/* Model initialize function */ void xpcosc_initialize(boolean_T firstTime) { (void)firstTime; /* Registration code */ /* initialize non-finites */ rt_InitInfAndNaN(sizeof(real_T)); /* initialize real-time model */ (void) memset((void *)xpcosc_rtM, 0, sizeof(rtModel_xpcosc)); { /* Setup solver object */ rtsiSetSimTimeStepPtr(&xpcosc_rtM->solverInfo, &xpcosc_rtM->Timing.simTimeStep); rtsiSetTPtr(&xpcosc_rtM->solverInfo, &rtmGetTPtr(xpcosc_rtM)); rtsiSetStepSizePtr(&xpcosc_rtM->solverInfo, &xpcosc_rtM->Timing.stepSize0); rtsiSetdXPtr(&xpcosc_rtM->solverInfo, &xpcosc_rtM->ModelData.derivs); rtsiSetContStatesPtr(&xpcosc_rtM->solverInfo, &xpcosc_rtM->ModelData.contStates); rtsiSetNumContStatesPtr(&xpcosc_rtM->solverInfo, &xpcosc_rtM->Sizes.numContStates); rtsiSetErrorStatusPtr(&xpcosc_rtM->solverInfo, (&rtmGetErrorStatus (xpcosc_rtM))); rtsiSetRTModelPtr(&xpcosc_rtM->solverInfo, xpcosc_rtM); } rtsiSetSimTimeStep(&xpcosc_rtM->solverInfo, MAJOR_TIME_STEP); xpcosc_rtM->ModelData.intgData.y = xpcosc_rtM->ModelData.odeY; xpcosc_rtM->ModelData.intgData.f[0] = xpcosc_rtM->ModelData.odeF[0]; xpcosc_rtM->ModelData.intgData.f[1] = xpcosc_rtM->ModelData.odeF[1]; xpcosc_rtM->ModelData.intgData.f[2] = xpcosc_rtM->ModelData.odeF[2]; xpcosc_rtM->ModelData.intgData.f[3] = xpcosc_rtM->ModelData.odeF[3]; xpcosc_rtM->ModelData.contStates = ((real_T *) &xpcosc_X); rtsiSetSolverData(&xpcosc_rtM->solverInfo, (void *) &xpcosc_rtM->ModelData.intgData); rtsiSetSolverName(&xpcosc_rtM->solverInfo,"ode4"); xpcosc_rtM->solverInfoPtr = (&xpcosc_rtM->solverInfo); /* Initialize timing info */ { int_T *mdlTsMap = xpcosc_rtM->Timing.sampleTimeTaskIDArray; mdlTsMap[0] = 0; mdlTsMap[1] = 1; xpcosc_rtM->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]); xpcosc_rtM->Timing.sampleTimes = (&xpcosc_rtM->Timing.sampleTimesArray[0]); xpcosc_rtM->Timing.offsetTimes = (&xpcosc_rtM->Timing.offsetTimesArray[0]); /* task periods */ xpcosc_rtM->Timing.sampleTimes[0] = (0.0); xpcosc_rtM->Timing.sampleTimes[1] = (0.001); /* task offsets */ xpcosc_rtM->Timing.offsetTimes[0] = (0.0); xpcosc_rtM->Timing.offsetTimes[1] = (0.0); } rtmSetTPtr(xpcosc_rtM, &xpcosc_rtM->Timing.tArray[0]); { int_T *mdlSampleHits = xpcosc_rtM->Timing.sampleHitArray; mdlSampleHits[0] = 1; mdlSampleHits[1] = 1; xpcosc_rtM->Timing.sampleHits = (&mdlSampleHits[0]); } rtmSetTFinal(xpcosc_rtM, 0.2); xpcosc_rtM->Timing.stepSize0 = 0.001; xpcosc_rtM->Timing.stepSize1 = 0.001; /* Setup for data logging */ { static RTWLogInfo rt_DataLoggingInfo; xpcosc_rtM->rtwLogInfo = &rt_DataLoggingInfo; } /* Setup for data logging */ { /* * Set pointers to the data and signal info each state */ { static int_T rt_LoggedStateWidths[] = { 1, 1 }; static int_T rt_LoggedStateNumDimensions[] = { 1, 1 }; static int_T rt_LoggedStateDimensions[] = { 1, 1 }; static boolean_T rt_LoggedStateIsVarDims[] = { 0, 0 }; static BuiltInDTypeId rt_LoggedStateDataTypeIds[] = { SS_DOUBLE, SS_DOUBLE }; static int_T rt_LoggedStateComplexSignals[] = { 0, 0 }; static const char_T *rt_LoggedStateLabels[] = { "CSTATE", "CSTATE" }; static const char_T *rt_LoggedStateBlockNames[] = { "xpcosc/Integrator1", "xpcosc/Integrator" }; static const char_T *rt_LoggedStateNames[] = { "", "" }; static boolean_T rt_LoggedStateCrossMdlRef[] = { 0, 0 }; static RTWLogDataTypeConvert rt_RTWLogDataTypeConvert[] = { { 0, SS_DOUBLE, SS_DOUBLE, 0, 0, 0, 1.0, 0, 0.0 }, { 0, SS_DOUBLE, SS_DOUBLE, 0, 0, 0, 1.0, 0, 0.0 } }; static RTWLogSignalInfo rt_LoggedStateSignalInfo = { 2, rt_LoggedStateWidths, rt_LoggedStateNumDimensions, rt_LoggedStateDimensions, rt_LoggedStateIsVarDims, (NULL), rt_LoggedStateDataTypeIds, rt_LoggedStateComplexSignals, (NULL), { rt_LoggedStateLabels }, (NULL), (NULL), (NULL), { rt_LoggedStateBlockNames }, { rt_LoggedStateNames }, rt_LoggedStateCrossMdlRef, rt_RTWLogDataTypeConvert }; static void * rt_LoggedStateSignalPtrs[2]; rtliSetLogXSignalPtrs(xpcosc_rtM->rtwLogInfo, (LogSignalPtrsType) rt_LoggedStateSignalPtrs); rtliSetLogXSignalInfo(xpcosc_rtM->rtwLogInfo, &rt_LoggedStateSignalInfo); rt_LoggedStateSignalPtrs[0] = (void*)&xpcosc_X.Integrator1_CSTATE; rt_LoggedStateSignalPtrs[1] = (void*)&xpcosc_X.Integrator_CSTATE; } rtliSetLogT(xpcosc_rtM->rtwLogInfo, "tout"); rtliSetLogX(xpcosc_rtM->rtwLogInfo, "xout"); rtliSetLogXFinal(xpcosc_rtM->rtwLogInfo, ""); rtliSetSigLog(xpcosc_rtM->rtwLogInfo, ""); rtliSetLogVarNameModifier(xpcosc_rtM->rtwLogInfo, "rt_"); rtliSetLogFormat(xpcosc_rtM->rtwLogInfo, 0); rtliSetLogMaxRows(xpcosc_rtM->rtwLogInfo, 0); rtliSetLogDecimation(xpcosc_rtM->rtwLogInfo, 1); /* * Set pointers to the data and signal info for each output */ { static void * rt_LoggedOutputSignalPtrs[] = { &xpcosc_Y.Outport[0] }; rtliSetLogYSignalPtrs(xpcosc_rtM->rtwLogInfo, ((LogSignalPtrsType) rt_LoggedOutputSignalPtrs)); } { static int_T rt_LoggedOutputWidths[] = { 2 }; static int_T rt_LoggedOutputNumDimensions[] = { 1 }; static int_T rt_LoggedOutputDimensions[] = { 2 }; static boolean_T rt_LoggedOutputIsVarDims[] = { 0 }; static int_T* rt_LoggedCurrentSignalDimensions[] = { (NULL) }; static BuiltInDTypeId rt_LoggedOutputDataTypeIds[] = { SS_DOUBLE }; static int_T rt_LoggedOutputComplexSignals[] = { 0 }; static const char_T *rt_LoggedOutputLabels[] = { "" }; static const char_T *rt_LoggedOutputBlockNames[] = { "xpcosc/Outport" }; static RTWLogDataTypeConvert rt_RTWLogDataTypeConvert[] = { { 0, SS_DOUBLE, SS_DOUBLE, 0, 0, 0, 1.0, 0, 0.0 } }; static RTWLogSignalInfo rt_LoggedOutputSignalInfo[] = { { 1, rt_LoggedOutputWidths, rt_LoggedOutputNumDimensions, rt_LoggedOutputDimensions, rt_LoggedOutputIsVarDims, rt_LoggedCurrentSignalDimensions, rt_LoggedOutputDataTypeIds, rt_LoggedOutputComplexSignals, (NULL), { rt_LoggedOutputLabels }, (NULL), (NULL), (NULL), { rt_LoggedOutputBlockNames }, { (NULL) }, (NULL), rt_RTWLogDataTypeConvert } }; rtliSetLogYSignalInfo(xpcosc_rtM->rtwLogInfo, rt_LoggedOutputSignalInfo); /* set currSigDims field */ rt_LoggedCurrentSignalDimensions[0] = &rt_LoggedOutputWidths[0]; } rtliSetLogY(xpcosc_rtM->rtwLogInfo, "yout"); } /* external mode info */ xpcosc_rtM->Sizes.checksums[0] = (1235351435U); xpcosc_rtM->Sizes.checksums[1] = (4143988505U); xpcosc_rtM->Sizes.checksums[2] = (362576123U); xpcosc_rtM->Sizes.checksums[3] = (1068881914U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[1]; xpcosc_rtM->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(xpcosc_rtM->extModeInfo, &xpcosc_rtM->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(xpcosc_rtM->extModeInfo, xpcosc_rtM->Sizes.checksums); rteiSetTPtr(xpcosc_rtM->extModeInfo, rtmGetTPtr(xpcosc_rtM)); } xpcosc_rtM->solverInfoPtr = (&xpcosc_rtM->solverInfo); xpcosc_rtM->Timing.stepSize = (0.001); rtsiSetFixedStepSize(&xpcosc_rtM->solverInfo, 0.001); rtsiSetSolverMode(&xpcosc_rtM->solverInfo, SOLVER_MODE_SINGLETASKING); /* block I/O */ xpcosc_rtM->ModelData.blockIO = ((void *) &xpcosc_B); { xpcosc_B.Integrator1 = 0.0; xpcosc_B.PCI6221AD = 0.0; xpcosc_B.RateTransition1 = 0.0; xpcosc_B.SignalGenerator = 0.0; xpcosc_B.RateTransition = 0.0; xpcosc_B.Gain = 0.0; xpcosc_B.Integrator = 0.0; xpcosc_B.Gain1 = 0.0; xpcosc_B.Gain2 = 0.0; xpcosc_B.Sum = 0.0; } /* parameters */ xpcosc_rtM->ModelData.defaultParam = ((real_T *)&xpcosc_P); /* states (continuous) */ { real_T *x = (real_T *) &xpcosc_X; xpcosc_rtM->ModelData.contStates = (x); (void) memset((void *)&xpcosc_X, 0, sizeof(ContinuousStates_xpcosc)); } /* states (dwork) */ xpcosc_rtM->Work.dwork = ((void *) &xpcosc_DWork); (void) memset((void *)&xpcosc_DWork, 0, sizeof(D_Work_xpcosc)); xpcosc_DWork.PCI6713DA_RWORK = 0.0; /* external outputs */ xpcosc_rtM->ModelData.outputs = (&xpcosc_Y); xpcosc_Y.Outport[0] = 0.0; xpcosc_Y.Outport[1] = 0.0; /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo, 0, sizeof(dtInfo)); xpcosc_rtM->SpecialInfo.mappingInfo = (&dtInfo); xpcosc_rtM->SpecialInfo.xpcData = ((void*) &dtInfo); dtInfo.numDataTypes = 14; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.B = &rtBTransTable; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } /* Initialize DataMapInfo substructure containing ModelMap for C API */ xpcosc_InitializeDataMapInfo(xpcosc_rtM); /* child S-Function registration */ { RTWSfcnInfo *sfcnInfo = &xpcosc_rtM->NonInlinedSFcns.sfcnInfo; xpcosc_rtM->sfcnInfo = (sfcnInfo); rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(xpcosc_rtM))); rtssSetNumRootSampTimesPtr(sfcnInfo, &xpcosc_rtM->Sizes.numSampTimes); xpcosc_rtM->NonInlinedSFcns.taskTimePtrs[0] = &(rtmGetTPtr(xpcosc_rtM)[0]); xpcosc_rtM->NonInlinedSFcns.taskTimePtrs[1] = &(rtmGetTPtr(xpcosc_rtM)[1]); rtssSetTPtrPtr(sfcnInfo,xpcosc_rtM->NonInlinedSFcns.taskTimePtrs); rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(xpcosc_rtM)); rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(xpcosc_rtM)); rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(xpcosc_rtM)); rtssSetStepSizePtr(sfcnInfo, &xpcosc_rtM->Timing.stepSize); rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(xpcosc_rtM)); rtssSetDerivCacheNeedsResetPtr(sfcnInfo, &xpcosc_rtM->ModelData.derivCacheNeedsReset); rtssSetZCCacheNeedsResetPtr(sfcnInfo, &xpcosc_rtM->ModelData.zCCacheNeedsReset); rtssSetBlkStateChangePtr(sfcnInfo, &xpcosc_rtM->ModelData.blkStateChange); rtssSetSampleHitsPtr(sfcnInfo, &xpcosc_rtM->Timing.sampleHits); rtssSetPerTaskSampleHitsPtr(sfcnInfo, &xpcosc_rtM->Timing.perTaskSampleHits); rtssSetSimModePtr(sfcnInfo, &xpcosc_rtM->simMode); rtssSetSolverInfoPtr(sfcnInfo, &xpcosc_rtM->solverInfoPtr); } xpcosc_rtM->Sizes.numSFcns = (2); /* register each child */ { (void) memset((void *)&xpcosc_rtM->NonInlinedSFcns.childSFunctions[0], 0, 2*sizeof(SimStruct)); xpcosc_rtM->childSfunctions = (&xpcosc_rtM->NonInlinedSFcns.childSFunctionPtrs[0]); xpcosc_rtM->childSfunctions[0] = (&xpcosc_rtM->NonInlinedSFcns.childSFunctions[0]); xpcosc_rtM->childSfunctions[1] = (&xpcosc_rtM->NonInlinedSFcns.childSFunctions[1]); /* Level2 S-Function Block: xpcosc/<Root>/PCI-6221 AD (adnipcim) */ { SimStruct *rts = xpcosc_rtM->childSfunctions[0]; /* timing info */ time_T *sfcnPeriod = xpcosc_rtM->NonInlinedSFcns.Sfcn0.sfcnPeriod; time_T *sfcnOffset = xpcosc_rtM->NonInlinedSFcns.Sfcn0.sfcnOffset; int_T *sfcnTsMap = xpcosc_rtM->NonInlinedSFcns.Sfcn0.sfcnTsMap; (void) memset((void*)sfcnPeriod, 0, sizeof(time_T)*1); (void) memset((void*)sfcnOffset, 0, sizeof(time_T)*1); ssSetSampleTimePtr(rts, &sfcnPeriod[0]); ssSetOffsetTimePtr(rts, &sfcnOffset[0]); ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap); /* Set up the mdlInfo pointer */ { ssSetBlkInfo2Ptr(rts, &xpcosc_rtM->NonInlinedSFcns.blkInfo2[0]); } ssSetRTWSfcnInfo(rts, xpcosc_rtM->sfcnInfo); /* Allocate memory of model methods 2 */ { ssSetModelMethods2(rts, &xpcosc_rtM->NonInlinedSFcns.methods2[0]); } /* Allocate memory of model methods 3 */ { ssSetModelMethods3(rts, &xpcosc_rtM->NonInlinedSFcns.methods3[0]); } /* Allocate memory for states auxilliary information */ { ssSetStatesInfo2(rts, &xpcosc_rtM->NonInlinedSFcns.statesInfo2[0]); } /* outputs */ { ssSetPortInfoForOutputs(rts, &xpcosc_rtM->NonInlinedSFcns.Sfcn0.outputPortInfo[0]); _ssSetNumOutputPorts(rts, 1); /* port 0 */ { _ssSetOutputPortNumDimensions(rts, 0, 1); ssSetOutputPortWidth(rts, 0, 1); ssSetOutputPortSignal(rts, 0, ((real_T *) &xpcosc_B.PCI6221AD)); } } /* path info */ ssSetModelName(rts, "PCI-6221 AD"); ssSetPath(rts, "xpcosc/PCI-6221 AD"); ssSetRTModel(rts,xpcosc_rtM); ssSetParentSS(rts, (NULL)); ssSetRootSS(rts, rts); ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2); /* parameters */ { mxArray **sfcnParams = (mxArray **) &xpcosc_rtM->NonInlinedSFcns.Sfcn0.params; ssSetSFcnParamsCount(rts, 7); ssSetSFcnParamsPtr(rts, &sfcnParams[0]); ssSetSFcnParam(rts, 0, (mxArray*)xpcosc_P.PCI6221AD_P1_Size); ssSetSFcnParam(rts, 1, (mxArray*)xpcosc_P.PCI6221AD_P2_Size); ssSetSFcnParam(rts, 2, (mxArray*)xpcosc_P.PCI6221AD_P3_Size); ssSetSFcnParam(rts, 3, (mxArray*)xpcosc_P.PCI6221AD_P4_Size); ssSetSFcnParam(rts, 4, (mxArray*)xpcosc_P.PCI6221AD_P5_Size); ssSetSFcnParam(rts, 5, (mxArray*)xpcosc_P.PCI6221AD_P6_Size); ssSetSFcnParam(rts, 6, (mxArray*)xpcosc_P.PCI6221AD_P7_Size); } /* work vectors */ ssSetIWork(rts, (int_T *) &xpcosc_DWork.PCI6221AD_IWORK[0]); ssSetPWork(rts, (void **) &xpcosc_DWork.PCI6221AD_PWORK); { struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *) &xpcosc_rtM->NonInlinedSFcns.Sfcn0.dWork; struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *) &xpcosc_rtM->NonInlinedSFcns.Sfcn0.dWorkAux; ssSetSFcnDWork(rts, dWorkRecord); ssSetSFcnDWorkAux(rts, dWorkAuxRecord); _ssSetNumDWork(rts, 2); /* IWORK */ ssSetDWorkWidth(rts, 0, 41); ssSetDWorkDataType(rts, 0,SS_INTEGER); ssSetDWorkComplexSignal(rts, 0, 0); ssSetDWork(rts, 0, &xpcosc_DWork.PCI6221AD_IWORK[0]); /* PWORK */ ssSetDWorkWidth(rts, 1, 1); ssSetDWorkDataType(rts, 1,SS_POINTER); ssSetDWorkComplexSignal(rts, 1, 0); ssSetDWork(rts, 1, &xpcosc_DWork.PCI6221AD_PWORK); } /* registration */ adnipcim(rts); sfcnInitializeSizes(rts); sfcnInitializeSampleTimes(rts); /* adjust sample time */ ssSetSampleTime(rts, 0, 0.001); ssSetOffsetTime(rts, 0, 0.0); sfcnTsMap[0] = 1; /* set compiled values of dynamic vector attributes */ ssSetNumNonsampledZCs(rts, 0); /* Update connectivity flags for each port */ _ssSetOutputPortConnected(rts, 0, 1); _ssSetOutputPortBeingMerged(rts, 0, 0); /* Update the BufferDstPort flags for each input port */ } /* Level2 S-Function Block: xpcosc/<Root>/PCI-6713 DA (danipci671x) */ { SimStruct *rts = xpcosc_rtM->childSfunctions[1]; /* timing info */ time_T *sfcnPeriod = xpcosc_rtM->NonInlinedSFcns.Sfcn1.sfcnPeriod; time_T *sfcnOffset = xpcosc_rtM->NonInlinedSFcns.Sfcn1.sfcnOffset; int_T *sfcnTsMap = xpcosc_rtM->NonInlinedSFcns.Sfcn1.sfcnTsMap; (void) memset((void*)sfcnPeriod, 0, sizeof(time_T)*1); (void) memset((void*)sfcnOffset, 0, sizeof(time_T)*1); ssSetSampleTimePtr(rts, &sfcnPeriod[0]); ssSetOffsetTimePtr(rts, &sfcnOffset[0]); ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap); /* Set up the mdlInfo pointer */ { ssSetBlkInfo2Ptr(rts, &xpcosc_rtM->NonInlinedSFcns.blkInfo2[1]); } ssSetRTWSfcnInfo(rts, xpcosc_rtM->sfcnInfo); /* Allocate memory of model methods 2 */ { ssSetModelMethods2(rts, &xpcosc_rtM->NonInlinedSFcns.methods2[1]); } /* Allocate memory of model methods 3 */ { ssSetModelMethods3(rts, &xpcosc_rtM->NonInlinedSFcns.methods3[1]); } /* Allocate memory for states auxilliary information */ { ssSetStatesInfo2(rts, &xpcosc_rtM->NonInlinedSFcns.statesInfo2[1]); } /* inputs */ { _ssSetNumInputPorts(rts, 1); ssSetPortInfoForInputs(rts, &xpcosc_rtM->NonInlinedSFcns.Sfcn1.inputPortInfo[0]); /* port 0 */ { real_T const **sfcnUPtrs = (real_T const **) &xpcosc_rtM->NonInlinedSFcns.Sfcn1.UPtrs0; sfcnUPtrs[0] = &xpcosc_B.RateTransition; ssSetInputPortSignalPtrs(rts, 0, (InputPtrsType)&sfcnUPtrs[0]); _ssSetInputPortNumDimensions(rts, 0, 1); ssSetInputPortWidth(rts, 0, 1); } } /* path info */ ssSetModelName(rts, "PCI-6713 DA"); ssSetPath(rts, "xpcosc/PCI-6713 DA"); ssSetRTModel(rts,xpcosc_rtM); ssSetParentSS(rts, (NULL)); ssSetRootSS(rts, rts); ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2); /* parameters */ { mxArray **sfcnParams = (mxArray **) &xpcosc_rtM->NonInlinedSFcns.Sfcn1.params; ssSetSFcnParamsCount(rts, 6); ssSetSFcnParamsPtr(rts, &sfcnParams[0]); ssSetSFcnParam(rts, 0, (mxArray*)xpcosc_P.PCI6713DA_P1_Size); ssSetSFcnParam(rts, 1, (mxArray*)xpcosc_P.PCI6713DA_P2_Size); ssSetSFcnParam(rts, 2, (mxArray*)xpcosc_P.PCI6713DA_P3_Size); ssSetSFcnParam(rts, 3, (mxArray*)xpcosc_P.PCI6713DA_P4_Size); ssSetSFcnParam(rts, 4, (mxArray*)xpcosc_P.PCI6713DA_P5_Size); ssSetSFcnParam(rts, 5, (mxArray*)xpcosc_P.PCI6713DA_P6_Size); } /* work vectors */ ssSetRWork(rts, (real_T *) &xpcosc_DWork.PCI6713DA_RWORK); ssSetIWork(rts, (int_T *) &xpcosc_DWork.PCI6713DA_IWORK[0]); { struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *) &xpcosc_rtM->NonInlinedSFcns.Sfcn1.dWork; struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *) &xpcosc_rtM->NonInlinedSFcns.Sfcn1.dWorkAux; ssSetSFcnDWork(rts, dWorkRecord); ssSetSFcnDWorkAux(rts, dWorkAuxRecord); _ssSetNumDWork(rts, 2); /* RWORK */ ssSetDWorkWidth(rts, 0, 1); ssSetDWorkDataType(rts, 0,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 0, 0); ssSetDWork(rts, 0, &xpcosc_DWork.PCI6713DA_RWORK); /* IWORK */ ssSetDWorkWidth(rts, 1, 2); ssSetDWorkDataType(rts, 1,SS_INTEGER); ssSetDWorkComplexSignal(rts, 1, 0); ssSetDWork(rts, 1, &xpcosc_DWork.PCI6713DA_IWORK[0]); } /* registration */ danipci671x(rts); sfcnInitializeSizes(rts); sfcnInitializeSampleTimes(rts); /* adjust sample time */ ssSetSampleTime(rts, 0, 0.001); ssSetOffsetTime(rts, 0, 0.0); sfcnTsMap[0] = 1; /* set compiled values of dynamic vector attributes */ ssSetNumNonsampledZCs(rts, 0); /* Update connectivity flags for each port */ _ssSetInputPortConnected(rts, 0, 1); /* Update the BufferDstPort flags for each input port */ ssSetInputPortBufferDstPort(rts, 0, -1); } } }
/* Model initialize function */ void motor_initialize(void) { /* Registration code */ /* initialize real-time model */ (void) memset((void *)motor_M, 0, sizeof(RT_MODEL_motor_T)); rtmSetTFinal(motor_M, -1); motor_M->Timing.stepSize0 = 0.2; /* External mode info */ motor_M->Sizes.checksums[0] = (1008116136U); motor_M->Sizes.checksums[1] = (3564589615U); motor_M->Sizes.checksums[2] = (1322083197U); motor_M->Sizes.checksums[3] = (1603772587U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[1]; motor_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(motor_M->extModeInfo, &motor_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(motor_M->extModeInfo, motor_M->Sizes.checksums); rteiSetTPtr(motor_M->extModeInfo, rtmGetTPtr(motor_M)); } /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo, 0, sizeof(dtInfo)); motor_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 14; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } { uint8_T tmp; uint8_T tmp_0; uint8_T tmp_1; uint8_T tmp_2; uint8_T tmp_3; uint8_T tmp_4; /* Start for S-Function (linuxGpioWrite_sfcn): '<S1>/Left_high' */ tmp_4 = motor_P.Left_high_p4; MW_gpioInit(motor_P.Left_high_p1, motor_P.Left_high_p2, motor_P.Left_high_p3, &tmp_4); /* Start for S-Function (linuxGpioWrite_sfcn): '<S1>/Left_low' */ tmp_3 = motor_P.Left_low_p4; MW_gpioInit(motor_P.Left_low_p1, motor_P.Left_low_p2, motor_P.Left_low_p3, &tmp_3); /* Start for S-Function (linuxGpioWrite_sfcn): '<S1>/Right_high' */ tmp_2 = motor_P.Right_high_p4; MW_gpioInit(motor_P.Right_high_p1, motor_P.Right_high_p2, motor_P.Right_high_p3, &tmp_2); /* Start for S-Function (linuxGpioWrite_sfcn): '<S1>/Right_low' */ tmp_1 = motor_P.Right_low_p4; MW_gpioInit(motor_P.Right_low_p1, motor_P.Right_low_p2, motor_P.Right_low_p3, &tmp_1); /* Start for S-Function (linuxGpioWrite_sfcn): '<S1>/EN_Left' */ tmp_0 = motor_P.EN_Left_p4; MW_gpioInit(motor_P.EN_Left_p1, motor_P.EN_Left_p2, motor_P.EN_Left_p3, &tmp_0); /* Start for S-Function (linuxGpioWrite_sfcn): '<S1>/EN_Right' */ tmp = motor_P.EN_Right_p4; MW_gpioInit(motor_P.EN_Right_p1, motor_P.EN_Right_p2, motor_P.EN_Right_p3, &tmp); } }
/* Model initialize function */ void motor_hr_initialize(void) { /* Registration code */ /* initialize real-time model */ (void) memset((void *)motor_hr_M, 0, sizeof(RT_MODEL_motor_hr_T)); rtmSetTFinal(motor_hr_M, 1000.0); motor_hr_M->Timing.stepSize0 = 20.0; /* External mode info */ motor_hr_M->Sizes.checksums[0] = (822641153U); motor_hr_M->Sizes.checksums[1] = (2911569967U); motor_hr_M->Sizes.checksums[2] = (108929926U); motor_hr_M->Sizes.checksums[3] = (297514658U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[3]; motor_hr_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; systemRan[1] = &rtAlwaysEnabled; systemRan[2] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(motor_hr_M->extModeInfo, &motor_hr_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(motor_hr_M->extModeInfo, motor_hr_M->Sizes.checksums); rteiSetTPtr(motor_hr_M->extModeInfo, rtmGetTPtr(motor_hr_M)); } /* states (dwork) */ (void) memset((void *)&motor_hr_DW, 0, sizeof(DW_motor_hr_T)); /* external inputs */ (void) memset((void *)&motor_hr_U, 0, sizeof(ExtU_motor_hr_T)); /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo, 0, sizeof(dtInfo)); motor_hr_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 14; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.B = &rtBTransTable; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } /* Start for S-Function (arduinodigitaloutput_sfcn): '<S1>/Digital Output' */ MW_pinModeOutput(motor_hr_P.DigitalOutput_pinNumber); /* Start for S-Function (arduinoanalogoutput_sfcn): '<S2>/PWM' */ MW_pinModeOutput(motor_hr_P.PWM_pinNumber); }
/* Registration function */ RT_MODEL_DI_model_T *DI_model(void) { /* Registration code */ /* initialize non-finites */ rt_InitInfAndNaN(sizeof(real_T)); /* initialize real-time model */ (void) memset((void *)DI_model_M, 0, sizeof(RT_MODEL_DI_model_T)); { /* Setup solver object */ rtsiSetSimTimeStepPtr(&DI_model_M->solverInfo, &DI_model_M->Timing.simTimeStep); rtsiSetTPtr(&DI_model_M->solverInfo, &rtmGetTPtr(DI_model_M)); rtsiSetStepSizePtr(&DI_model_M->solverInfo, &DI_model_M->Timing.stepSize0); rtsiSetErrorStatusPtr(&DI_model_M->solverInfo, (&rtmGetErrorStatus (DI_model_M))); rtsiSetRTModelPtr(&DI_model_M->solverInfo, DI_model_M); } rtsiSetSimTimeStep(&DI_model_M->solverInfo, MAJOR_TIME_STEP); rtsiSetSolverName(&DI_model_M->solverInfo,"FixedStepDiscrete"); DI_model_M->solverInfoPtr = (&DI_model_M->solverInfo); /* Initialize timing info */ { int_T *mdlTsMap = DI_model_M->Timing.sampleTimeTaskIDArray; mdlTsMap[0] = 0; mdlTsMap[1] = 1; DI_model_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]); DI_model_M->Timing.sampleTimes = (&DI_model_M->Timing.sampleTimesArray[0]); DI_model_M->Timing.offsetTimes = (&DI_model_M->Timing.offsetTimesArray[0]); /* task periods */ DI_model_M->Timing.sampleTimes[0] = (0.0); DI_model_M->Timing.sampleTimes[1] = (0.01); /* task offsets */ DI_model_M->Timing.offsetTimes[0] = (0.0); DI_model_M->Timing.offsetTimes[1] = (0.0); } rtmSetTPtr(DI_model_M, &DI_model_M->Timing.tArray[0]); { int_T *mdlSampleHits = DI_model_M->Timing.sampleHitArray; mdlSampleHits[0] = 1; mdlSampleHits[1] = 1; DI_model_M->Timing.sampleHits = (&mdlSampleHits[0]); } rtmSetTFinal(DI_model_M, 30.0); DI_model_M->Timing.stepSize0 = 0.01; DI_model_M->Timing.stepSize1 = 0.01; /* External mode info */ DI_model_M->Sizes.checksums[0] = (943881189U); DI_model_M->Sizes.checksums[1] = (2376373844U); DI_model_M->Sizes.checksums[2] = (1356612486U); DI_model_M->Sizes.checksums[3] = (687118842U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[1]; DI_model_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(DI_model_M->extModeInfo, &DI_model_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(DI_model_M->extModeInfo, DI_model_M->Sizes.checksums); rteiSetTPtr(DI_model_M->extModeInfo, rtmGetTPtr(DI_model_M)); } DI_model_M->solverInfoPtr = (&DI_model_M->solverInfo); DI_model_M->Timing.stepSize = (0.01); rtsiSetFixedStepSize(&DI_model_M->solverInfo, 0.01); rtsiSetSolverMode(&DI_model_M->solverInfo, SOLVER_MODE_SINGLETASKING); /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo, 0, sizeof(dtInfo)); DI_model_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 14; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; } /* child S-Function registration */ { RTWSfcnInfo *sfcnInfo = &DI_model_M->NonInlinedSFcns.sfcnInfo; DI_model_M->sfcnInfo = (sfcnInfo); rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(DI_model_M))); rtssSetNumRootSampTimesPtr(sfcnInfo, &DI_model_M->Sizes.numSampTimes); DI_model_M->NonInlinedSFcns.taskTimePtrs[0] = &(rtmGetTPtr(DI_model_M)[0]); DI_model_M->NonInlinedSFcns.taskTimePtrs[1] = &(rtmGetTPtr(DI_model_M)[1]); rtssSetTPtrPtr(sfcnInfo,DI_model_M->NonInlinedSFcns.taskTimePtrs); rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(DI_model_M)); rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(DI_model_M)); rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(DI_model_M)); rtssSetStepSizePtr(sfcnInfo, &DI_model_M->Timing.stepSize); rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(DI_model_M)); rtssSetDerivCacheNeedsResetPtr(sfcnInfo, &DI_model_M->ModelData.derivCacheNeedsReset); rtssSetZCCacheNeedsResetPtr(sfcnInfo, &DI_model_M->ModelData.zCCacheNeedsReset); rtssSetBlkStateChangePtr(sfcnInfo, &DI_model_M->ModelData.blkStateChange); rtssSetSampleHitsPtr(sfcnInfo, &DI_model_M->Timing.sampleHits); rtssSetPerTaskSampleHitsPtr(sfcnInfo, &DI_model_M->Timing.perTaskSampleHits); rtssSetSimModePtr(sfcnInfo, &DI_model_M->simMode); rtssSetSolverInfoPtr(sfcnInfo, &DI_model_M->solverInfoPtr); } DI_model_M->Sizes.numSFcns = (1); /* register each child */ { (void) memset((void *)&DI_model_M->NonInlinedSFcns.childSFunctions[0], 0, 1*sizeof(SimStruct)); DI_model_M->childSfunctions = (&DI_model_M->NonInlinedSFcns.childSFunctionPtrs[0]); DI_model_M->childSfunctions[0] = (&DI_model_M->NonInlinedSFcns.childSFunctions[0]); /* Level2 S-Function Block: DI_model/<Root>/S-Function (DI_v1) */ { SimStruct *rts = DI_model_M->childSfunctions[0]; /* timing info */ time_T *sfcnPeriod = DI_model_M->NonInlinedSFcns.Sfcn0.sfcnPeriod; time_T *sfcnOffset = DI_model_M->NonInlinedSFcns.Sfcn0.sfcnOffset; int_T *sfcnTsMap = DI_model_M->NonInlinedSFcns.Sfcn0.sfcnTsMap; (void) memset((void*)sfcnPeriod, 0, sizeof(time_T)*1); (void) memset((void*)sfcnOffset, 0, sizeof(time_T)*1); ssSetSampleTimePtr(rts, &sfcnPeriod[0]); ssSetOffsetTimePtr(rts, &sfcnOffset[0]); ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap); /* Set up the mdlInfo pointer */ { ssSetBlkInfo2Ptr(rts, &DI_model_M->NonInlinedSFcns.blkInfo2[0]); } ssSetRTWSfcnInfo(rts, DI_model_M->sfcnInfo); /* Allocate memory of model methods 2 */ { ssSetModelMethods2(rts, &DI_model_M->NonInlinedSFcns.methods2[0]); } /* Allocate memory of model methods 3 */ { ssSetModelMethods3(rts, &DI_model_M->NonInlinedSFcns.methods3[0]); } /* Allocate memory for states auxilliary information */ { ssSetStatesInfo2(rts, &DI_model_M->NonInlinedSFcns.statesInfo2[0]); } /* inputs */ { _ssSetNumInputPorts(rts, 1); ssSetPortInfoForInputs(rts, &DI_model_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]); /* port 0 */ { ssSetInputPortRequiredContiguous(rts, 0, 1); ssSetInputPortSignal(rts, 0, (real_T*)&DI_model_RGND); _ssSetInputPortNumDimensions(rts, 0, 1); ssSetInputPortWidth(rts, 0, 1); } } /* path info */ ssSetModelName(rts, "S-Function"); ssSetPath(rts, "DI_model/S-Function"); ssSetRTModel(rts,DI_model_M); ssSetParentSS(rts, (NULL)); ssSetRootSS(rts, rts); ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2); /* registration */ DI_v1(rts); sfcnInitializeSizes(rts); sfcnInitializeSampleTimes(rts); /* adjust sample time */ ssSetSampleTime(rts, 0, 0.0); ssSetOffsetTime(rts, 0, 0.0); sfcnTsMap[0] = 0; /* set compiled values of dynamic vector attributes */ ssSetNumNonsampledZCs(rts, 0); /* Update connectivity flags for each port */ _ssSetInputPortConnected(rts, 0, 0); /* Update the BufferDstPort flags for each input port */ ssSetInputPortBufferDstPort(rts, 0, -1); } } /* Initialize Sizes */ DI_model_M->Sizes.numContStates = (0);/* Number of continuous states */ DI_model_M->Sizes.numY = (0); /* Number of model outputs */ DI_model_M->Sizes.numU = (0); /* Number of model inputs */ DI_model_M->Sizes.sysDirFeedThru = (0);/* The model is not direct feedthrough */ DI_model_M->Sizes.numSampTimes = (2);/* Number of sample times */ DI_model_M->Sizes.numBlocks = (1); /* Number of blocks */ return DI_model_M; }
/* Model initialize function */ void Crane_initialize(boolean_T firstTime) { (void)firstTime; /* Registration code */ /* initialize non-finites */ rt_InitInfAndNaN(sizeof(real_T)); /* initialize real-time model */ (void) memset((char_T *)Crane_M,0, sizeof(RT_MODEL_Crane)); { /* Setup solver object */ rtsiSetSimTimeStepPtr(&Crane_M->solverInfo, &Crane_M->Timing.simTimeStep); rtsiSetTPtr(&Crane_M->solverInfo, &rtmGetTPtr(Crane_M)); rtsiSetStepSizePtr(&Crane_M->solverInfo, &Crane_M->Timing.stepSize0); rtsiSetdXPtr(&Crane_M->solverInfo, &Crane_M->ModelData.derivs); rtsiSetContStatesPtr(&Crane_M->solverInfo, &Crane_M->ModelData.contStates); rtsiSetNumContStatesPtr(&Crane_M->solverInfo, &Crane_M->Sizes.numContStates); rtsiSetErrorStatusPtr(&Crane_M->solverInfo, (&rtmGetErrorStatus(Crane_M))); rtsiSetRTModelPtr(&Crane_M->solverInfo, Crane_M); } rtsiSetSimTimeStep(&Crane_M->solverInfo, MAJOR_TIME_STEP); Crane_M->ModelData.intgData.f[0] = Crane_M->ModelData.odeF[0]; Crane_M->ModelData.contStates = ((real_T *) &Crane_X); rtsiSetSolverData(&Crane_M->solverInfo, (void *)&Crane_M->ModelData.intgData); rtsiSetSolverName(&Crane_M->solverInfo,"ode1"); /* Initialize timing info */ { int_T *mdlTsMap = Crane_M->Timing.sampleTimeTaskIDArray; mdlTsMap[0] = 0; mdlTsMap[1] = 1; Crane_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]); Crane_M->Timing.sampleTimes = (&Crane_M->Timing.sampleTimesArray[0]); Crane_M->Timing.offsetTimes = (&Crane_M->Timing.offsetTimesArray[0]); /* task periods */ Crane_M->Timing.sampleTimes[0] = (0.0); Crane_M->Timing.sampleTimes[1] = (0.001); /* task offsets */ Crane_M->Timing.offsetTimes[0] = (0.0); Crane_M->Timing.offsetTimes[1] = (0.0); } rtmSetTPtr(Crane_M, &Crane_M->Timing.tArray[0]); { int_T *mdlSampleHits = Crane_M->Timing.sampleHitArray; mdlSampleHits[0] = 1; mdlSampleHits[1] = 1; Crane_M->Timing.sampleHits = (&mdlSampleHits[0]); } rtmSetTFinal(Crane_M, -1); Crane_M->Timing.stepSize0 = 0.001; Crane_M->Timing.stepSize1 = 0.001; /* external mode info */ Crane_M->Sizes.checksums[0] = (2478158774U); Crane_M->Sizes.checksums[1] = (3803381746U); Crane_M->Sizes.checksums[2] = (277883647U); Crane_M->Sizes.checksums[3] = (670793414U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[1]; Crane_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(&rt_ExtModeInfo, &Crane_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(&rt_ExtModeInfo, Crane_M->Sizes.checksums); rteiSetTPtr(&rt_ExtModeInfo, rtmGetTPtr(Crane_M)); } Crane_M->solverInfoPtr = (&Crane_M->solverInfo); Crane_M->Timing.stepSize = (0.001); rtsiSetFixedStepSize(&Crane_M->solverInfo, 0.001); rtsiSetSolverMode(&Crane_M->solverInfo, SOLVER_MODE_SINGLETASKING); /* block I/O */ Crane_M->ModelData.blockIO = ((void *) &Crane_B); { int_T i; void *pVoidBlockIORegion; pVoidBlockIORegion = (void *)(&Crane_B.Block1_o1[0]); for (i = 0; i < 49; i++) { ((real_T*)pVoidBlockIORegion)[i] = 0.0; } } /* parameters */ Crane_M->ModelData.defaultParam = ((real_T *) &Crane_P); /* states (continuous) */ { real_T *x = (real_T *) &Crane_X; Crane_M->ModelData.contStates = (x); (void) memset((char_T *)x,0, sizeof(ContinuousStates_Crane)); } /* states (dwork) */ Crane_M->Work.dwork = ((void *) &Crane_DWork); (void) memset((char_T *) &Crane_DWork,0, sizeof(D_Work_Crane)); { int_T i; real_T *dwork_ptr = (real_T *) &Crane_DWork.Memory_PreviousInput[0]; for (i = 0; i < 11; i++) { dwork_ptr[i] = 0.0; } } /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo,0, sizeof(dtInfo)); Crane_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 15; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.B = &rtBTransTable; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } }
/* Model initialize function */ void Motor_Test_All_initialize(void) { /* Registration code */ /* initialize real-time model */ (void) memset((void *)Motor_Test_All_M, 0, sizeof(RT_MODEL_Motor_Test_All_T)); rtmSetTFinal(Motor_Test_All_M, 100.0); Motor_Test_All_M->Timing.stepSize0 = 10.0; /* External mode info */ Motor_Test_All_M->Sizes.checksums[0] = (391574619U); Motor_Test_All_M->Sizes.checksums[1] = (1808842219U); Motor_Test_All_M->Sizes.checksums[2] = (99353943U); Motor_Test_All_M->Sizes.checksums[3] = (1218331709U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[2]; Motor_Test_All_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; systemRan[1] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(Motor_Test_All_M->extModeInfo, &Motor_Test_All_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(Motor_Test_All_M->extModeInfo, Motor_Test_All_M->Sizes.checksums); rteiSetTPtr(Motor_Test_All_M->extModeInfo, rtmGetTPtr(Motor_Test_All_M)); } /* states (dwork) */ (void) memset((void *)&Motor_Test_All_DW, 0, sizeof(DW_Motor_Test_All_T)); /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo, 0, sizeof(dtInfo)); Motor_Test_All_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 18; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.B = &rtBTransTable; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } /* Model Initialize fcn for ModelReference Block: '<Root>/Model' */ motor_hl_initialize(rtmGetErrorStatusPointer(Motor_Test_All_M), &(Motor_Test_All_DW.Model_DWORK1.rtm)); /* Model Initialize fcn for ModelReference Block: '<Root>/Model1' */ motor_vr_initialize(rtmGetErrorStatusPointer(Motor_Test_All_M), &(Motor_Test_All_DW.Model1_DWORK1.rtm)); /* Model Initialize fcn for ModelReference Block: '<Root>/Model2' */ motor_vl_initialize(rtmGetErrorStatusPointer(Motor_Test_All_M), &(Motor_Test_All_DW.Model2_DWORK1.rtm)); /* Model Initialize fcn for ModelReference Block: '<Root>/Model3' */ motor_hr_initialize(rtmGetErrorStatusPointer(Motor_Test_All_M), &(Motor_Test_All_DW.Model3_DWORK1.rtm)); /* Start for ModelReference: '<Root>/Model' */ motor_hl_Start(); /* Start for ModelReference: '<Root>/Model1' */ motor_vr_Start(); /* Start for ModelReference: '<Root>/Model2' */ motor_vl_Start(); /* Start for ModelReference: '<Root>/Model3' */ motor_hr_Start(); /* InitializeConditions for UnitDelay: '<S2>/Output' */ Motor_Test_All_DW.Output_DSTATE = Motor_Test_All_P.Output_InitialCondition; }
/* Model initialize function */ void arbeitspunkt_initialize(boolean_T firstTime) { (void)firstTime; /* Registration code */ /* initialize non-finites */ rt_InitInfAndNaN(sizeof(real_T)); /* initialize real-time model */ (void) memset((char_T *)arbeitspunkt_M,0, sizeof(RT_MODEL_arbeitspunkt)); { /* Setup solver object */ rtsiSetSimTimeStepPtr(&arbeitspunkt_M->solverInfo, &arbeitspunkt_M->Timing.simTimeStep); rtsiSetTPtr(&arbeitspunkt_M->solverInfo, &rtmGetTPtr(arbeitspunkt_M)); rtsiSetStepSizePtr(&arbeitspunkt_M->solverInfo, &arbeitspunkt_M->Timing.stepSize0); rtsiSetErrorStatusPtr(&arbeitspunkt_M->solverInfo, (&rtmGetErrorStatus (arbeitspunkt_M))); rtsiSetRTModelPtr(&arbeitspunkt_M->solverInfo, arbeitspunkt_M); } rtsiSetSimTimeStep(&arbeitspunkt_M->solverInfo, MAJOR_TIME_STEP); rtsiSetSolverName(&arbeitspunkt_M->solverInfo,"FixedStepDiscrete"); /* Initialize timing info */ { int_T *mdlTsMap = arbeitspunkt_M->Timing.sampleTimeTaskIDArray; mdlTsMap[0] = 0; mdlTsMap[1] = 1; arbeitspunkt_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]); arbeitspunkt_M->Timing.sampleTimes = (&arbeitspunkt_M->Timing.sampleTimesArray[0]); arbeitspunkt_M->Timing.offsetTimes = (&arbeitspunkt_M->Timing.offsetTimesArray[0]); /* task periods */ arbeitspunkt_M->Timing.sampleTimes[0] = (0.0); arbeitspunkt_M->Timing.sampleTimes[1] = (0.001); /* task offsets */ arbeitspunkt_M->Timing.offsetTimes[0] = (0.0); arbeitspunkt_M->Timing.offsetTimes[1] = (0.0); } rtmSetTPtr(arbeitspunkt_M, &arbeitspunkt_M->Timing.tArray[0]); { int_T *mdlSampleHits = arbeitspunkt_M->Timing.sampleHitArray; mdlSampleHits[0] = 1; mdlSampleHits[1] = 1; arbeitspunkt_M->Timing.sampleHits = (&mdlSampleHits[0]); } rtmSetTFinal(arbeitspunkt_M, 10.0); arbeitspunkt_M->Timing.stepSize0 = 0.001; arbeitspunkt_M->Timing.stepSize1 = 0.001; /* external mode info */ arbeitspunkt_M->Sizes.checksums[0] = (51356583U); arbeitspunkt_M->Sizes.checksums[1] = (1228941243U); arbeitspunkt_M->Sizes.checksums[2] = (1622391598U); arbeitspunkt_M->Sizes.checksums[3] = (3849823737U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[1]; arbeitspunkt_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(&rt_ExtModeInfo, &arbeitspunkt_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(&rt_ExtModeInfo, arbeitspunkt_M->Sizes.checksums); rteiSetTPtr(&rt_ExtModeInfo, rtmGetTPtr(arbeitspunkt_M)); } arbeitspunkt_M->solverInfoPtr = (&arbeitspunkt_M->solverInfo); arbeitspunkt_M->Timing.stepSize = (0.001); rtsiSetFixedStepSize(&arbeitspunkt_M->solverInfo, 0.001); rtsiSetSolverMode(&arbeitspunkt_M->solverInfo, SOLVER_MODE_SINGLETASKING); /* block I/O */ arbeitspunkt_M->ModelData.blockIO = ((void *) &arbeitspunkt_B); { int_T i; void *pVoidBlockIORegion; pVoidBlockIORegion = (void *)(&arbeitspunkt_B.V_Step); for (i = 0; i < 3; i++) { ((real_T*)pVoidBlockIORegion)[i] = 0.0; } } /* parameters */ arbeitspunkt_M->ModelData.defaultParam = ((real_T *) &arbeitspunkt_P); /* states (dwork) */ arbeitspunkt_M->Work.dwork = ((void *) &arbeitspunkt_DWork); (void) memset((char_T *) &arbeitspunkt_DWork,0, sizeof(D_Work_arbeitspunkt)); /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo,0, sizeof(dtInfo)); arbeitspunkt_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 14; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.B = &rtBTransTable; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } }
/* Registration function */ RT_MODEL_RA4_student_T *RA4_student(void) { /* Registration code */ /* initialize non-finites */ rt_InitInfAndNaN(sizeof(real_T)); /* initialize real-time model */ (void) memset((void *)RA4_student_M, 0, sizeof(RT_MODEL_RA4_student_T)); { /* Setup solver object */ rtsiSetSimTimeStepPtr(&RA4_student_M->solverInfo, &RA4_student_M->Timing.simTimeStep); rtsiSetTPtr(&RA4_student_M->solverInfo, &rtmGetTPtr(RA4_student_M)); rtsiSetStepSizePtr(&RA4_student_M->solverInfo, &RA4_student_M->Timing.stepSize0); rtsiSetErrorStatusPtr(&RA4_student_M->solverInfo, (&rtmGetErrorStatus (RA4_student_M))); rtsiSetRTModelPtr(&RA4_student_M->solverInfo, RA4_student_M); } rtsiSetSimTimeStep(&RA4_student_M->solverInfo, MAJOR_TIME_STEP); rtsiSetSolverName(&RA4_student_M->solverInfo,"FixedStepDiscrete"); RA4_student_M->solverInfoPtr = (&RA4_student_M->solverInfo); /* Initialize timing info */ { int_T *mdlTsMap = RA4_student_M->Timing.sampleTimeTaskIDArray; mdlTsMap[0] = 0; mdlTsMap[1] = 1; RA4_student_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]); RA4_student_M->Timing.sampleTimes = (&RA4_student_M-> Timing.sampleTimesArray[0]); RA4_student_M->Timing.offsetTimes = (&RA4_student_M-> Timing.offsetTimesArray[0]); /* task periods */ RA4_student_M->Timing.sampleTimes[0] = (0.0); RA4_student_M->Timing.sampleTimes[1] = (0.000244140625); /* task offsets */ RA4_student_M->Timing.offsetTimes[0] = (0.0); RA4_student_M->Timing.offsetTimes[1] = (0.0); } rtmSetTPtr(RA4_student_M, &RA4_student_M->Timing.tArray[0]); { int_T *mdlSampleHits = RA4_student_M->Timing.sampleHitArray; mdlSampleHits[0] = 1; mdlSampleHits[1] = 1; RA4_student_M->Timing.sampleHits = (&mdlSampleHits[0]); } rtmSetTFinal(RA4_student_M, 1000.0); RA4_student_M->Timing.stepSize0 = 0.000244140625; RA4_student_M->Timing.stepSize1 = 0.000244140625; /* Setup for data logging */ { static RTWLogInfo rt_DataLoggingInfo; rt_DataLoggingInfo.loggingInterval = NULL; RA4_student_M->rtwLogInfo = &rt_DataLoggingInfo; } /* Setup for data logging */ { rtliSetLogXSignalInfo(RA4_student_M->rtwLogInfo, (NULL)); rtliSetLogXSignalPtrs(RA4_student_M->rtwLogInfo, (NULL)); rtliSetLogT(RA4_student_M->rtwLogInfo, "tout"); rtliSetLogX(RA4_student_M->rtwLogInfo, ""); rtliSetLogXFinal(RA4_student_M->rtwLogInfo, ""); rtliSetLogVarNameModifier(RA4_student_M->rtwLogInfo, "rt_"); rtliSetLogFormat(RA4_student_M->rtwLogInfo, 0); rtliSetLogMaxRows(RA4_student_M->rtwLogInfo, 0); rtliSetLogDecimation(RA4_student_M->rtwLogInfo, 1); rtliSetLogY(RA4_student_M->rtwLogInfo, ""); rtliSetLogYSignalInfo(RA4_student_M->rtwLogInfo, (NULL)); rtliSetLogYSignalPtrs(RA4_student_M->rtwLogInfo, (NULL)); } /* External mode info */ RA4_student_M->Sizes.checksums[0] = (2785597085U); RA4_student_M->Sizes.checksums[1] = (79388889U); RA4_student_M->Sizes.checksums[2] = (3150282079U); RA4_student_M->Sizes.checksums[3] = (1201550713U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[2]; RA4_student_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; systemRan[1] = (sysRanDType *)&RA4_student_DW.Controller_SubsysRanBC; rteiSetModelMappingInfoPtr(RA4_student_M->extModeInfo, &RA4_student_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(RA4_student_M->extModeInfo, RA4_student_M->Sizes.checksums); rteiSetTPtr(RA4_student_M->extModeInfo, rtmGetTPtr(RA4_student_M)); } RA4_student_M->solverInfoPtr = (&RA4_student_M->solverInfo); RA4_student_M->Timing.stepSize = (0.000244140625); rtsiSetFixedStepSize(&RA4_student_M->solverInfo, 0.000244140625); rtsiSetSolverMode(&RA4_student_M->solverInfo, SOLVER_MODE_SINGLETASKING); /* block I/O */ RA4_student_M->ModelData.blockIO = ((void *) &RA4_student_B); (void) memset(((void *) &RA4_student_B), 0, sizeof(B_RA4_student_T)); { RA4_student_B.UnitDelay2[0] = 0.0; RA4_student_B.UnitDelay2[1] = 0.0; RA4_student_B.UnitDelay2[2] = 0.0; RA4_student_B.UnitDelay1 = 0.0; RA4_student_B.RobotArm_sfcn_o1 = 0.0; RA4_student_B.RobotArm_sfcn_o2[0] = 0.0; RA4_student_B.RobotArm_sfcn_o2[1] = 0.0; RA4_student_B.RobotArm_sfcn_o2[2] = 0.0; RA4_student_B.RobotArm_sfcn_o4 = 0.0; RA4_student_B.Sum4 = 0.0; RA4_student_B.Sum5 = 0.0; RA4_student_B.Sum6 = 0.0; RA4_student_B.ReferenceSolenoid = 0.0; RA4_student_B.SFunction[0] = 0.0; RA4_student_B.SFunction[1] = 0.0; RA4_student_B.SFunction[2] = 0.0; RA4_student_B.SFunction[3] = 0.0; } /* parameters */ RA4_student_M->ModelData.defaultParam = ((real_T *)&RA4_student_P); /* states (dwork) */ RA4_student_M->ModelData.dwork = ((void *) &RA4_student_DW); (void) memset((void *)&RA4_student_DW, 0, sizeof(DW_RA4_student_T)); RA4_student_DW.UnitDelay2_DSTATE[0] = 0.0; RA4_student_DW.UnitDelay2_DSTATE[1] = 0.0; RA4_student_DW.UnitDelay2_DSTATE[2] = 0.0; RA4_student_DW.UnitDelay1_DSTATE = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK0 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK1 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK2 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK3 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK4 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK5 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK6 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK7 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK8 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK9 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK10 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK11 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK12 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK13 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK14 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK15 = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK16[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK16[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK17[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK17[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK18[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK18[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK18[2] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK18[3] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK19[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK19[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK19[2] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK19[3] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK20[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK20[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK21[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK21[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK21[2] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK21[3] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK22[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK22[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK22[2] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK22[3] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK23[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK23[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK24[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK24[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK25[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK25[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK25[2] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK25[3] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK26[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK26[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK26[2] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK26[3] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK27[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK27[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK28[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK28[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK28[2] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK28[3] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK29[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK29[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK29[2] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK29[3] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK30[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK30[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK31[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK31[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK32[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK32[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK32[2] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK32[3] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK33[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK33[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK33[2] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK33[3] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK34[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK34[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK35[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK35[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK35[2] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK35[3] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK36[0] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK36[1] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK36[2] = 0.0; RA4_student_DW.RobotArm_sfcn_DWORK36[3] = 0.0; /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo, 0, sizeof(dtInfo)); RA4_student_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 14; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.B = &rtBTransTable; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } /* child S-Function registration */ { RTWSfcnInfo *sfcnInfo = &RA4_student_M->NonInlinedSFcns.sfcnInfo; RA4_student_M->sfcnInfo = (sfcnInfo); rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(RA4_student_M))); rtssSetNumRootSampTimesPtr(sfcnInfo, &RA4_student_M->Sizes.numSampTimes); RA4_student_M->NonInlinedSFcns.taskTimePtrs[0] = &(rtmGetTPtr(RA4_student_M) [0]); RA4_student_M->NonInlinedSFcns.taskTimePtrs[1] = &(rtmGetTPtr(RA4_student_M) [1]); rtssSetTPtrPtr(sfcnInfo,RA4_student_M->NonInlinedSFcns.taskTimePtrs); rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(RA4_student_M)); rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(RA4_student_M)); rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(RA4_student_M)); rtssSetStepSizePtr(sfcnInfo, &RA4_student_M->Timing.stepSize); rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(RA4_student_M)); rtssSetDerivCacheNeedsResetPtr(sfcnInfo, &RA4_student_M->ModelData.derivCacheNeedsReset); rtssSetZCCacheNeedsResetPtr(sfcnInfo, &RA4_student_M->ModelData.zCCacheNeedsReset); rtssSetBlkStateChangePtr(sfcnInfo, &RA4_student_M->ModelData.blkStateChange); rtssSetSampleHitsPtr(sfcnInfo, &RA4_student_M->Timing.sampleHits); rtssSetPerTaskSampleHitsPtr(sfcnInfo, &RA4_student_M->Timing.perTaskSampleHits); rtssSetSimModePtr(sfcnInfo, &RA4_student_M->simMode); rtssSetSolverInfoPtr(sfcnInfo, &RA4_student_M->solverInfoPtr); } RA4_student_M->Sizes.numSFcns = (2); /* register each child */ { (void) memset((void *)&RA4_student_M->NonInlinedSFcns.childSFunctions[0], 0, 2*sizeof(SimStruct)); RA4_student_M->childSfunctions = (&RA4_student_M->NonInlinedSFcns.childSFunctionPtrs[0]); RA4_student_M->childSfunctions[0] = (&RA4_student_M->NonInlinedSFcns.childSFunctions[0]); RA4_student_M->childSfunctions[1] = (&RA4_student_M->NonInlinedSFcns.childSFunctions[1]); /* Level2 S-Function Block: RA4_student/<S6>/S-Function (sf_rt_scope) */ { SimStruct *rts = RA4_student_M->childSfunctions[0]; /* timing info */ time_T *sfcnPeriod = RA4_student_M->NonInlinedSFcns.Sfcn0.sfcnPeriod; time_T *sfcnOffset = RA4_student_M->NonInlinedSFcns.Sfcn0.sfcnOffset; int_T *sfcnTsMap = RA4_student_M->NonInlinedSFcns.Sfcn0.sfcnTsMap; (void) memset((void*)sfcnPeriod, 0, sizeof(time_T)*1); (void) memset((void*)sfcnOffset, 0, sizeof(time_T)*1); ssSetSampleTimePtr(rts, &sfcnPeriod[0]); ssSetOffsetTimePtr(rts, &sfcnOffset[0]); ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap); /* Set up the mdlInfo pointer */ { ssSetBlkInfo2Ptr(rts, &RA4_student_M->NonInlinedSFcns.blkInfo2[0]); } ssSetRTWSfcnInfo(rts, RA4_student_M->sfcnInfo); /* Allocate memory of model methods 2 */ { ssSetModelMethods2(rts, &RA4_student_M->NonInlinedSFcns.methods2[0]); } /* Allocate memory of model methods 3 */ { ssSetModelMethods3(rts, &RA4_student_M->NonInlinedSFcns.methods3[0]); } /* Allocate memory for states auxilliary information */ { ssSetStatesInfo2(rts, &RA4_student_M->NonInlinedSFcns.statesInfo2[0]); ssSetPeriodicStatesInfo(rts, &RA4_student_M->NonInlinedSFcns.periodicStatesInfo[0]); } /* inputs */ { _ssSetNumInputPorts(rts, 1); ssSetPortInfoForInputs(rts, &RA4_student_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]); /* port 0 */ { real_T const **sfcnUPtrs = (real_T const **) &RA4_student_M->NonInlinedSFcns.Sfcn0.UPtrs0; sfcnUPtrs[0] = (real_T*)&RA4_student_RGND; sfcnUPtrs[1] = (real_T*)&RA4_student_RGND; sfcnUPtrs[2] = (real_T*)&RA4_student_RGND; sfcnUPtrs[3] = (real_T*)&RA4_student_RGND; sfcnUPtrs[4] = (real_T*)&RA4_student_RGND; sfcnUPtrs[5] = (real_T*)&RA4_student_RGND; sfcnUPtrs[6] = (real_T*)&RA4_student_RGND; sfcnUPtrs[7] = (real_T*)&RA4_student_RGND; ssSetInputPortSignalPtrs(rts, 0, (InputPtrsType)&sfcnUPtrs[0]); _ssSetInputPortNumDimensions(rts, 0, 1); ssSetInputPortWidth(rts, 0, 8); } } /* outputs */ { ssSetPortInfoForOutputs(rts, &RA4_student_M->NonInlinedSFcns.Sfcn0.outputPortInfo[0]); _ssSetNumOutputPorts(rts, 1); /* port 0 */ { _ssSetOutputPortNumDimensions(rts, 0, 1); ssSetOutputPortWidth(rts, 0, 4); ssSetOutputPortSignal(rts, 0, ((real_T *) RA4_student_B.SFunction)); } } /* path info */ ssSetModelName(rts, "S-Function"); ssSetPath(rts, "RA4_student/Controller/RTScope/S-Function"); ssSetRTModel(rts,RA4_student_M); ssSetParentSS(rts, (NULL)); ssSetRootSS(rts, rts); ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2); /* parameters */ { mxArray **sfcnParams = (mxArray **) &RA4_student_M->NonInlinedSFcns.Sfcn0.params; ssSetSFcnParamsCount(rts, 1); ssSetSFcnParamsPtr(rts, &sfcnParams[0]); ssSetSFcnParam(rts, 0, (mxArray*)RA4_student_P.SFunction_P1_Size); } /* registration */ sf_rt_scope(rts); sfcnInitializeSizes(rts); sfcnInitializeSampleTimes(rts); /* adjust sample time */ ssSetSampleTime(rts, 0, 0.0); ssSetOffsetTime(rts, 0, 0.0); sfcnTsMap[0] = 0; /* set compiled values of dynamic vector attributes */ ssSetNumNonsampledZCs(rts, 0); /* Update connectivity flags for each port */ _ssSetInputPortConnected(rts, 0, 1); _ssSetOutputPortConnected(rts, 0, 1); _ssSetOutputPortBeingMerged(rts, 0, 0); /* Update the BufferDstPort flags for each input port */ ssSetInputPortBufferDstPort(rts, 0, -1); } /* RTW Generated Level2 S-Function Block: RA4_student/<S2>/Robot Arm_sfcn (Robot_sf) */ { SimStruct *rts = RA4_student_M->childSfunctions[1]; /* timing info */ time_T *sfcnPeriod = RA4_student_M->NonInlinedSFcns.Sfcn1.sfcnPeriod; time_T *sfcnOffset = RA4_student_M->NonInlinedSFcns.Sfcn1.sfcnOffset; int_T *sfcnTsMap = RA4_student_M->NonInlinedSFcns.Sfcn1.sfcnTsMap; (void) memset((void*)sfcnPeriod, 0, sizeof(time_T)*2); (void) memset((void*)sfcnOffset, 0, sizeof(time_T)*2); ssSetSampleTimePtr(rts, &sfcnPeriod[0]); ssSetOffsetTimePtr(rts, &sfcnOffset[0]); ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap); /* Set up the mdlInfo pointer */ { ssSetBlkInfo2Ptr(rts, &RA4_student_M->NonInlinedSFcns.blkInfo2[1]); } ssSetRTWSfcnInfo(rts, RA4_student_M->sfcnInfo); /* Allocate memory of model methods 2 */ { ssSetModelMethods2(rts, &RA4_student_M->NonInlinedSFcns.methods2[1]); } /* Allocate memory of model methods 3 */ { ssSetModelMethods3(rts, &RA4_student_M->NonInlinedSFcns.methods3[1]); } /* Allocate memory for states auxilliary information */ { ssSetStatesInfo2(rts, &RA4_student_M->NonInlinedSFcns.statesInfo2[1]); ssSetPeriodicStatesInfo(rts, &RA4_student_M->NonInlinedSFcns.periodicStatesInfo[1]); } /* inputs */ { _ssSetNumInputPorts(rts, 2); ssSetPortInfoForInputs(rts, &RA4_student_M->NonInlinedSFcns.Sfcn1.inputPortInfo[0]); /* port 0 */ { real_T const **sfcnUPtrs = (real_T const **) &RA4_student_M->NonInlinedSFcns.Sfcn1.UPtrs0; sfcnUPtrs[0] = RA4_student_B.UnitDelay2; sfcnUPtrs[1] = &RA4_student_B.UnitDelay2[1]; sfcnUPtrs[2] = &RA4_student_B.UnitDelay2[2]; ssSetInputPortSignalPtrs(rts, 0, (InputPtrsType)&sfcnUPtrs[0]); _ssSetInputPortNumDimensions(rts, 0, 1); ssSetInputPortWidth(rts, 0, 3); } /* port 1 */ { real_T const **sfcnUPtrs = (real_T const **) &RA4_student_M->NonInlinedSFcns.Sfcn1.UPtrs1; sfcnUPtrs[0] = &RA4_student_B.UnitDelay1; ssSetInputPortSignalPtrs(rts, 1, (InputPtrsType)&sfcnUPtrs[0]); _ssSetInputPortNumDimensions(rts, 1, 1); ssSetInputPortWidth(rts, 1, 1); } } /* outputs */ { ssSetPortInfoForOutputs(rts, &RA4_student_M->NonInlinedSFcns.Sfcn1.outputPortInfo[0]); _ssSetNumOutputPorts(rts, 4); /* port 0 */ { _ssSetOutputPortNumDimensions(rts, 0, 1); ssSetOutputPortWidth(rts, 0, 1); ssSetOutputPortSignal(rts, 0, ((real_T *) &RA4_student_B.RobotArm_sfcn_o1)); } /* port 1 */ { _ssSetOutputPortNumDimensions(rts, 1, 1); ssSetOutputPortWidth(rts, 1, 3); ssSetOutputPortSignal(rts, 1, ((real_T *) RA4_student_B.RobotArm_sfcn_o2)); } /* port 2 */ { _ssSetOutputPortNumDimensions(rts, 2, 1); ssSetOutputPortWidth(rts, 2, 3); ssSetOutputPortSignal(rts, 2, ((boolean_T *) RA4_student_B.RobotArm_sfcn_o3)); } /* port 3 */ { _ssSetOutputPortNumDimensions(rts, 3, 1); ssSetOutputPortWidth(rts, 3, 1); ssSetOutputPortSignal(rts, 3, ((real_T *) &RA4_student_B.RobotArm_sfcn_o4)); } } /* path info */ ssSetModelName(rts, "Robot Arm_sfcn"); ssSetPath(rts, "RA4_student/Robot Arm1/Robot Arm_sfcn"); ssSetRTModel(rts,RA4_student_M); ssSetParentSS(rts, (NULL)); ssSetRootSS(rts, rts); ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2); /* work vectors */ { struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *) &RA4_student_M->NonInlinedSFcns.Sfcn1.dWork; struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *) &RA4_student_M->NonInlinedSFcns.Sfcn1.dWorkAux; ssSetSFcnDWork(rts, dWorkRecord); ssSetSFcnDWorkAux(rts, dWorkAuxRecord); _ssSetNumDWork(rts, 47); /* DWORK0 */ ssSetDWorkWidth(rts, 0, 1); ssSetDWorkDataType(rts, 0,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 0, 0); ssSetDWorkUsedAsDState(rts, 0, 1); ssSetDWork(rts, 0, &RA4_student_DW.RobotArm_sfcn_DWORK0); /* DWORK1 */ ssSetDWorkWidth(rts, 1, 1); ssSetDWorkDataType(rts, 1,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 1, 0); ssSetDWorkUsedAsDState(rts, 1, 1); ssSetDWork(rts, 1, &RA4_student_DW.RobotArm_sfcn_DWORK1); /* DWORK2 */ ssSetDWorkWidth(rts, 2, 1); ssSetDWorkDataType(rts, 2,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 2, 0); ssSetDWorkUsedAsDState(rts, 2, 1); ssSetDWork(rts, 2, &RA4_student_DW.RobotArm_sfcn_DWORK2); /* DWORK3 */ ssSetDWorkWidth(rts, 3, 1); ssSetDWorkDataType(rts, 3,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 3, 0); ssSetDWorkUsedAsDState(rts, 3, 1); ssSetDWork(rts, 3, &RA4_student_DW.RobotArm_sfcn_DWORK3); /* DWORK4 */ ssSetDWorkWidth(rts, 4, 1); ssSetDWorkDataType(rts, 4,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 4, 0); ssSetDWorkUsedAsDState(rts, 4, 1); ssSetDWork(rts, 4, &RA4_student_DW.RobotArm_sfcn_DWORK4); /* DWORK5 */ ssSetDWorkWidth(rts, 5, 1); ssSetDWorkDataType(rts, 5,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 5, 0); ssSetDWorkUsedAsDState(rts, 5, 1); ssSetDWork(rts, 5, &RA4_student_DW.RobotArm_sfcn_DWORK5); /* DWORK6 */ ssSetDWorkWidth(rts, 6, 1); ssSetDWorkDataType(rts, 6,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 6, 0); ssSetDWorkUsedAsDState(rts, 6, 1); ssSetDWork(rts, 6, &RA4_student_DW.RobotArm_sfcn_DWORK6); /* DWORK7 */ ssSetDWorkWidth(rts, 7, 1); ssSetDWorkDataType(rts, 7,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 7, 0); ssSetDWorkUsedAsDState(rts, 7, 1); ssSetDWork(rts, 7, &RA4_student_DW.RobotArm_sfcn_DWORK7); /* DWORK8 */ ssSetDWorkWidth(rts, 8, 1); ssSetDWorkDataType(rts, 8,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 8, 0); ssSetDWorkUsedAsDState(rts, 8, 1); ssSetDWork(rts, 8, &RA4_student_DW.RobotArm_sfcn_DWORK8); /* DWORK9 */ ssSetDWorkWidth(rts, 9, 1); ssSetDWorkDataType(rts, 9,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 9, 0); ssSetDWorkUsedAsDState(rts, 9, 1); ssSetDWork(rts, 9, &RA4_student_DW.RobotArm_sfcn_DWORK9); /* DWORK10 */ ssSetDWorkWidth(rts, 10, 1); ssSetDWorkDataType(rts, 10,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 10, 0); ssSetDWork(rts, 10, &RA4_student_DW.RobotArm_sfcn_DWORK10); /* DWORK11 */ ssSetDWorkWidth(rts, 11, 1); ssSetDWorkDataType(rts, 11,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 11, 0); ssSetDWork(rts, 11, &RA4_student_DW.RobotArm_sfcn_DWORK11); /* DWORK12 */ ssSetDWorkWidth(rts, 12, 1); ssSetDWorkDataType(rts, 12,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 12, 0); ssSetDWork(rts, 12, &RA4_student_DW.RobotArm_sfcn_DWORK12); /* DWORK13 */ ssSetDWorkWidth(rts, 13, 1); ssSetDWorkDataType(rts, 13,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 13, 0); ssSetDWork(rts, 13, &RA4_student_DW.RobotArm_sfcn_DWORK13); /* DWORK14 */ ssSetDWorkWidth(rts, 14, 1); ssSetDWorkDataType(rts, 14,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 14, 0); ssSetDWork(rts, 14, &RA4_student_DW.RobotArm_sfcn_DWORK14); /* DWORK15 */ ssSetDWorkWidth(rts, 15, 1); ssSetDWorkDataType(rts, 15,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 15, 0); ssSetDWork(rts, 15, &RA4_student_DW.RobotArm_sfcn_DWORK15); /* DWORK16 */ ssSetDWorkWidth(rts, 16, 2); ssSetDWorkDataType(rts, 16,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 16, 0); ssSetDWork(rts, 16, &RA4_student_DW.RobotArm_sfcn_DWORK16[0]); /* DWORK17 */ ssSetDWorkWidth(rts, 17, 2); ssSetDWorkDataType(rts, 17,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 17, 0); ssSetDWork(rts, 17, &RA4_student_DW.RobotArm_sfcn_DWORK17[0]); /* DWORK18 */ ssSetDWorkWidth(rts, 18, 4); ssSetDWorkDataType(rts, 18,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 18, 0); ssSetDWork(rts, 18, &RA4_student_DW.RobotArm_sfcn_DWORK18[0]); /* DWORK19 */ ssSetDWorkWidth(rts, 19, 4); ssSetDWorkDataType(rts, 19,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 19, 0); ssSetDWork(rts, 19, &RA4_student_DW.RobotArm_sfcn_DWORK19[0]); /* DWORK20 */ ssSetDWorkWidth(rts, 20, 2); ssSetDWorkDataType(rts, 20,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 20, 0); ssSetDWork(rts, 20, &RA4_student_DW.RobotArm_sfcn_DWORK20[0]); /* DWORK21 */ ssSetDWorkWidth(rts, 21, 4); ssSetDWorkDataType(rts, 21,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 21, 0); ssSetDWork(rts, 21, &RA4_student_DW.RobotArm_sfcn_DWORK21[0]); /* DWORK22 */ ssSetDWorkWidth(rts, 22, 4); ssSetDWorkDataType(rts, 22,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 22, 0); ssSetDWork(rts, 22, &RA4_student_DW.RobotArm_sfcn_DWORK22[0]); /* DWORK23 */ ssSetDWorkWidth(rts, 23, 2); ssSetDWorkDataType(rts, 23,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 23, 0); ssSetDWork(rts, 23, &RA4_student_DW.RobotArm_sfcn_DWORK23[0]); /* DWORK24 */ ssSetDWorkWidth(rts, 24, 2); ssSetDWorkDataType(rts, 24,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 24, 0); ssSetDWork(rts, 24, &RA4_student_DW.RobotArm_sfcn_DWORK24[0]); /* DWORK25 */ ssSetDWorkWidth(rts, 25, 4); ssSetDWorkDataType(rts, 25,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 25, 0); ssSetDWork(rts, 25, &RA4_student_DW.RobotArm_sfcn_DWORK25[0]); /* DWORK26 */ ssSetDWorkWidth(rts, 26, 4); ssSetDWorkDataType(rts, 26,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 26, 0); ssSetDWork(rts, 26, &RA4_student_DW.RobotArm_sfcn_DWORK26[0]); /* DWORK27 */ ssSetDWorkWidth(rts, 27, 2); ssSetDWorkDataType(rts, 27,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 27, 0); ssSetDWork(rts, 27, &RA4_student_DW.RobotArm_sfcn_DWORK27[0]); /* DWORK28 */ ssSetDWorkWidth(rts, 28, 4); ssSetDWorkDataType(rts, 28,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 28, 0); ssSetDWork(rts, 28, &RA4_student_DW.RobotArm_sfcn_DWORK28[0]); /* DWORK29 */ ssSetDWorkWidth(rts, 29, 4); ssSetDWorkDataType(rts, 29,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 29, 0); ssSetDWork(rts, 29, &RA4_student_DW.RobotArm_sfcn_DWORK29[0]); /* DWORK30 */ ssSetDWorkWidth(rts, 30, 2); ssSetDWorkDataType(rts, 30,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 30, 0); ssSetDWork(rts, 30, &RA4_student_DW.RobotArm_sfcn_DWORK30[0]); /* DWORK31 */ ssSetDWorkWidth(rts, 31, 2); ssSetDWorkDataType(rts, 31,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 31, 0); ssSetDWork(rts, 31, &RA4_student_DW.RobotArm_sfcn_DWORK31[0]); /* DWORK32 */ ssSetDWorkWidth(rts, 32, 4); ssSetDWorkDataType(rts, 32,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 32, 0); ssSetDWork(rts, 32, &RA4_student_DW.RobotArm_sfcn_DWORK32[0]); /* DWORK33 */ ssSetDWorkWidth(rts, 33, 4); ssSetDWorkDataType(rts, 33,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 33, 0); ssSetDWork(rts, 33, &RA4_student_DW.RobotArm_sfcn_DWORK33[0]); /* DWORK34 */ ssSetDWorkWidth(rts, 34, 2); ssSetDWorkDataType(rts, 34,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 34, 0); ssSetDWork(rts, 34, &RA4_student_DW.RobotArm_sfcn_DWORK34[0]); /* DWORK35 */ ssSetDWorkWidth(rts, 35, 4); ssSetDWorkDataType(rts, 35,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 35, 0); ssSetDWork(rts, 35, &RA4_student_DW.RobotArm_sfcn_DWORK35[0]); /* DWORK36 */ ssSetDWorkWidth(rts, 36, 4); ssSetDWorkDataType(rts, 36,SS_DOUBLE); ssSetDWorkComplexSignal(rts, 36, 0); ssSetDWork(rts, 36, &RA4_student_DW.RobotArm_sfcn_DWORK36[0]); /* DWORK37 */ ssSetDWorkWidth(rts, 37, 1); ssSetDWorkDataType(rts, 37,SS_INT32); ssSetDWorkComplexSignal(rts, 37, 0); ssSetDWork(rts, 37, &RA4_student_DW.RobotArm_sfcn_DWORK37); /* DWORK38 */ ssSetDWorkWidth(rts, 38, 1); ssSetDWorkDataType(rts, 38,SS_UINT16); ssSetDWorkComplexSignal(rts, 38, 0); ssSetDWork(rts, 38, &RA4_student_DW.RobotArm_sfcn_DWORK38); /* DWORK39 */ ssSetDWorkWidth(rts, 39, 1); ssSetDWorkDataType(rts, 39,SS_UINT16); ssSetDWorkComplexSignal(rts, 39, 0); ssSetDWork(rts, 39, &RA4_student_DW.RobotArm_sfcn_DWORK39); /* DWORK40 */ ssSetDWorkWidth(rts, 40, 1); ssSetDWorkDataType(rts, 40,SS_UINT16); ssSetDWorkComplexSignal(rts, 40, 0); ssSetDWork(rts, 40, &RA4_student_DW.RobotArm_sfcn_DWORK40); /* DWORK41 */ ssSetDWorkWidth(rts, 41, 1); ssSetDWorkDataType(rts, 41,SS_UINT8); ssSetDWorkComplexSignal(rts, 41, 0); ssSetDWork(rts, 41, &RA4_student_DW.RobotArm_sfcn_DWORK41); /* DWORK42 */ ssSetDWorkWidth(rts, 42, 1); ssSetDWorkDataType(rts, 42,SS_UINT8); ssSetDWorkComplexSignal(rts, 42, 0); ssSetDWork(rts, 42, &RA4_student_DW.RobotArm_sfcn_DWORK42); /* DWORK43 */ ssSetDWorkWidth(rts, 43, 1); ssSetDWorkDataType(rts, 43,SS_UINT8); ssSetDWorkComplexSignal(rts, 43, 0); ssSetDWork(rts, 43, &RA4_student_DW.RobotArm_sfcn_DWORK43); /* DWORK44 */ ssSetDWorkWidth(rts, 44, 1); ssSetDWorkDataType(rts, 44,SS_UINT8); ssSetDWorkComplexSignal(rts, 44, 0); ssSetDWork(rts, 44, &RA4_student_DW.RobotArm_sfcn_DWORK44); /* DWORK45 */ ssSetDWorkWidth(rts, 45, 1); ssSetDWorkDataType(rts, 45,SS_UINT8); ssSetDWorkComplexSignal(rts, 45, 0); ssSetDWork(rts, 45, &RA4_student_DW.RobotArm_sfcn_DWORK45); /* DWORK46 */ ssSetDWorkWidth(rts, 46, 1); ssSetDWorkDataType(rts, 46,SS_UINT8); ssSetDWorkComplexSignal(rts, 46, 0); ssSetDWork(rts, 46, &RA4_student_DW.RobotArm_sfcn_DWORK46); } /* registration */ Robot_sf(rts); sfcnInitializeSizes(rts); sfcnInitializeSampleTimes(rts); /* adjust sample time */ ssSetSampleTime(rts, 0, 0.0); ssSetOffsetTime(rts, 0, 0.0); ssSetSampleTime(rts, 1, 0.000244140625); ssSetOffsetTime(rts, 1, 0.0); sfcnTsMap[0] = 0; sfcnTsMap[1] = 1; /* set compiled values of dynamic vector attributes */ ssSetNumNonsampledZCs(rts, 0); /* Update connectivity flags for each port */ _ssSetInputPortConnected(rts, 0, 1); _ssSetInputPortConnected(rts, 1, 1); _ssSetOutputPortConnected(rts, 0, 1); _ssSetOutputPortConnected(rts, 1, 1); _ssSetOutputPortConnected(rts, 2, 1); _ssSetOutputPortConnected(rts, 3, 1); _ssSetOutputPortBeingMerged(rts, 0, 0); _ssSetOutputPortBeingMerged(rts, 1, 0); _ssSetOutputPortBeingMerged(rts, 2, 0); _ssSetOutputPortBeingMerged(rts, 3, 0); /* Update the BufferDstPort flags for each input port */ ssSetInputPortBufferDstPort(rts, 0, -1); ssSetInputPortBufferDstPort(rts, 1, -1); /* Instance data for generated S-Function: Robot */ #include "Robot_sfcn_rtw/Robot_sid.h" } } /* Initialize Sizes */ RA4_student_M->Sizes.numContStates = (0);/* Number of continuous states */ RA4_student_M->Sizes.numY = (0); /* Number of model outputs */ RA4_student_M->Sizes.numU = (0); /* Number of model inputs */ RA4_student_M->Sizes.sysDirFeedThru = (0);/* The model is not direct feedthrough */ RA4_student_M->Sizes.numSampTimes = (2);/* Number of sample times */ RA4_student_M->Sizes.numBlocks = (24);/* Number of blocks */ RA4_student_M->Sizes.numBlockIO = (11);/* Number of block outputs */ RA4_student_M->Sizes.numBlockPrms = (16);/* Sum of parameter "widths" */ return RA4_student_M; }
/* Model initialize function */ void GyroskopAuswertung_initialize(void) { /* Registration code */ /* initialize real-time model */ (void) memset((void *)GyroskopAuswertung_M, 0, sizeof(RT_MODEL_GyroskopAuswertung_T)); rtmSetTFinal(GyroskopAuswertung_M, 10.0); GyroskopAuswertung_M->Timing.stepSize0 = 0.01; /* External mode info */ GyroskopAuswertung_M->Sizes.checksums[0] = (1941814335U); GyroskopAuswertung_M->Sizes.checksums[1] = (4017032776U); GyroskopAuswertung_M->Sizes.checksums[2] = (2489100557U); GyroskopAuswertung_M->Sizes.checksums[3] = (945044384U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[1]; GyroskopAuswertung_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(GyroskopAuswertung_M->extModeInfo, &GyroskopAuswertung_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(GyroskopAuswertung_M->extModeInfo, GyroskopAuswertung_M->Sizes.checksums); rteiSetTPtr(GyroskopAuswertung_M->extModeInfo, rtmGetTPtr (GyroskopAuswertung_M)); } /* block I/O */ (void) memset(((void *) &GyroskopAuswertung_B), 0, sizeof(B_GyroskopAuswertung_T)); /* states (dwork) */ (void) memset((void *)&GyroskopAuswertung_DW, 0, sizeof(DW_GyroskopAuswertung_T)); /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo, 0, sizeof(dtInfo)); GyroskopAuswertung_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 14; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.BTransTable = &rtBTransTable; /* Parameters transition table */ dtInfo.PTransTable = &rtPTransTable; } /* S-Function Block: <Root>/Sensor1 */ { real_T initVector[1] = { 0 }; { int_T i1; for (i1=0; i1 < 1; i1++) { GyroskopAuswertung_DW.Sensor1_DSTATE = initVector[0]; } } } /* S-Function Block: <Root>/Sensor2 */ { real_T initVector[1] = { 0 }; { int_T i1; for (i1=0; i1 < 1; i1++) { GyroskopAuswertung_DW.Sensor2_DSTATE = initVector[0]; } } } }
/* Model initialize function */ void motor_control_initialize(void) { /* Registration code */ /* initialize real-time model */ (void) memset((void *)motor_control_M, 0, sizeof(RT_MODEL_motor_control_T)); rtmSetTFinal(motor_control_M, -1); motor_control_M->Timing.stepSize0 = 0.05; /* External mode info */ motor_control_M->Sizes.checksums[0] = (2107225776U); motor_control_M->Sizes.checksums[1] = (1965539276U); motor_control_M->Sizes.checksums[2] = (1036431389U); motor_control_M->Sizes.checksums[3] = (618126809U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[1]; motor_control_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(motor_control_M->extModeInfo, &motor_control_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(motor_control_M->extModeInfo, motor_control_M->Sizes.checksums); rteiSetTPtr(motor_control_M->extModeInfo, rtmGetTPtr(motor_control_M)); } /* block I/O */ (void) memset(((void *) &motor_control_B), 0, sizeof(B_motor_control_T)); /* states (dwork) */ (void) memset((void *)&motor_control_DW, 0, sizeof(DW_motor_control_T)); /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo, 0, sizeof(dtInfo)); motor_control_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 14; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.B = &rtBTransTable; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } /* Start for DiscretePulseGenerator: '<Root>/Pulse Generator' */ motor_control_DW.clockTickCounter = 0L; /* S-Function Block: <Root>/Encoder */ { real_T initVector[1] = { 0 }; { int_T i1; for (i1=0; i1 < 1; i1++) { motor_control_DW.Encoder_DSTATE = initVector[0]; } } } /* InitializeConditions for DiscreteIntegrator: '<S1>/Integrator' */ motor_control_DW.Integrator_DSTATE = motor_control_P.Integrator_IC; /* InitializeConditions for DiscreteIntegrator: '<S1>/Filter' */ motor_control_DW.Filter_DSTATE = motor_control_P.Filter_IC; /* S-Function Block: <Root>/PWM */ { real_T initVector[1] = { 0 }; { int_T i1; for (i1=0; i1 < 1; i1++) { motor_control_DW.PWM_DSTATE = initVector[0]; } } } }
/* Model initialize function */ void omni_interface_initialize(boolean_T firstTime) { (void)firstTime; /* Registration code */ /* initialize non-finites */ rt_InitInfAndNaN(sizeof(real_T)); /* initialize real-time model */ (void) memset((char_T *)omni_interface_M,0, sizeof(RT_MODEL_omni_interface)); /* Initialize timing info */ { int_T *mdlTsMap = omni_interface_M->Timing.sampleTimeTaskIDArray; mdlTsMap[0] = 0; omni_interface_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]); omni_interface_M->Timing.sampleTimes = (&omni_interface_M->Timing.sampleTimesArray[0]); omni_interface_M->Timing.offsetTimes = (&omni_interface_M->Timing.offsetTimesArray[0]); /* task periods */ omni_interface_M->Timing.sampleTimes[0] = (0.001); /* task offsets */ omni_interface_M->Timing.offsetTimes[0] = (0.0); } rtmSetTPtr(omni_interface_M, &omni_interface_M->Timing.tArray[0]); { int_T *mdlSampleHits = omni_interface_M->Timing.sampleHitArray; mdlSampleHits[0] = 1; omni_interface_M->Timing.sampleHits = (&mdlSampleHits[0]); } rtmSetTFinal(omni_interface_M, -1); omni_interface_M->Timing.stepSize0 = 0.001; /* external mode info */ omni_interface_M->Sizes.checksums[0] = (3515672156U); omni_interface_M->Sizes.checksums[1] = (4130000490U); omni_interface_M->Sizes.checksums[2] = (2703472843U); omni_interface_M->Sizes.checksums[3] = (3284165155U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[13]; omni_interface_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; systemRan[1] = &rtAlwaysEnabled; systemRan[2] = &rtAlwaysEnabled; systemRan[3] = &rtAlwaysEnabled; systemRan[4] = &rtAlwaysEnabled; systemRan[5] = &rtAlwaysEnabled; systemRan[6] = &rtAlwaysEnabled; systemRan[7] = &rtAlwaysEnabled; systemRan[8] = &rtAlwaysEnabled; systemRan[9] = &rtAlwaysEnabled; systemRan[10] = &rtAlwaysEnabled; systemRan[11] = &rtAlwaysEnabled; systemRan[12] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(&rt_ExtModeInfo, &omni_interface_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(&rt_ExtModeInfo, omni_interface_M->Sizes.checksums); rteiSetTPtr(&rt_ExtModeInfo, rtmGetTPtr(omni_interface_M)); } omni_interface_M->solverInfoPtr = (&omni_interface_M->solverInfo); omni_interface_M->Timing.stepSize = (0.001); rtsiSetFixedStepSize(&omni_interface_M->solverInfo, 0.001); rtsiSetSolverMode(&omni_interface_M->solverInfo, SOLVER_MODE_SINGLETASKING); /* block I/O */ omni_interface_M->ModelData.blockIO = ((void *) &omni_interface_B); (void) memset(((void *) &omni_interface_B),0, sizeof(BlockIO_omni_interface)); { int_T i; void *pVoidBlockIORegion; pVoidBlockIORegion = (void *)(&omni_interface_B.Gain2[0]); for (i = 0; i < 12; i++) { ((real_T*)pVoidBlockIORegion)[i] = 0.0; } } /* parameters */ omni_interface_M->ModelData.defaultParam = ((real_T *) &omni_interface_P); /* states (dwork) */ omni_interface_M->Work.dwork = ((void *) &omni_interface_DWork); (void) memset((char_T *) &omni_interface_DWork,0, sizeof(D_Work_omni_interface)); { int_T i; real_T *dwork_ptr = (real_T *) &omni_interface_DWork.FixPtUnitDelay1_DSTATE; for (i = 0; i < 19; i++) { dwork_ptr[i] = 0.0; } } /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo,0, sizeof(dtInfo)); omni_interface_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 18; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.B = &rtBTransTable; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } }
/* Model initialize function */ void motor_test_hierarchies_initialize(void) { /* Registration code */ /* initialize real-time model */ (void) memset((void *)motor_test_hierarchies_M, 0, sizeof(RT_MODEL_motor_test_hierarchi_T)); { /* Setup solver object */ rtsiSetSimTimeStepPtr(&motor_test_hierarchies_M->solverInfo, &motor_test_hierarchies_M->Timing.simTimeStep); rtsiSetTPtr(&motor_test_hierarchies_M->solverInfo, &rtmGetTPtr (motor_test_hierarchies_M)); rtsiSetStepSizePtr(&motor_test_hierarchies_M->solverInfo, &motor_test_hierarchies_M->Timing.stepSize0); rtsiSetErrorStatusPtr(&motor_test_hierarchies_M->solverInfo, (&rtmGetErrorStatus(motor_test_hierarchies_M))); rtsiSetRTModelPtr(&motor_test_hierarchies_M->solverInfo, motor_test_hierarchies_M); } rtsiSetSimTimeStep(&motor_test_hierarchies_M->solverInfo, MAJOR_TIME_STEP); rtsiSetSolverName(&motor_test_hierarchies_M->solverInfo,"FixedStepDiscrete"); rtmSetTPtr(motor_test_hierarchies_M, &motor_test_hierarchies_M->Timing.tArray [0]); rtmSetTFinal(motor_test_hierarchies_M, 200.0); motor_test_hierarchies_M->Timing.stepSize0 = 1.0; /* External mode info */ motor_test_hierarchies_M->Sizes.checksums[0] = (1277721381U); motor_test_hierarchies_M->Sizes.checksums[1] = (3056422068U); motor_test_hierarchies_M->Sizes.checksums[2] = (826496824U); motor_test_hierarchies_M->Sizes.checksums[3] = (767811506U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[9]; motor_test_hierarchies_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; systemRan[1] = &rtAlwaysEnabled; systemRan[2] = &rtAlwaysEnabled; systemRan[3] = &rtAlwaysEnabled; systemRan[4] = &rtAlwaysEnabled; systemRan[5] = &rtAlwaysEnabled; systemRan[6] = &rtAlwaysEnabled; systemRan[7] = &rtAlwaysEnabled; systemRan[8] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(motor_test_hierarchies_M->extModeInfo, &motor_test_hierarchies_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(motor_test_hierarchies_M->extModeInfo, motor_test_hierarchies_M->Sizes.checksums); rteiSetTPtr(motor_test_hierarchies_M->extModeInfo, rtmGetTPtr (motor_test_hierarchies_M)); } /* block I/O */ (void) memset(((void *) &motor_test_hierarchies_B), 0, sizeof(B_motor_test_hierarchies_T)); /* states (dwork) */ (void) memset((void *)&motor_test_hierarchies_DW, 0, sizeof(DW_motor_test_hierarchies_T)); /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo, 0, sizeof(dtInfo)); motor_test_hierarchies_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 14; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.B = &rtBTransTable; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } /* Start for FromWorkspace: '<S3>/FromWs' */ { static real_T pTimeValues0[] = { 0.0, 1.0, 1.0, 2.0, 2.0, 4.0, 4.0, 6.0, 6.0, 7.0 } ; static real_T pDataValues0[] = { 0.0, 128.0, 128.0, 128.0, 128.0, 255.0, 255.0, 255.0, 255.0, 0.0 } ; motor_test_hierarchies_DW.FromWs_PWORK.TimePtr = (void *) pTimeValues0; motor_test_hierarchies_DW.FromWs_PWORK.DataPtr = (void *) pDataValues0; motor_test_hierarchies_DW.FromWs_IWORK.PrevIndex = 0; } /* Start for Atomic SubSystem: '<S1>/hl' */ motor_test_hierarchies_hl_Start((P_hl_motor_test_hierarchies_T *) &motor_test_hierarchies_P.hl); /* End of Start for SubSystem: '<S1>/hl' */ /* Start for Atomic SubSystem: '<S1>/hr' */ /* Start for S-Function (arduinodigitaloutput_sfcn): '<S10>/Digital Output' */ MW_pinModeOutput(motor_test_hierarchies_P.DigitalOutput_pinNumber); /* Start for S-Function (arduinoanalogoutput_sfcn): '<S11>/PWM' */ MW_pinModeOutput(motor_test_hierarchies_P.PWM_pinNumber); /* Start for Atomic SubSystem: '<S1>/vl' */ motor_test_hierarchies_hl_Start((P_hl_motor_test_hierarchies_T *) &motor_test_hierarchies_P.vl); /* End of Start for SubSystem: '<S1>/vl' */ /* Start for Atomic SubSystem: '<S1>/vr' */ /* Start for S-Function (arduinodigitaloutput_sfcn): '<S14>/Digital Output' */ MW_pinModeOutput(motor_test_hierarchies_P.DigitalOutput_pinNumber_a); /* Start for S-Function (arduinoanalogoutput_sfcn): '<S15>/PWM' */ MW_pinModeOutput(motor_test_hierarchies_P.PWM_pinNumber_n); }
/* Model initialize function */ void udpRead_initialize(void) { /* Registration code */ /* initialize non-finites */ rt_InitInfAndNaN(sizeof(real_T)); /* initialize real-time model */ (void) memset((void *)udpRead_M, 0, sizeof(RT_MODEL_udpRead_T)); rtmSetTFinal(udpRead_M, -1); udpRead_M->Timing.stepSize0 = 0.001; /* External mode info */ udpRead_M->Sizes.checksums[0] = (597430241U); udpRead_M->Sizes.checksums[1] = (1019470990U); udpRead_M->Sizes.checksums[2] = (4143940322U); udpRead_M->Sizes.checksums[3] = (93090447U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[5]; udpRead_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; systemRan[1] = (sysRanDType *)&udpRead_DW.ForIteratorSubsystem_SubsysRanB; systemRan[2] = (sysRanDType *)&udpRead_DW.ForIteratorSubsystem1_SubsysRan; systemRan[3] = (sysRanDType *)&udpRead_DW.EnabledSubsystem_SubsysRanBC; systemRan[4] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(udpRead_M->extModeInfo, &udpRead_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(udpRead_M->extModeInfo, udpRead_M->Sizes.checksums); rteiSetTPtr(udpRead_M->extModeInfo, rtmGetTPtr(udpRead_M)); } /* block I/O */ (void) memset(((void *) &udpRead_B), 0, sizeof(B_udpRead_T)); /* states (dwork) */ (void) memset((void *)&udpRead_DW, 0, sizeof(DW_udpRead_T)); /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo, 0, sizeof(dtInfo)); udpRead_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 14; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.B = &rtBTransTable; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } { char_T *sErr; /* Start for S-Function (sdspFromNetwork): '<Root>/UDP Receive' */ sErr = GetErrorBuffer(&udpRead_DW.UDPReceive_NetworkLib[0U]); CreateUDPInterface(&udpRead_DW.UDPReceive_NetworkLib[0U]); if (*sErr == 0) { LibCreate_Network(&udpRead_DW.UDPReceive_NetworkLib[0U], 0, "0.0.0.0", 25000, "0.0.0.0", -1, 8192, 4, 0); } if (*sErr == 0) { LibStart(&udpRead_DW.UDPReceive_NetworkLib[0U]); } if (*sErr != 0) { DestroyUDPInterface(&udpRead_DW.UDPReceive_NetworkLib[0U]); if (*sErr != 0) { rtmSetErrorStatus(udpRead_M, sErr); rtmSetStopRequested(udpRead_M, 1); } } /* End of Start for S-Function (sdspFromNetwork): '<Root>/UDP Receive' */ /* InitializeConditions for UnitDelay: '<S3>/FixPt Unit Delay2' */ udpRead_DW.FixPtUnitDelay2_DSTATE = udpRead_P.FixPtUnitDelay2_InitialConditio; /* InitializeConditions for UnitDelay: '<S3>/FixPt Unit Delay1' */ udpRead_DW.FixPtUnitDelay1_DSTATE = udpRead_P.UnitDelayResettable_vinit; } }
/* Model initialize function */ void Maglev_PD_initialize(boolean_T firstTime) { (void)firstTime; /* Registration code */ /* initialize non-finites */ rt_InitInfAndNaN(sizeof(real_T)); /* initialize real-time model */ (void) memset((char_T *)Maglev_PD_M,0, sizeof(RT_MODEL_Maglev_PD)); { /* Setup solver object */ rtsiSetSimTimeStepPtr(&Maglev_PD_M->solverInfo, &Maglev_PD_M->Timing.simTimeStep); rtsiSetTPtr(&Maglev_PD_M->solverInfo, &rtmGetTPtr(Maglev_PD_M)); rtsiSetStepSizePtr(&Maglev_PD_M->solverInfo, &Maglev_PD_M->Timing.stepSize0); rtsiSetErrorStatusPtr(&Maglev_PD_M->solverInfo, (&rtmGetErrorStatus (Maglev_PD_M))); rtsiSetRTModelPtr(&Maglev_PD_M->solverInfo, Maglev_PD_M); } rtsiSetSimTimeStep(&Maglev_PD_M->solverInfo, MAJOR_TIME_STEP); rtsiSetSolverName(&Maglev_PD_M->solverInfo,"FixedStepDiscrete"); /* Initialize timing info */ { int_T *mdlTsMap = Maglev_PD_M->Timing.sampleTimeTaskIDArray; mdlTsMap[0] = 0; mdlTsMap[1] = 1; mdlTsMap[2] = 2; Maglev_PD_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]); Maglev_PD_M->Timing.sampleTimes = (&Maglev_PD_M->Timing.sampleTimesArray[0]); Maglev_PD_M->Timing.offsetTimes = (&Maglev_PD_M->Timing.offsetTimesArray[0]); /* task periods */ Maglev_PD_M->Timing.sampleTimes[0] = (0.0); Maglev_PD_M->Timing.sampleTimes[1] = (0.001); Maglev_PD_M->Timing.sampleTimes[2] = (0.01); /* task offsets */ Maglev_PD_M->Timing.offsetTimes[0] = (0.0); Maglev_PD_M->Timing.offsetTimes[1] = (0.0); Maglev_PD_M->Timing.offsetTimes[2] = (0.0); } rtmSetTPtr(Maglev_PD_M, &Maglev_PD_M->Timing.tArray[0]); { int_T *mdlSampleHits = Maglev_PD_M->Timing.sampleHitArray; mdlSampleHits[0] = 1; mdlSampleHits[1] = 1; mdlSampleHits[2] = 1; Maglev_PD_M->Timing.sampleHits = (&mdlSampleHits[0]); } rtmSetTFinal(Maglev_PD_M, 200.0); Maglev_PD_M->Timing.stepSize0 = 0.001; Maglev_PD_M->Timing.stepSize1 = 0.001; Maglev_PD_M->Timing.stepSize2 = 0.01; /* external mode info */ Maglev_PD_M->Sizes.checksums[0] = (2405431628U); Maglev_PD_M->Sizes.checksums[1] = (4276893873U); Maglev_PD_M->Sizes.checksums[2] = (2115234442U); Maglev_PD_M->Sizes.checksums[3] = (4197356474U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[2]; Maglev_PD_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; systemRan[1] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(&rt_ExtModeInfo, &Maglev_PD_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(&rt_ExtModeInfo, Maglev_PD_M->Sizes.checksums); rteiSetTPtr(&rt_ExtModeInfo, rtmGetTPtr(Maglev_PD_M)); } Maglev_PD_M->solverInfoPtr = (&Maglev_PD_M->solverInfo); Maglev_PD_M->Timing.stepSize = (0.001); rtsiSetFixedStepSize(&Maglev_PD_M->solverInfo, 0.001); rtsiSetSolverMode(&Maglev_PD_M->solverInfo, SOLVER_MODE_SINGLETASKING); /* block I/O */ Maglev_PD_M->ModelData.blockIO = ((void *) &Maglev_PD_B); { int_T i; void *pVoidBlockIORegion; pVoidBlockIORegion = (void *)(&Maglev_PD_B.AnalogInput); for (i = 0; i < 9; i++) { ((real_T*)pVoidBlockIORegion)[i] = 0.0; } } /* parameters */ Maglev_PD_M->ModelData.defaultParam = ((real_T *) &Maglev_PD_P); /* states (dwork) */ Maglev_PD_M->Work.dwork = ((void *) &Maglev_PD_DWork); (void) memset((char_T *) &Maglev_PD_DWork,0, sizeof(D_Work_Maglev_PD)); { real_T *dwork_ptr = (real_T *) &Maglev_PD_DWork.DiscreteTransferFcn1_DSTATE; dwork_ptr[0] = 0.0; dwork_ptr[1] = 0.0; } /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo,0, sizeof(dtInfo)); Maglev_PD_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 14; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.B = &rtBTransTable; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } }
/* Registration function */ RT_MODEL_DO_model_T *DO_model(void) { /* Registration code */ /* initialize non-finites */ rt_InitInfAndNaN(sizeof(real_T)); /* initialize real-time model */ (void) memset((void *)DO_model_M, 0, sizeof(RT_MODEL_DO_model_T)); { /* Setup solver object */ rtsiSetSimTimeStepPtr(&DO_model_M->solverInfo, &DO_model_M->Timing.simTimeStep); rtsiSetTPtr(&DO_model_M->solverInfo, &rtmGetTPtr(DO_model_M)); rtsiSetStepSizePtr(&DO_model_M->solverInfo, &DO_model_M->Timing.stepSize0); rtsiSetErrorStatusPtr(&DO_model_M->solverInfo, (&rtmGetErrorStatus (DO_model_M))); rtsiSetRTModelPtr(&DO_model_M->solverInfo, DO_model_M); } rtsiSetSimTimeStep(&DO_model_M->solverInfo, MAJOR_TIME_STEP); rtsiSetSolverName(&DO_model_M->solverInfo,"FixedStepDiscrete"); DO_model_M->solverInfoPtr = (&DO_model_M->solverInfo); /* Initialize timing info */ { int_T *mdlTsMap = DO_model_M->Timing.sampleTimeTaskIDArray; mdlTsMap[0] = 0; mdlTsMap[1] = 1; DO_model_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]); DO_model_M->Timing.sampleTimes = (&DO_model_M->Timing.sampleTimesArray[0]); DO_model_M->Timing.offsetTimes = (&DO_model_M->Timing.offsetTimesArray[0]); /* task periods */ DO_model_M->Timing.sampleTimes[0] = (0.0); DO_model_M->Timing.sampleTimes[1] = (0.02); /* task offsets */ DO_model_M->Timing.offsetTimes[0] = (0.0); DO_model_M->Timing.offsetTimes[1] = (0.0); } rtmSetTPtr(DO_model_M, &DO_model_M->Timing.tArray[0]); { int_T *mdlSampleHits = DO_model_M->Timing.sampleHitArray; mdlSampleHits[0] = 1; mdlSampleHits[1] = 1; DO_model_M->Timing.sampleHits = (&mdlSampleHits[0]); } rtmSetTFinal(DO_model_M, 10.0); DO_model_M->Timing.stepSize0 = 0.02; DO_model_M->Timing.stepSize1 = 0.02; /* External mode info */ DO_model_M->Sizes.checksums[0] = (1233238421U); DO_model_M->Sizes.checksums[1] = (25660452U); DO_model_M->Sizes.checksums[2] = (2649484807U); DO_model_M->Sizes.checksums[3] = (3179384684U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[1]; DO_model_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(DO_model_M->extModeInfo, &DO_model_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(DO_model_M->extModeInfo, DO_model_M->Sizes.checksums); rteiSetTPtr(DO_model_M->extModeInfo, rtmGetTPtr(DO_model_M)); } DO_model_M->solverInfoPtr = (&DO_model_M->solverInfo); DO_model_M->Timing.stepSize = (0.02); rtsiSetFixedStepSize(&DO_model_M->solverInfo, 0.02); rtsiSetSolverMode(&DO_model_M->solverInfo, SOLVER_MODE_SINGLETASKING); /* block I/O */ DO_model_M->ModelData.blockIO = ((void *) &DO_model_B); (void) memset(((void *) &DO_model_B), 0, sizeof(B_DO_model_T)); /* parameters */ DO_model_M->ModelData.defaultParam = ((real_T *)&DO_model_P); /* states (dwork) */ DO_model_M->ModelData.dwork = ((void *) &DO_model_DW); (void) memset((void *)&DO_model_DW, 0, sizeof(DW_DO_model_T)); /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo, 0, sizeof(dtInfo)); DO_model_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 14; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.B = &rtBTransTable; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } /* child S-Function registration */ { RTWSfcnInfo *sfcnInfo = &DO_model_M->NonInlinedSFcns.sfcnInfo; DO_model_M->sfcnInfo = (sfcnInfo); rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(DO_model_M))); rtssSetNumRootSampTimesPtr(sfcnInfo, &DO_model_M->Sizes.numSampTimes); DO_model_M->NonInlinedSFcns.taskTimePtrs[0] = &(rtmGetTPtr(DO_model_M)[0]); DO_model_M->NonInlinedSFcns.taskTimePtrs[1] = &(rtmGetTPtr(DO_model_M)[1]); rtssSetTPtrPtr(sfcnInfo,DO_model_M->NonInlinedSFcns.taskTimePtrs); rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(DO_model_M)); rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(DO_model_M)); rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(DO_model_M)); rtssSetStepSizePtr(sfcnInfo, &DO_model_M->Timing.stepSize); rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(DO_model_M)); rtssSetDerivCacheNeedsResetPtr(sfcnInfo, &DO_model_M->ModelData.derivCacheNeedsReset); rtssSetZCCacheNeedsResetPtr(sfcnInfo, &DO_model_M->ModelData.zCCacheNeedsReset); rtssSetBlkStateChangePtr(sfcnInfo, &DO_model_M->ModelData.blkStateChange); rtssSetSampleHitsPtr(sfcnInfo, &DO_model_M->Timing.sampleHits); rtssSetPerTaskSampleHitsPtr(sfcnInfo, &DO_model_M->Timing.perTaskSampleHits); rtssSetSimModePtr(sfcnInfo, &DO_model_M->simMode); rtssSetSolverInfoPtr(sfcnInfo, &DO_model_M->solverInfoPtr); } DO_model_M->Sizes.numSFcns = (1); /* register each child */ { (void) memset((void *)&DO_model_M->NonInlinedSFcns.childSFunctions[0], 0, 1*sizeof(SimStruct)); DO_model_M->childSfunctions = (&DO_model_M->NonInlinedSFcns.childSFunctionPtrs[0]); DO_model_M->childSfunctions[0] = (&DO_model_M->NonInlinedSFcns.childSFunctions[0]); /* Level2 S-Function Block: DO_model/<Root>/S-Function (DO_v1) */ { SimStruct *rts = DO_model_M->childSfunctions[0]; /* timing info */ time_T *sfcnPeriod = DO_model_M->NonInlinedSFcns.Sfcn0.sfcnPeriod; time_T *sfcnOffset = DO_model_M->NonInlinedSFcns.Sfcn0.sfcnOffset; int_T *sfcnTsMap = DO_model_M->NonInlinedSFcns.Sfcn0.sfcnTsMap; (void) memset((void*)sfcnPeriod, 0, sizeof(time_T)*1); (void) memset((void*)sfcnOffset, 0, sizeof(time_T)*1); ssSetSampleTimePtr(rts, &sfcnPeriod[0]); ssSetOffsetTimePtr(rts, &sfcnOffset[0]); ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap); /* Set up the mdlInfo pointer */ { ssSetBlkInfo2Ptr(rts, &DO_model_M->NonInlinedSFcns.blkInfo2[0]); } ssSetRTWSfcnInfo(rts, DO_model_M->sfcnInfo); /* Allocate memory of model methods 2 */ { ssSetModelMethods2(rts, &DO_model_M->NonInlinedSFcns.methods2[0]); } /* Allocate memory of model methods 3 */ { ssSetModelMethods3(rts, &DO_model_M->NonInlinedSFcns.methods3[0]); } /* Allocate memory for states auxilliary information */ { ssSetStatesInfo2(rts, &DO_model_M->NonInlinedSFcns.statesInfo2[0]); } /* outputs */ { ssSetPortInfoForOutputs(rts, &DO_model_M->NonInlinedSFcns.Sfcn0.outputPortInfo[0]); _ssSetNumOutputPorts(rts, 1); /* port 0 */ { _ssSetOutputPortNumDimensions(rts, 0, 1); ssSetOutputPortWidth(rts, 0, 1); ssSetOutputPortSignal(rts, 0, ((real_T *) &DO_model_B.SFunction)); } } /* path info */ ssSetModelName(rts, "S-Function"); ssSetPath(rts, "DO_model/S-Function"); ssSetRTModel(rts,DO_model_M); ssSetParentSS(rts, (NULL)); ssSetRootSS(rts, rts); ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2); /* parameters */ { mxArray **sfcnParams = (mxArray **) &DO_model_M->NonInlinedSFcns.Sfcn0.params; ssSetSFcnParamsCount(rts, 1); ssSetSFcnParamsPtr(rts, &sfcnParams[0]); ssSetSFcnParam(rts, 0, (mxArray*)DO_model_P.SFunction_P1_Size); } /* work vectors */ ssSetIWork(rts, (int_T *) &DO_model_DW.SFunction_IWORK); { struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *) &DO_model_M->NonInlinedSFcns.Sfcn0.dWork; struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *) &DO_model_M->NonInlinedSFcns.Sfcn0.dWorkAux; ssSetSFcnDWork(rts, dWorkRecord); ssSetSFcnDWorkAux(rts, dWorkAuxRecord); _ssSetNumDWork(rts, 1); /* IWORK */ ssSetDWorkWidth(rts, 0, 1); ssSetDWorkDataType(rts, 0,SS_INTEGER); ssSetDWorkComplexSignal(rts, 0, 0); ssSetDWork(rts, 0, &DO_model_DW.SFunction_IWORK); } /* registration */ DO_v1(rts); sfcnInitializeSizes(rts); sfcnInitializeSampleTimes(rts); /* adjust sample time */ ssSetSampleTime(rts, 0, 0.0); ssSetOffsetTime(rts, 0, 0.0); sfcnTsMap[0] = 0; /* set compiled values of dynamic vector attributes */ ssSetNumNonsampledZCs(rts, 0); /* Update connectivity flags for each port */ _ssSetOutputPortConnected(rts, 0, 0); _ssSetOutputPortBeingMerged(rts, 0, 0); /* Update the BufferDstPort flags for each input port */ } } /* Initialize Sizes */ DO_model_M->Sizes.numContStates = (0);/* Number of continuous states */ DO_model_M->Sizes.numY = (0); /* Number of model outputs */ DO_model_M->Sizes.numU = (0); /* Number of model inputs */ DO_model_M->Sizes.sysDirFeedThru = (0);/* The model is not direct feedthrough */ DO_model_M->Sizes.numSampTimes = (2);/* Number of sample times */ DO_model_M->Sizes.numBlocks = (1); /* Number of blocks */ DO_model_M->Sizes.numBlockIO = (1); /* Number of block outputs */ DO_model_M->Sizes.numBlockPrms = (3);/* Sum of parameter "widths" */ return DO_model_M; }
/* Model initialize function */ void Server_initialize(boolean_T firstTime) { (void)firstTime; /* Registration code */ /* initialize non-finites */ rt_InitInfAndNaN(sizeof(real_T)); /* initialize real-time model */ (void) memset((char_T *)Server_M,0, sizeof(RT_MODEL_Server)); { /* Setup solver object */ rtsiSetSimTimeStepPtr(&Server_M->solverInfo, &Server_M->Timing.simTimeStep); rtsiSetTPtr(&Server_M->solverInfo, &rtmGetTPtr(Server_M)); rtsiSetStepSizePtr(&Server_M->solverInfo, &Server_M->Timing.stepSize0); rtsiSetErrorStatusPtr(&Server_M->solverInfo, (&rtmGetErrorStatus(Server_M))); rtsiSetRTModelPtr(&Server_M->solverInfo, Server_M); } rtsiSetSimTimeStep(&Server_M->solverInfo, MAJOR_TIME_STEP); rtsiSetSolverName(&Server_M->solverInfo,"FixedStepDiscrete"); /* Initialize timing info */ { int_T *mdlTsMap = Server_M->Timing.sampleTimeTaskIDArray; mdlTsMap[0] = 0; mdlTsMap[1] = 1; Server_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]); Server_M->Timing.sampleTimes = (&Server_M->Timing.sampleTimesArray[0]); Server_M->Timing.offsetTimes = (&Server_M->Timing.offsetTimesArray[0]); /* task periods */ Server_M->Timing.sampleTimes[0] = (0.0); Server_M->Timing.sampleTimes[1] = (0.001); /* task offsets */ Server_M->Timing.offsetTimes[0] = (0.0); Server_M->Timing.offsetTimes[1] = (0.0); } rtmSetTPtr(Server_M, &Server_M->Timing.tArray[0]); { int_T *mdlSampleHits = Server_M->Timing.sampleHitArray; mdlSampleHits[0] = 1; mdlSampleHits[1] = 1; Server_M->Timing.sampleHits = (&mdlSampleHits[0]); } rtmSetTFinal(Server_M, -1); Server_M->Timing.stepSize0 = 0.001; Server_M->Timing.stepSize1 = 0.001; /* external mode info */ Server_M->Sizes.checksums[0] = (3791027284U); Server_M->Sizes.checksums[1] = (1928235140U); Server_M->Sizes.checksums[2] = (386570905U); Server_M->Sizes.checksums[3] = (3697957716U); { static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE; static RTWExtModeInfo rt_ExtModeInfo; static const sysRanDType *systemRan[1]; Server_M->extModeInfo = (&rt_ExtModeInfo); rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan); systemRan[0] = &rtAlwaysEnabled; rteiSetModelMappingInfoPtr(&rt_ExtModeInfo, &Server_M->SpecialInfo.mappingInfo); rteiSetChecksumsPtr(&rt_ExtModeInfo, Server_M->Sizes.checksums); rteiSetTPtr(&rt_ExtModeInfo, rtmGetTPtr(Server_M)); } Server_M->solverInfoPtr = (&Server_M->solverInfo); Server_M->Timing.stepSize = (0.001); rtsiSetFixedStepSize(&Server_M->solverInfo, 0.001); rtsiSetSolverMode(&Server_M->solverInfo, SOLVER_MODE_SINGLETASKING); /* block I/O */ Server_M->ModelData.blockIO = ((void *) &Server_B); (void) memset(((void *) &Server_B),0, sizeof(BlockIO_Server)); { ((real_T*)&Server_B.SineWave)[0] = 0.0; } /* parameters */ Server_M->ModelData.defaultParam = ((real_T *) &Server_P); /* states (dwork) */ Server_M->Work.dwork = ((void *) &Server_DWork); (void) memset((char_T *) &Server_DWork,0, sizeof(D_Work_Server)); /* data type transition information */ { static DataTypeTransInfo dtInfo; (void) memset((char_T *) &dtInfo,0, sizeof(dtInfo)); Server_M->SpecialInfo.mappingInfo = (&dtInfo); dtInfo.numDataTypes = 16; dtInfo.dataTypeSizes = &rtDataTypeSizes[0]; dtInfo.dataTypeNames = &rtDataTypeNames[0]; /* Block I/O transition table */ dtInfo.B = &rtBTransTable; /* Parameters transition table */ dtInfo.P = &rtPTransTable; } }