                    debugPrintLUT(lut, nindex, wshed->debug);
                    mergeLookup(wshed, clabel, nindex);
                    debugPrintLUT(lut, nindex, wshed->debug);
                    mergeLookup(wshed, cindex, nindex);
                    debugPrintLUT(lut, nindex, wshed->debug);
                    nindex++;
                } else  /* extraneous seed within seeded basin; absorb */ {
                    debugWshedMerge(wshed, seed_absorbed_into_seeded_basin,
                                    x, y, clabel, cindex);
                }
                maxhindex = clabel;  /* TODO: is this part of above 'else'? */
                minhindex = cindex;
                if (hindex > hlabel) {
                    maxhindex = cindex;
                    minhindex = clabel;
                }
                mergeLookup(wshed, minhindex, maxhindex);
            } else if (clabel < nseeds && cindex >= nboth) {
                /* If one index is a seed and the other is a merge of
                 * 2 watersheds, generate a single watershed. */
                debugWshedMerge(wshed, one_new_watershed_label,
                                x, y, clabel, cindex);
                wshedSaveBasin(wshed, clabel, val - 1);
                numaSetValue(nasi, clabel, 0);
                mergeLookup(wshed, clabel, cindex);
            } else if (cindex < nseeds && clabel >= nboth) {
                debugWshedMerge(wshed, one_new_watershed_index,
                                x, y, clabel, cindex);
                wshedSaveBasin(wshed, cindex, val - 1);
                numaSetValue(nasi, cindex, 0);
                mergeLookup(wshed, cindex, clabel);
            } else if (clabel < nseeds) {  /* cindex from minima; absorb */
                /* If one index is a seed and the other is from a minimum,
                 * merge the minimum wshed into the seed wshed. */
                debugWshedMerge(wshed, minima_absorbed_into_seeded_basin,
                                x, y, clabel, cindex);
                mergeLookup(wshed, cindex, clabel);
            } else if (cindex < nseeds) {  /* clabel from minima; absorb */
                debugWshedMerge(wshed, minima_absorbed_into_seeded_basin,
                                x, y, clabel, cindex);
                mergeLookup(wshed, clabel, cindex);
            } else {  /* If neither index is a seed, just merge */
                debugWshedMerge(wshed, minima_absorbed_by_filler_or_another,
                                x, y, clabel, cindex);
                mergeLookup(wshed, clabel, cindex);
            }
        }
    }

#if 0
    /*  Use the indicator array to save any watersheds that fill
     *  to the maximum value.  This seems to screw things up!  */
for (i = 0; i < nseeds; i++) {
    numaGetIValue(nasi, i, &ival);
    if (ival == 1) {
        wshedSaveBasin(wshed, lut[i], val - 1);
        numaSetValue(nasi, i, 0);
    }
}
#endif

    numaDestroy(&nalut);
    pixDestroy(&pixmin);
    pixDestroy(&pixsd);
    ptaDestroy(&ptao);
    lheapDestroy(&lh, TRUE);
    lstackDestroy(&rstack, TRUE);
    return 0;
}
コード例 #23
0
char* _process_frame_tickertext(struct lib_hardsubx_ctx *ctx, AVFrame *frame, int width, int height, int index)
{
	PIX *im;
	PIX *edge_im;
	PIX *lum_im;
	PIX *feat_im;
	char *subtitle_text=NULL;
	im = pixCreate(width,height,32);
	lum_im = pixCreate(width,height,32);
	feat_im = pixCreate(width,height,32);
	int i,j;
	for(i=(92*height)/100;i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			int p=j*3+i*frame->linesize[0];
			int r=frame->data[0][p];
			int g=frame->data[0][p+1];
			int b=frame->data[0][p+2];
			pixSetRGBPixel(im,j,i,r,g,b);
			float L,A,B;
			rgb_to_lab((float)r,(float)g,(float)b,&L,&A,&B);
			if(L > ctx->lum_thresh)
				pixSetRGBPixel(lum_im,j,i,255,255,255);
			else
				pixSetRGBPixel(lum_im,j,i,0,0,0);
		}
	}

	//Handle the edge image
	edge_im = pixCreate(width,height,8);
	edge_im = pixConvertRGBToGray(im,0.0,0.0,0.0);
	edge_im = pixSobelEdgeFilter(edge_im, L_VERTICAL_EDGES);
	edge_im = pixDilateGray(edge_im, 21, 11);
	edge_im = pixThresholdToBinary(edge_im,50);

	for(i=92*(height/100);i<height;i++)
	{
		for(j=0;j<width;j++)
		{
			unsigned int p1,p2,p3;
			pixGetPixel(edge_im,j,i,&p1);
			// pixGetPixel(pixd,j,i,&p2);
			pixGetPixel(lum_im,j,i,&p3);
			if(p1==0&&p3>0)
				pixSetRGBPixel(feat_im,j,i,255,255,255);
			else
				pixSetRGBPixel(feat_im,j,i,0,0,0);
		}
	}

	// Tesseract OCR for the ticker text here
	subtitle_text = get_ocr_text_simple(ctx, lum_im);
	char write_path[100];
	sprintf(write_path,"./lum_im%04d.jpg",index);
	pixWrite(write_path,lum_im,IFF_JFIF_JPEG);
	sprintf(write_path,"./im%04d.jpg",index);
	pixWrite(write_path,im,IFF_JFIF_JPEG);

	pixDestroy(&lum_im);
	pixDestroy(&im);
	pixDestroy(&edge_im);
	pixDestroy(&feat_im);

	return subtitle_text;
}
コード例 #24
0
ファイル: maze.c プロジェクト: ansgri/rsdt-students
/*!
 *  pixSearchGrayMaze()
 *
 *      Input:  pixs (1 bpp, maze)
 *              xi, yi  (beginning point; use same initial point
 *                       that was used to generate the maze)
 *              xf, yf  (end point, or close to it)
 *              &ppixd (<optional return> maze with path illustrated, or
 *                     if no path possible, the part of the maze
 *                     that was searched)
 *      Return: pta (shortest path), or null if either no path
 *              exists or on error
 *
 *  Commentary:
 *      Consider first a slight generalization of the binary maze
 *      search problem.  Suppose that you can go through walls,
 *      but the cost is higher (say, an increment of 3 to go into
 *      a wall pixel rather than 1)?  You're still trying to find
 *      the shortest path.  One way to do this is with an ordered
 *      queue, and a simple way to visualize an ordered queue is as 
 *      a set of stacks, each stack being marked with the distance
 *      of each pixel in the stack from the start.  We place the
 *      start pixel in stack 0, pop it, and process its 4 children.
 *      Each pixel is given a distance that is incremented from that
 *      of its parent (0 in this case), depending on if it is a wall
 *      pixel or not.  That value may be recorded on a distance map,
 *      according to the algorithm below.  For children of the first
 *      pixel, those not on a wall go in stack 1, and wall
 *      children go in stack 3.  Stack 0 being emptied, the process
 *      then continues with pixels being popped from stack 1.
 *      Here is the algorithm for each child pixel.  The pixel's
 *      distance value, were it to be placed on a stack, is compared
 *      with the value for it that is on the distance map.  There
 *      are three possible cases:
 *         (1) If the pixel has not yet been registered, it is pushed
 *             on its stack and the distance is written to the map.
 *         (2) If it has previously been registered with a higher distance,
 *             the distance on the map is relaxed to that of the
 *             current pixel, which is then placed on its stack.
 *         (3) If it has previously been registered with an equal
 *             or lower value, the pixel is discarded.
 *      The pixels are popped and processed successively from
 *      stack 1, and when stack 1 is empty, popping starts on stack 2.
 *      This continues until the destination pixel is popped off
 *      a stack.   The minimum path is then derived from the distance map,
 *      going back from the end point as before.  This is just Dijkstra's
 *      algorithm for a directed graph; here, the underlying graph
 *      (consisting of the pixels and four edges connecting each pixel
 *      to its 4-neighbor) is a special case of a directed graph, where
 *      each edge is bi-directional.  The implementation of this generalized
 *      maze search is left as an exercise to the reader.
 *
 *      Let's generalize a bit further.  Suppose the "maze" is just
 *      a grayscale image -- think of it as an elevation map.  The cost
 *      of moving on this surface depends on the height, or the gradient,
 *      or whatever you want.  All that is required is that the cost
 *      is specified and non-negative on each link between adjacent
 *      pixels.  Now the problem becomes: find the least cost path
 *      moving on this surface between two specified end points.
 *      For example, if the cost across an edge between two pixels
 *      depends on the "gradient", you can use:
 *           cost = 1 + L_ABS(deltaV)
 *      where deltaV is the difference in value between two adjacent
 *      pixels.  If the costs are all integers, we can still use an array
 *      of stacks to avoid ordering the queue (e.g., by using a heap sort.)
 *      This is a neat problem, because you don't even have to build a
 *      maze -- you can can use it on any grayscale image!
 *    
 *      Rather than using an array of stacks, a more practical
 *      approach is to implement with a priority queue, which is
 *      a queue that is sorted so that the elements with the largest
 *      (or smallest) key values always come off first.  The
 *      priority queue is efficiently implemented as a heap, and
 *      this is how we do it.  Suppose you run the algorithm
 *      using a priority queue, doing the bookkeeping with an
 *      auxiliary image data structure that saves the distance of
 *      each pixel put on the queue as before, according to the method
 *      described above.  We implement it as a 2-way choice by
 *      initializing the distance array to a large value and putting
 *      a pixel on the queue if its distance is less than the value
 *      found on the array.  When you finally pop the end pixel from
 *      the queue, you're done, and you can trace the path backward,
 *      either always going downhill or using an auxiliary image to
 *      give you the direction to go at each step.  This is implemented
 *      here in searchGrayMaze().
 *
 *      Do we really have to use a sorted queue?  Can we solve this
 *      generalized maze with an unsorted queue of pixels?  (Or even
 *      an unsorted stack, doing a depth-first search (DFS)?)
 *      Consider a different algorithm for this generalized maze, where
 *      we travel again breadth first, but this time use a single,
 *      unsorted queue.  An auxiliary image is used as before to
 *      store the distances and to determine if pixels get pushed
 *      on the stack or dropped.  As before, we must allow pixels
 *      to be revisited, with relaxation of the distance if a shorter
 *      path arrives later.  As a result, we will in general have
 *      multiple instances of the same pixel on the stack with different
 *      distances.  However, because the queue is not ordered, some of
 *      these pixels will be popped when another instance with a lower
 *      distance is still on the stack.  Here, we're just popping them
 *      in the order they go on, rather than setting up a priority
 *      based on minimum distance.  Thus, unlike the priority queue,
 *      when a pixel is popped we have to check the distance map to
 *      see if a pixel with a lower distance has been put on the queue,
 *      and, if so, we discard the pixel we just popped.  So the
 *      "while" loop looks like this:
 *        - pop a pixel from the queue
 *        - check its distance against the distance stored in the
 *          distance map; if larger, discard
 *        - otherwise, for each of its neighbors:
 *            - compute its distance from the start pixel
 *            - compare this distance with that on the distance map:
 *                - if the distance map value higher, relax the distance
 *                  and push the pixel on the queue
 *                - if the distance map value is lower, discard the pixel
 *
 *      How does this loop terminate?  Before, with an ordered queue,
 *      it terminates when you pop the end pixel.  But with an unordered
 *      queue (or stack), the first time you hit the end pixel, the
 *      distance is not guaranteed to be correct, because the pixels
 *      along the shortest path may not have yet been visited and relaxed.
 *      Because the shortest path can theoretically go anywhere,
 *      we must keep going.  How do we know when to stop?   Dijkstra
 *      uses an ordered queue to systematically remove nodes from
 *      further consideration.  (Each time a pixel is popped, we're
 *      done with it; it's "finalized" in the Dijkstra sense because
 *      we know the shortest path to it.)  However, with an unordered
 *      queue, the brute force answer is: stop when the queue
 *      (or stack) is empty, because then every pixel in the image
 *      has been assigned its minimum "distance" from the start pixel.
 *
 *      This is similar to the situation when you use a stack for the
 *      simpler uniform-step problem: with breadth-first search (BFS)
 *      the pixels on the queue are automatically ordered, so you are
 *      done when you locate the end pixel as a neighbor of a popped pixel;
 *      whereas depth-first search (DFS), using a stack, requires,
 *      in general, a search of every accessible pixel.  Further, if
 *      a pixel is revisited with a smaller distance, that distance is
 *      recorded and the pixel is put on the stack again.
 *
 *      But surely, you ask, can't we stop sooner?  What if the
 *      start and end pixels are very close to each other?
 *      OK, suppose they are, and you have very high walls and a
 *      long snaking level path that is actually the minimum cost.
 *      That long path can wind back and forth across the entire
 *      maze many times before ending up at the end point, which
 *      could be just over a wall from the start.  With the unordered
 *      queue, you very quickly get a high distance for the end
 *      pixel, which will be relaxed to the minimum distance only
 *      after all the pixels of the path have been visited and placed
 *      on the queue, multiple times for many of them.  So that's the
 *      price for not ordering the queue!
 */
PTA *
pixSearchGrayMaze(PIX     *pixs,
                  l_int32  xi,
                  l_int32  yi,
                  l_int32  xf,
                  l_int32  yf,
                  PIX    **ppixd)
{
l_int32   x, y, w, h, d;
l_uint32  val, valr, vals, rpixel, gpixel, bpixel;
void    **lines8, **liner32, **linep8;
l_int32   cost, dist, distparent, sival, sivals;
MAZEEL   *el, *elp;
PIX      *pixd;  /* optionally plot the path on this RGB version of pixs */
PIX      *pixr;  /* for bookkeeping, to indicate the minimum distance */
                 /* to pixels already visited */
PIX      *pixp;  /* for bookkeeping, to indicate direction to parent */
L_HEAP   *lh;
PTA      *pta;

    PROCNAME("pixSearchGrayMaze");

    if (ppixd) *ppixd = NULL;
    if (!pixs)
        return (PTA *)ERROR_PTR("pixs not defined", procName, NULL);
    pixGetDimensions(pixs, &w, &h, &d);
    if (d != 8)
        return (PTA *)ERROR_PTR("pixs not 8 bpp", procName, NULL);
    if (xi <= 0 || xi >= w)
        return (PTA *)ERROR_PTR("xi not valid", procName, NULL);
    if (yi <= 0 || yi >= h)
        return (PTA *)ERROR_PTR("yi not valid", procName, NULL);
    pixd = NULL;
    pta = NULL;

    pixr = pixCreate(w, h, 32);
    pixSetAll(pixr);  /* initialize to max value */
    pixp = pixCreate(w, h, 8);  /* direction to parent stored as enum val */
    lines8 = pixGetLinePtrs(pixs, NULL);
    linep8 = pixGetLinePtrs(pixp, NULL);
    liner32 = pixGetLinePtrs(pixr, NULL);

    lh = lheapCreate(0, L_SORT_INCREASING);  /* always remove closest pixels */

        /* Prime the heap with the first pixel */
    pixGetPixel(pixs, xi, yi, &val);
    el = mazeelCreate(xi, yi, 0);  /* don't need direction here */
    el->distance = 0;
    pixGetPixel(pixs, xi, yi, &val);
    el->val = val;
    pixSetPixel(pixr, xi, yi, 0);  /* distance is 0 */
    lheapAdd(lh, el);

        /* Breadth-first search with priority queue (implemented by
           a heap), labeling direction to parents in pixp and minimum
           distance to visited pixels in pixr.  Stop when we pull
           the destination point (xf, yf) off the queue. */
    while (lheapGetCount(lh) > 0) {
        elp = (MAZEEL *)lheapRemove(lh);
        if (!elp)
            return (PTA *)ERROR_PTR("heap broken!!", procName, NULL);
        x = elp->x;
        y = elp->y;
        if (x == xf && y == yf) {  /* exit condition */
            FREE(elp);
            break;
        }
        distparent = (l_int32)elp->distance;
        val = elp->val;
        sival = val;
            
        if (x > 0) {  /* check to west */
            vals = GET_DATA_BYTE(lines8[y], x - 1);
            valr = GET_DATA_FOUR_BYTES(liner32[y], x - 1);
            sivals = (l_int32)vals;
            cost = 1 + L_ABS(sivals - sival);  /* cost to move to this pixel */
            dist = distparent + cost;
            if (dist < valr) {  /* shortest path so far to this pixel */
                SET_DATA_FOUR_BYTES(liner32[y], x - 1, dist);  /* new dist */
                SET_DATA_BYTE(linep8[y], x - 1, DIR_EAST);  /* parent to E */
                el = mazeelCreate(x - 1, y, 0);
                el->val = vals;
                el->distance = dist;
                lheapAdd(lh, el);
            }
        }
        if (y > 0) {  /* check north */
            vals = GET_DATA_BYTE(lines8[y - 1], x);
            valr = GET_DATA_FOUR_BYTES(liner32[y - 1], x);
            sivals = (l_int32)vals;
            cost = 1 + L_ABS(sivals - sival);  /* cost to move to this pixel */
            dist = distparent + cost;
            if (dist < valr) {  /* shortest path so far to this pixel */
                SET_DATA_FOUR_BYTES(liner32[y - 1], x, dist);  /* new dist */
                SET_DATA_BYTE(linep8[y - 1], x, DIR_SOUTH);  /* parent to S */
                el = mazeelCreate(x, y - 1, 0);
                el->val = vals;
                el->distance = dist;
                lheapAdd(lh, el);
            }
        }
        if (x < w - 1) {  /* check east */
            vals = GET_DATA_BYTE(lines8[y], x + 1);
            valr = GET_DATA_FOUR_BYTES(liner32[y], x + 1);
            sivals = (l_int32)vals;
            cost = 1 + L_ABS(sivals - sival);  /* cost to move to this pixel */
            dist = distparent + cost;
            if (dist < valr) {  /* shortest path so far to this pixel */
                SET_DATA_FOUR_BYTES(liner32[y], x + 1, dist);  /* new dist */
                SET_DATA_BYTE(linep8[y], x + 1, DIR_WEST);  /* parent to W */
                el = mazeelCreate(x + 1, y, 0);
                el->val = vals;
                el->distance = dist;
                lheapAdd(lh, el);
            }
        }
        if (y < h - 1) {  /* check south */
            vals = GET_DATA_BYTE(lines8[y + 1], x);
            valr = GET_DATA_FOUR_BYTES(liner32[y + 1], x);
            sivals = (l_int32)vals;
            cost = 1 + L_ABS(sivals - sival);  /* cost to move to this pixel */
            dist = distparent + cost;
            if (dist < valr) {  /* shortest path so far to this pixel */
                SET_DATA_FOUR_BYTES(liner32[y + 1], x, dist);  /* new dist */
                SET_DATA_BYTE(linep8[y + 1], x, DIR_NORTH);  /* parent to N */
                el = mazeelCreate(x, y + 1, 0);
                el->val = vals;
                el->distance = dist;
                lheapAdd(lh, el);
            }
        }
        FREE(elp);
    }

    lheapDestroy(&lh, TRUE);

    if (ppixd) {
        pixd = pixConvert8To32(pixs);
        *ppixd = pixd;
    }
    composeRGBPixel(255, 0, 0, &rpixel);  /* start point */
    composeRGBPixel(0, 255, 0, &gpixel);
    composeRGBPixel(0, 0, 255, &bpixel);  /* end point */

    x = xf;
    y = yf;
    pta = ptaCreate(0);
    while (1) {  /* write path onto pixd */
        ptaAddPt(pta, x, y);
        if (x == xi && y == yi)
            break;
        if (pixd)
            pixSetPixel(pixd, x, y, gpixel);
        pixGetPixel(pixp, x, y, &val);
        if (val == DIR_NORTH)
            y--;
        else if (val == DIR_SOUTH)
            y++;
        else if (val == DIR_EAST)
            x++;
        else if (val == DIR_WEST)
            x--;
        pixGetPixel(pixr, x, y, &val);

#if  DEBUG_PATH
        fprintf(stderr, "(x,y) = (%d, %d); dist = %d\n", x, y, val);
#endif  /* DEBUG_PATH */

    }
    if (pixd) {
        pixSetPixel(pixd, xi, yi, rpixel);
        pixSetPixel(pixd, xf, yf, bpixel);
    }

    pixDestroy(&pixp);
    pixDestroy(&pixr);
    FREE(lines8);
    FREE(linep8);
    FREE(liner32);
    return pta;
}
コード例 #25
0
ファイル: binarize_set.c プロジェクト: mehulsbhatt/MyOCRTEST
int main(int argc,
         char **argv) {
    char *infile;
    l_int32 w, d, threshval, ival, newval;
    l_uint32 val;
    PIX *pixs, *pixg, *pixg2;
    PIX *pix1, *pix2;
    PIXA *pixa;
    static char mainName[] = "binarize_set";

    if (argc != 2)
        return ERROR_INT(" Syntax: binarize_set infile", mainName, 1);
    infile = argv[1];

    pixa = pixaCreate(5);
    pixs = pixRead(infile);
    pixGetDimensions(pixs, &w, NULL, &d);
    pixSaveTiled(pixs, pixa, 1.0, 1, 50, 32);
    pixDisplay(pixs, 100, 0);

#if ALL
    /* 1. Standard background normalization with a global threshold.  */
    pixg = pixConvertTo8(pixs, 0);
    pix1 = pixBackgroundNorm(pixg, NULL, NULL, 10, 15, 100, 50, 255, 2, 2);
    pix2 = pixThresholdToBinary(pix1, 160);
    pixWrite("/tmp/binar1.png", pix2, IFF_PNG);
    pixDisplay(pix2, 100, 0);
    pixSaveTiled(pix2, pixa, 1.0, 1, 50, 32);
    pixDestroy(&pixg);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
#endif

#if ALL
    /* 2. Background normalization followed by Otsu thresholding.  Otsu
     * binarization attempts to split the image into two roughly equal
     * sets of pixels, and it does a very poor job when there are large
     * amounts of dark background.  By doing a background normalization
     * first (to get the background near 255), we remove this problem.
     * Then we use a modified Otsu to estimate the best global
     * threshold on the normalized image.  */
    pixg = pixConvertTo8(pixs, 0);
    pix1 = pixOtsuThreshOnBackgroundNorm(pixg, NULL, 10, 15, 100,
                                         50, 255, 2, 2, 0.10, &threshval);
    fprintf(stderr, "thresh val = %d\n", threshval);
    pixSaveTiled(pix1, pixa, 1.0, 1, 50, 32);
    pixWrite("/tmp/binar2.png", pix1, IFF_PNG);
    pixDisplay(pix1, 100, 200);
    pixDestroy(&pixg);
    pixDestroy(&pix1);
#endif

#if ALL
    /* 3. Background normalization with Otsu threshold estimation and
     * masking for threshold selection.  */
    pixg = pixConvertTo8(pixs, 0);
    pix1 = pixMaskedThreshOnBackgroundNorm(pixg, NULL, 10, 15, 100,
                                           50, 2, 2, 0.10, &threshval);
    fprintf(stderr, "thresh val = %d\n", threshval);
    pixSaveTiled(pix1, pixa, 1.0, 1, 50, 32);
    pixWrite("/tmp/binar3.png", pix1, IFF_PNG);
    pixDisplay(pix1, 100, 400);
    pixDestroy(&pixg);
    pixDestroy(&pix1);
#endif

#if ALL
    /* 4. Background normalization followed by Sauvola binarization */
    if (d == 32)
        pixg = pixConvertRGBToGray(pixs, 0.2, 0.7, 0.1);
    else
        pixg = pixConvertTo8(pixs, 0);
    pixg2 = pixContrastNorm(NULL, pixg, 20, 20, 130, 2, 2);
    pixSauvolaBinarizeTiled(pixg2, 25, 0.40, 1, 1, NULL, &pix1);
    pixSaveTiled(pix1, pixa, 1.0, 1, 50, 32);
    pixWrite("/tmp/binar4.png", pix1, IFF_PNG);
    pixDisplay(pix1, 100, 600);
    pixDestroy(&pixg);
    pixDestroy(&pixg2);
    pixDestroy(&pix1);
#endif

#if ALL
    /* 5. Contrast normalization followed by background normalization, and
     * thresholding. */
    if (d == 32)
        pixg = pixConvertRGBToGray(pixs, 0.2, 0.7, 0.1);
    else
        pixg = pixConvertTo8(pixs, 0);

    pixOtsuAdaptiveThreshold(pixg, 5000, 5000, 0, 0, 0.1, &pix1, NULL);
    pixGetPixel(pix1, 0, 0, &val);
    ival = (l_int32) val;
    newval = ival + (l_int32)(0.6 * (110 - ival));
    fprintf(stderr, "th1 = %d, th2 = %d\n", ival, newval);
    pixDestroy(&pix1);

    pixContrastNorm(pixg, pixg, 50, 50, 130, 2, 2);
    pixg2 = pixBackgroundNorm(pixg, NULL, NULL, 20, 20, 70, 40, 200, 2, 2);

    ival = L_MIN(ival, 110);
    pix1 = pixThresholdToBinary(pixg2, ival);
    pixSaveTiled(pix1, pixa, 1.0, 1, 50, 32);
    pixWrite("/tmp/binar5.png", pix1, IFF_PNG);
    pixDisplay(pix1, 100, 800);
    pixDestroy(&pixg);
    pixDestroy(&pixg2);
    pixDestroy(&pix1);
#endif

    pix1 = pixaDisplayTiledInRows(pixa, 32, w + 100, 1.0, 0, 30, 2);
    pixWrite("/tmp/binar6.png", pix1, IFF_PNG);
    pixDisplay(pix1, 1000, 0);
    pixDestroy(&pix1);
    pixaDestroy(&pixa);

    pixDestroy(&pixs);
    return 0;
}
コード例 #26
0
ファイル: lowaccess_reg.c プロジェクト: ErfanHasmin/scope-ocr
main(int    argc,
     char **argv)
{
l_int32      x, y, i, j, k, w, h, w2, w4, w8, w16, w32, wpl, nerrors;
l_int32      count1, count2, count3, ret, val1, val2;
l_uint32     val32;
l_uint32    *data, *line, *line1, *line2, *data1, *data2;
void       **lines1, **linet1, **linet2;
PIX         *pixs, *pixt1, *pixt2;
static char  mainName[] = "lowaccess_reg";

    pixs = pixRead("feyn.tif");   /* width divisible by 16 */
    pixGetDimensions(pixs, &w, &h, NULL);
    data = pixGetData(pixs);
    wpl = pixGetWpl(pixs);
    lines1 = pixGetLinePtrs(pixs, NULL);

        /* Get timing for the 3 different methods */
    startTimer();
    for (k = 0; k < 10; k++) {
        count1 = 0;
        for (i = 0; i < h; i++) {
            for (j = 0; j < w; j++) {
                if (GET_DATA_BIT(lines1[i], j))
                    count1++;
            }
        }
    }
    fprintf(stderr, "Time with line ptrs     = %5.3f sec, count1 = %d\n",
            stopTimer(), count1);

    startTimer();
    for (k = 0; k < 10; k++) {
        count2 = 0;
        for (i = 0; i < h; i++) {
            line = data + i * wpl;
            for (j = 0; j < w; j++) {
               if (l_getDataBit(line, j))
                    count2++;
            }
        }
    }
    fprintf(stderr, "Time with l_get*        = %5.3f sec, count2 = %d\n",
            stopTimer(), count2);

    startTimer();
    for (k = 0; k < 10; k++) {
        count3 = 0;
        for (i = 0; i < h; i++) {
            for (j = 0; j < w; j++) {
                pixGetPixel(pixs, j, i, &val32);
                count3 += val32;
            }
        }
    }
    fprintf(stderr, "Time with pixGetPixel() = %5.3f sec, count3 = %d\n",
            stopTimer(), count3);

    pixt1 = pixCreateTemplate(pixs);
    data1 = pixGetData(pixt1);
    linet1 = pixGetLinePtrs(pixt1, NULL);
    pixt2 = pixCreateTemplate(pixs);
    data2 = pixGetData(pixt2);
    linet2 = pixGetLinePtrs(pixt2, NULL);

    nerrors = 0;

        /* Test different methods for 1 bpp */
    count1 = 0;
    for (i = 0; i < h; i++) {
        for (j = 0; j < w; j++) {
            val1 = GET_DATA_BIT(lines1[i], j);
            count1 += val1;
            if (val1) SET_DATA_BIT(linet1[i], j);
        }
    }
    count2 = 0;
    for (i = 0; i < h; i++) {
        line = data + i * wpl;
        line2 = data2 + i * wpl;
        for (j = 0; j < w; j++) {
            val2 = l_getDataBit(line, j);
            count2 += val2;
            if (val2) l_setDataBit(line2, j);
        }
    }
    ret = compareResults(pixs, pixt1, pixt2, count1, count2, "1 bpp");
    nerrors += ret;

        /* Test different methods for 2 bpp */
    count1 = 0;
    w2 = w / 2;
    for (i = 0; i < h; i++) {
        for (j = 0; j < w2; j++) {
            val1 = GET_DATA_DIBIT(lines1[i], j);
            count1 += val1;
            val1 += 0xbbbbbbbc;
            SET_DATA_DIBIT(linet1[i], j, val1);
        }
    }
    count2 = 0;
    for (i = 0; i < h; i++) {
        line = data + i * wpl;
        line2 = data2 + i * wpl;
        for (j = 0; j < w2; j++) {
            val2 = l_getDataDibit(line, j);
            count2 += val2;
            val2 += 0xbbbbbbbc;
            l_setDataDibit(line2, j, val2);
        }
    }
    ret = compareResults(pixs, pixt1, pixt2, count1, count2, "2 bpp");
    nerrors += ret;

        /* Test different methods for 4 bpp */
    count1 = 0;
    w4 = w / 4;
    for (i = 0; i < h; i++) {
        for (j = 0; j < w4; j++) {
            val1 = GET_DATA_QBIT(lines1[i], j);
            count1 += val1;
            val1 += 0xbbbbbbb0;
            SET_DATA_QBIT(linet1[i], j, val1);
        }
    }
    count2 = 0;
    for (i = 0; i < h; i++) {
        line = data + i * wpl;
        line2 = data2 + i * wpl;
        for (j = 0; j < w4; j++) {
            val2 = l_getDataQbit(line, j);
            count2 += val2;
            val2 += 0xbbbbbbb0;
            l_setDataQbit(line2, j, val2);
        }
    }
    ret = compareResults(pixs, pixt1, pixt2, count1, count2, "4 bpp");
    nerrors += ret;

        /* Test different methods for 8 bpp */
    count1 = 0;
    w8 = w / 8;
    for (i = 0; i < h; i++) {
        for (j = 0; j < w8; j++) {
            val1 = GET_DATA_BYTE(lines1[i], j);
            count1 += val1;
            val1 += 0xbbbbbb00;
            SET_DATA_BYTE(linet1[i], j, val1);
        }
    }
    count2 = 0;
    for (i = 0; i < h; i++) {
        line = data + i * wpl;
        line2 = data2 + i * wpl;
        for (j = 0; j < w8; j++) {
            val2 = l_getDataByte(line, j);
            count2 += val2;
            val2 += 0xbbbbbb00;
            l_setDataByte(line2, j, val2);
        }
    }
    ret = compareResults(pixs, pixt1, pixt2, count1, count2, "8 bpp");
    nerrors += ret;

        /* Test different methods for 16 bpp */
    count1 = 0;
    w16 = w / 16;
    for (i = 0; i < h; i++) {
        for (j = 0; j < w16; j++) {
            val1 = GET_DATA_TWO_BYTES(lines1[i], j);
            count1 += val1;
            val1 += 0xbbbb0000;
            SET_DATA_TWO_BYTES(linet1[i], j, val1);
        }
    }
    count2 = 0;
    for (i = 0; i < h; i++) {
        line = data + i * wpl;
        line2 = data2 + i * wpl;
        for (j = 0; j < w16; j++) {
            val2 = l_getDataTwoBytes(line, j);
            count2 += val2;
            val2 += 0xbbbb0000;
            l_setDataTwoBytes(line2, j, val2);
        }
    }
    ret = compareResults(pixs, pixt1, pixt2, count1, count2, "16 bpp");
    nerrors += ret;

        /* Test different methods for 32 bpp */
    count1 = 0;
    w32 = w / 32;
    for (i = 0; i < h; i++) {
        for (j = 0; j < w32; j++) {
            val1 = GET_DATA_FOUR_BYTES(lines1[i], j);
            count1 += val1 & 0xfff;
            SET_DATA_FOUR_BYTES(linet1[i], j, val1);
        }
    }
    count2 = 0;
    for (i = 0; i < h; i++) {
        line = data + i * wpl;
        line2 = data2 + i * wpl;
        for (j = 0; j < w32; j++) {
            val2 = l_getDataFourBytes(line, j);
            count2 += val2 & 0xfff;
            l_setDataFourBytes(line2, j, val2);
        }
    }
    ret = compareResults(pixs, pixt1, pixt2, count1, count2, "32 bpp");
    nerrors += ret;

    if (!nerrors)
        fprintf(stderr, "****  No errors  ****\n");
    else
        fprintf(stderr, "****  %d errors found!  ****\n", nerrors);

    pixDestroy(&pixs);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    lept_free(lines1);
    lept_free(linet1);
    lept_free(linet2);
    return 0;
}
コード例 #27
0
ファイル: quadtree.c プロジェクト: mehulsbhatt/MyOCRTEST
/*!
 *  pixVarianceInRectangle()
 *
 *      Input:  pix (8 bpp)
 *              box (region to compute variance and/or root variance)
 *              pix_ma (mean accumulator)
 *              dpix_msa (mean square accumulator)
 *              &var (<optional return> variance)
 *              &rvar (<optional return> root variance)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This function is intended to be used for many rectangles
 *          on the same image.  It can find the variance and/or the
 *          square root of the variance within a rectangle in O(1),
 *          independent of the size of the rectangle.
 */
l_int32
pixVarianceInRectangle(PIX *pixs,
                       BOX *box,
                       PIX *pix_ma,
                       DPIX *dpix_msa,
                       l_float32 *pvar,
                       l_float32 *prvar) {
    l_int32 w, h, bx, by, bw, bh;
    l_uint32 val00, val01, val10, val11;
    l_float64 dval00, dval01, dval10, dval11, mval, msval, var, norm;
    BOX *boxc;

    PROCNAME("pixVarianceInRectangle");

    if (!pvar && !prvar)
        return ERROR_INT("neither &var nor &rvar defined", procName, 1);
    if (pvar) *pvar = 0.0;
    if (prvar) *prvar = 0.0;
    if (!pixs || pixGetDepth(pixs) != 8)
        return ERROR_INT("pixs not defined", procName, 1);
    if (!box)
        return ERROR_INT("box not defined", procName, 1);
    if (!pix_ma)
        return ERROR_INT("pix_ma not defined", procName, 1);
    if (!dpix_msa)
        return ERROR_INT("dpix_msa not defined", procName, 1);

    /* Clip rectangle to image */
    pixGetDimensions(pixs, &w, &h, NULL);
    boxc = boxClipToRectangle(box, w, h);
    boxGetGeometry(boxc, &bx, &by, &bw, &bh);
    boxDestroy(&boxc);

    if (bw == 0 || bh == 0)
        return ERROR_INT("no pixels in box", procName, 1);

    /* Use up to 4 points in the accumulators */
    norm = 1.0 / (bw * bh);
    if (bx > 0 && by > 0) {
        pixGetPixel(pix_ma, bx + bw - 1, by + bh - 1, &val11);
        pixGetPixel(pix_ma, bx + bw - 1, by - 1, &val10);
        pixGetPixel(pix_ma, bx - 1, by + bh - 1, &val01);
        pixGetPixel(pix_ma, bx - 1, by - 1, &val00);
        dpixGetPixel(dpix_msa, bx + bw - 1, by + bh - 1, &dval11);
        dpixGetPixel(dpix_msa, bx + bw - 1, by - 1, &dval10);
        dpixGetPixel(dpix_msa, bx - 1, by + bh - 1, &dval01);
        dpixGetPixel(dpix_msa, bx - 1, by - 1, &dval00);
        mval = norm * (val11 - val01 + val00 - val10);
        msval = norm * (dval11 - dval01 + dval00 - dval10);
        var = (msval - mval * mval);
        if (pvar) *pvar = (l_float32) var;
        if (prvar) *prvar = (l_float32)(sqrt(var));
    } else if (by > 0) {  /* bx == 0 */
        pixGetPixel(pix_ma, bw - 1, by + bh - 1, &val11);
        pixGetPixel(pix_ma, bw - 1, by - 1, &val10);
        dpixGetPixel(dpix_msa, bw - 1, by + bh - 1, &dval11);
        dpixGetPixel(dpix_msa, bw - 1, by - 1, &dval10);
        mval = norm * (val11 - val10);
        msval = norm * (dval11 - dval10);
        var = (msval - mval * mval);
        if (pvar) *pvar = (l_float32) var;
        if (prvar) *prvar = (l_float32)(sqrt(var));
    } else if (bx > 0) {  /* by == 0 */
        pixGetPixel(pix_ma, bx + bw - 1, bh - 1, &val11);
        pixGetPixel(pix_ma, bx - 1, bh - 1, &val01);
        dpixGetPixel(dpix_msa, bx + bw - 1, bh - 1, &dval11);
        dpixGetPixel(dpix_msa, bx - 1, bh - 1, &dval01);
        mval = norm * (val11 - val01);
        msval = norm * (dval11 - dval01);
        var = (msval - mval * mval);
        if (pvar) *pvar = (l_float32) var;
        if (prvar) *prvar = (l_float32)(sqrt(var));
    } else {  /* bx == 0 && by == 0 */
        pixGetPixel(pix_ma, bw - 1, bh - 1, &val11);
        dpixGetPixel(dpix_msa, bw - 1, bh - 1, &dval11);
        mval = norm * val11;
        msval = norm * dval11;
        var = (msval - mval * mval);
        if (pvar) *pvar = (l_float32) var;
        if (prvar) *prvar = (l_float32)(sqrt(var));
    }

    return 0;
}
コード例 #28
0
ファイル: selgen.c プロジェクト: 0xkasun/Dummy_Tes
/*!
 *  pixGenerateSelRandom()
 *
 *      Input:  pix (1 bpp, typically small, to be used as a pattern)
 *              hitfract (fraction of allowable fg pixels that are hits)
 *              missfract (fraction of allowable bg pixels that are misses)
 *              distance (min distance from boundary pixel; use 0 for default)
 *              toppix (number of extra pixels of bg added above)
 *              botpix (number of extra pixels of bg added below)
 *              leftpix (number of extra pixels of bg added to left)
 *              rightpix (number of extra pixels of bg added to right)
 *              &pixe (<optional return> input pix expanded by extra pixels)
 *      Return: sel (hit-miss for input pattern), or null on error
 *
 *  Notes:
 *    (1) Either of hitfract and missfract can be zero.  If both are zero,
 *        the sel would be empty, and NULL is returned.
 *    (2) No elements are selected that are less than 'distance' pixels away
 *        from a boundary pixel of the same color.  This makes the
 *        match much more robust to edge noise.  Valid inputs of
 *        'distance' are 0, 1, 2, 3 and 4.  If distance is either 0 or
 *        greater than 4, we reset it to the default value.
 *    (3) The 4 numbers for adding rectangles of pixels outside the fg
 *        can be use if the pattern is expected to be surrounded by bg
 *        (white) pixels.  On the other hand, if the pattern may be near
 *        other fg (black) components on some sides, use 0 for those sides.
 *    (4) The input pix, as extended by the extra pixels on selected sides,
 *        can optionally be returned.  For debugging, call
 *        pixDisplayHitMissSel() to visualize the hit-miss sel superimposed
 *        on the generating bitmap.
 */
SEL *
pixGenerateSelRandom(PIX       *pixs,
                     l_float32  hitfract,
                     l_float32  missfract,
                     l_int32    distance,
                     l_int32    toppix,
                     l_int32    botpix,
                     l_int32    leftpix,
                     l_int32    rightpix,
                     PIX      **ppixe)
{
l_int32    ws, hs, w, h, x, y, i, j, thresh;
l_uint32   val;
PIX       *pixt1, *pixt2, *pixfg, *pixbg;
SEL       *seld, *sel;

    PROCNAME("pixGenerateSelRandom");

    if (ppixe) *ppixe = NULL;
    if (!pixs)
        return (SEL *)ERROR_PTR("pixs not defined", procName, NULL);
    if (pixGetDepth(pixs) != 1)
        return (SEL *)ERROR_PTR("pixs not 1 bpp", procName, NULL);
    if (hitfract <= 0.0 && missfract <= 0.0)
        return (SEL *)ERROR_PTR("no hits or misses", procName, NULL);
    if (hitfract > 1.0 || missfract > 1.0)
        return (SEL *)ERROR_PTR("fraction can't be > 1.0", procName, NULL);

    if (distance <= 0)
        distance = DEFAULT_DISTANCE_TO_BOUNDARY;
    if (distance > MAX_DISTANCE_TO_BOUNDARY) {
        L_WARNING("distance too large; setting to max value", procName);
        distance = MAX_DISTANCE_TO_BOUNDARY;
    }

        /* Locate the foreground */
    pixClipToForeground(pixs, &pixt1, NULL);
    if (!pixt1)
        return (SEL *)ERROR_PTR("pixt1 not made", procName, NULL);
    ws = pixGetWidth(pixt1);
    hs = pixGetHeight(pixt1);
    w = ws;
    h = hs;

        /* Crop out a region including the foreground, and add pixels
         * on sides depending on the side flags */
    if (toppix || botpix || leftpix || rightpix) {
        x = y = 0;
        if (toppix) {
            h += toppix;
            y = toppix;
        }
        if (botpix)
            h += botpix;
        if (leftpix) {
            w += leftpix;
            x = leftpix;
        }
        if (rightpix)
            w += rightpix;
        pixt2 = pixCreate(w, h, 1);
        pixRasterop(pixt2, x, y, ws, hs, PIX_SRC, pixt1, 0, 0);
    }
    else
        pixt2 = pixClone(pixt1);
    if (ppixe)
        *ppixe = pixClone(pixt2);
    pixDestroy(&pixt1);

        /* Identify fg and bg pixels that are at least 'distance' pixels
         * away from the boundary pixels in their set */
    seld = selCreateBrick(2 * distance + 1, 2 * distance + 1,
                          distance, distance, SEL_HIT);
    pixfg = pixErode(NULL, pixt2, seld);
    pixbg = pixDilate(NULL, pixt2, seld);
    pixInvert(pixbg, pixbg);
    selDestroy(&seld);
    pixDestroy(&pixt2);

        /* Generate the sel from a random selection of these points */
    sel = selCreateBrick(h, w, h / 2, w / 2, SEL_DONT_CARE);
    if (hitfract > 0.0) {
        thresh = (l_int32)(hitfract * (l_float64)RAND_MAX);
        for (i = 0; i < h; i++) {
            for (j = 0; j < w; j++) {
                pixGetPixel(pixfg, j, i, &val);
                if (val) {
                    if (rand() < thresh)
                        selSetElement(sel, i, j, SEL_HIT);
                }
            }
        }
    }
    if (missfract > 0.0) {
        thresh = (l_int32)(missfract * (l_float64)RAND_MAX);
        for (i = 0; i < h; i++) {
            for (j = 0; j < w; j++) {
                pixGetPixel(pixbg, j, i, &val);
                if (val) {
                    if (rand() < thresh)
                        selSetElement(sel, i, j, SEL_MISS);
                }
            }
        }
    }

    pixDestroy(&pixfg);
    pixDestroy(&pixbg);
    return sel;
}
コード例 #29
0
ファイル: ccbordtest.c プロジェクト: ErfanHasmin/scope-ocr
main(int    argc,
     char **argv)
{
char        *filein;
l_int32      count;
CCBORDA     *ccba, *ccba2;
PIX         *pixs, *pixd, *pixd2, *pixd3;
PIX         *pixt, *pixc, *pixc2;
static char  mainName[] = "ccbordtest";

    if (argc != 2)
	exit(ERROR_INT(" Syntax:  ccbordtest filein", mainName, 1));

    filein = argv[1];

    if ((pixs = pixRead(filein)) == NULL)
	exit(ERROR_INT("pixs not made", mainName, 1));
	    
    fprintf(stderr, "Get border representation...");
    startTimer();
    ccba = pixGetAllCCBorders(pixs);
    fprintf(stderr, "%6.3f sec\n", stopTimer());

#if 0
	/* get global locs directly and display borders */
    fprintf(stderr, "Convert from local to global locs...");
    startTimer();
    ccbaGenerateGlobalLocs(ccba);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
    fprintf(stderr, "Display border representation...");
    startTimer();
    pixd = ccbaDisplayBorder(ccba);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
    pixWrite("/tmp/junkborder1.png", pixd, IFF_PNG);

#else
	/* get step chain code, then global coords, and display borders */
    fprintf(stderr, "Get step chain code...");
    startTimer();
    ccbaGenerateStepChains(ccba);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
    fprintf(stderr, "Convert from step chain to global locs...");
    startTimer();
    ccbaStepChainsToPixCoords(ccba, CCB_GLOBAL_COORDS);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
    fprintf(stderr, "Display border representation...");
    startTimer();
    pixd = ccbaDisplayBorder(ccba);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
    pixWrite("/tmp/junkborder1.png", pixd, IFF_PNG);
#endif

	/* check if border pixels are in original set */
    fprintf(stderr, "Check if border pixels are in original set ...\n");
    pixt = pixSubtract(NULL, pixd, pixs);
    pixCountPixels(pixt, &count, NULL);
    if (count == 0)
	fprintf(stderr, "   all border pixels are in original set\n");
    else
	fprintf(stderr, "   %d border pixels are not in original set\n", count);
    pixDestroy(&pixt);

	/* display image */
    fprintf(stderr, "Reconstruct image ...");
    startTimer();
/*    pixc = ccbaDisplayImage1(ccba); */
    pixc = ccbaDisplayImage2(ccba);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
    pixWrite("/tmp/junkrecon1.png", pixc, IFF_PNG);

	/* check with original to see if correct */
    fprintf(stderr, "Check with original to see if correct ...\n");
    pixXor(pixc, pixc, pixs);
    pixCountPixels(pixc, &count, NULL);
    if (count == 0)
	fprintf(stderr, "   perfect direct recon\n");
    else {
	l_int32  w, h, i, j;
	l_uint32 val;
	fprintf(stderr, "   %d pixels in error in recon\n", count);
#if 1
	w = pixGetWidth(pixc);
	h = pixGetHeight(pixc);
	for (i = 0; i < h; i++) {
	    for (j = 0; j < w; j++) {
		pixGetPixel(pixc, j, i, &val);
		if (val == 1)
		    fprintf(stderr, "bad pixel at (%d, %d)\n", j, i);
	    }
	}
	pixWrite("/tmp/junkbadpixels.png", pixc, IFF_PNG);
#endif
    }


    /*----------------------------------------------------------*
     *        write to file (compressed) and read back          *
     *----------------------------------------------------------*/
    fprintf(stderr, "Write serialized step data...");
    startTimer();
    ccbaWrite("/tmp/junkstepout", ccba);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
    fprintf(stderr, "Read serialized step data...");
    startTimer();
    ccba2 = ccbaRead("/tmp/junkstepout");
    fprintf(stderr, "%6.3f sec\n", stopTimer());

	/* display the border pixels again */
    fprintf(stderr, "Convert from step chain to global locs...");
    startTimer();
    ccbaStepChainsToPixCoords(ccba2, CCB_GLOBAL_COORDS);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
    fprintf(stderr, "Display border representation...");
    startTimer();
    pixd2 = ccbaDisplayBorder(ccba2);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
    pixWrite("/tmp/junkborder2.png", pixd2, IFF_PNG);

	/* check if border pixels are same as first time */
    pixXor(pixd2, pixd2, pixd);
    pixCountPixels(pixd2, &count, NULL);
    if (count == 0)
	fprintf(stderr, "   perfect w/r border recon\n");
    else {
	l_int32  w, h, i, j, val;
	fprintf(stderr, "   %d pixels in error in w/r recon\n", count);
    }
    pixDestroy(&pixd2);

	/* display image again */
    fprintf(stderr, "Convert from step chain to local coords...");
    startTimer();
    ccbaStepChainsToPixCoords(ccba2, CCB_LOCAL_COORDS);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
    fprintf(stderr, "Reconstruct image from file ...");
    startTimer();
/*    pixc2 = ccbaDisplayImage1(ccba2); */
    pixc2 = ccbaDisplayImage2(ccba2);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
    pixWrite("/tmp/junkrecon2.png", pixc2, IFF_PNG);

	/* check with original to see if correct */
    fprintf(stderr, "Check with original to see if correct ...\n");
    pixXor(pixc2, pixc2, pixs);
    pixCountPixels(pixc2, &count, NULL);
    if (count == 0)
	fprintf(stderr, "   perfect image recon\n");
    else {
	l_int32  w, h, i, j;
	l_uint32 val;
	fprintf(stderr, "   %d pixels in error in image recon\n", count);
#if 1
	w = pixGetWidth(pixc2);
	h = pixGetHeight(pixc2);
	for (i = 0; i < h; i++) {
	    for (j = 0; j < w; j++) {
		pixGetPixel(pixc2, j, i, &val);
		if (val == 1)
		    fprintf(stderr, "bad pixel at (%d, %d)\n", j, i);
	    }
	}
	pixWrite("/tmp/junkbadpixels2.png", pixc2, IFF_PNG);
#endif
    }

    /*----------------------------------------------------------*
     *     make, display and check single path border for svg   *
     *----------------------------------------------------------*/
	/* make local single path border for svg */
    fprintf(stderr, "Make local single path borders for svg ...");
    startTimer();
    ccbaGenerateSinglePath(ccba);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
	/* generate global single path border */
    fprintf(stderr, "Generate global single path borders ...");
    startTimer();
    ccbaGenerateSPGlobalLocs(ccba, CCB_SAVE_TURNING_PTS);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
	/* display border pixels from single path */
    fprintf(stderr, "Display border from single path...");
    startTimer();
    pixd3 = ccbaDisplaySPBorder(ccba);
    fprintf(stderr, "%6.3f sec\n", stopTimer());
    pixWrite("/tmp/junkborder3.png", pixd3, IFF_PNG);
	/* check if border pixels are in original set */
    fprintf(stderr, "Check if border pixels are in original set ...\n");
    pixt = pixSubtract(NULL, pixd3, pixs);
    pixCountPixels(pixt, &count, NULL);
    if (count == 0)
	fprintf(stderr, "   all border pixels are in original set\n");
    else
	fprintf(stderr, "   %d border pixels are not in original set\n", count);
    pixDestroy(&pixt);
    pixDestroy(&pixd3);

	/*  output in svg file format */
    fprintf(stderr, "Write output in svg file format ...\n");
    startTimer();
    ccbaWriteSVG("/tmp/junksvg", ccba);
    fprintf(stderr, "%6.3f sec\n", stopTimer());

    ccbaDestroy(&ccba2);
    ccbaDestroy(&ccba);
    pixDestroy(&pixs);
    pixDestroy(&pixd);
    pixDestroy(&pixc);
    pixDestroy(&pixc2);
    return 0;
}
コード例 #30
0
ファイル: selgen.c プロジェクト: 0xkasun/Dummy_Tes
/*!
 *  pixGetRunsOnLine()
 *
 *      Input:  pixs (1 bpp)
 *              x1, y1, x2, y2
 *      Return: numa, or null on error
 *
 *  Notes:
 *      (1) Action: this function uses the bresenham algorithm to compute
 *          the pixels along the specified line.  It returns a Numa of the
 *          runlengths of the fg (black) and bg (white) runs, always
 *          starting with a white run.
 *      (2) If the first pixel on the line is black, the length of the
 *          first returned run (which is white) is 0.
 */
NUMA *
pixGetRunsOnLine(PIX     *pixs,
                 l_int32  x1,
                 l_int32  y1,
                 l_int32  x2,
                 l_int32  y2)
{
l_int32   w, h, x, y, npts;
l_int32   i, runlen, preval;
l_uint32  val;
NUMA     *numa;
PTA      *pta;

    PROCNAME("pixGetRunsOnLine");

    if (!pixs)
        return (NUMA *)ERROR_PTR("pixs not defined", procName, NULL);
    if (pixGetDepth(pixs) != 1)
        return (NUMA *)ERROR_PTR("pixs not 1 bpp", procName, NULL);

    w = pixGetWidth(pixs);
    h = pixGetHeight(pixs);
    if (x1 < 0 || x1 >= w)
        return (NUMA *)ERROR_PTR("x1 not valid", procName, NULL);
    if (x2 < 0 || x2 >= w)
        return (NUMA *)ERROR_PTR("x2 not valid", procName, NULL);
    if (y1 < 0 || y1 >= h)
        return (NUMA *)ERROR_PTR("y1 not valid", procName, NULL);
    if (y2 < 0 || y2 >= h)
        return (NUMA *)ERROR_PTR("y2 not valid", procName, NULL);

    if ((pta = generatePtaLine(x1, y1, x2, y2)) == NULL)
        return (NUMA *)ERROR_PTR("pta not made", procName, NULL);
    if ((npts = ptaGetCount(pta)) == 0)
        return (NUMA *)ERROR_PTR("pta has no pts", procName, NULL);

    if ((numa = numaCreate(0)) == NULL)
        return (NUMA *)ERROR_PTR("numa not made", procName, NULL);

    for (i = 0; i < npts; i++) {
        ptaGetIPt(pta, i, &x, &y);
        pixGetPixel(pixs, x, y, &val);
        if (i == 0) {
            if (val == 1) {  /* black pixel; append white run of size 0 */
                numaAddNumber(numa, 0);
            }
            preval = val;
            runlen = 1;
            continue;
        }
        if (val == preval) {  /* extend current run */
            preval = val;
            runlen++;
        }
        else {  /* end previous run */
            numaAddNumber(numa, runlen);
            preval = val;
            runlen = 1;
        }
    }
    numaAddNumber(numa, runlen);  /* append last run */

    ptaDestroy(&pta);
    return numa;
}