コード例 #1
0
   void set_options_pack6()
   {
      solver->SetAztecOption(AZ_solver, AZ_gmres);
      solver->SetAztecOption(AZ_kspace, 10000);
      solver->SetAztecOption(AZ_precond,   AZ_Jacobi);
//      solver->SetAztecOption(AZ_precond, AZ_none);
   }
コード例 #2
0
   void set_options_pack5()
   {
      solver->SetAztecOption(AZ_solver, AZ_gmres);
      solver->SetAztecOption(AZ_kspace, 10000);
      solver->SetAztecOption(AZ_precond,   AZ_Neumann);

//       solver->SetAztecOption(AZ_solver, AZ_gmres_condnum);
//       solver->SetAztecOption(AZ_kspace, 1000);
//     solver->SetAztecOption(AZ_output, AZ_none);
   }
コード例 #3
0
   void set_options_pack3()
   {
	   solver->SetAztecOption(AZ_solver,  AZ_tfqmr);
	   solver->SetAztecOption(AZ_scaling,   AZ_none);
	   solver->SetAztecOption(AZ_precond,   AZ_ls);
	   solver->SetAztecOption(AZ_conv,      AZ_r0);
	   //    solver->SetAztecOption(AZ_output,    1);
	   solver->SetAztecOption(AZ_pre_calc,  AZ_calc);
	   solver->SetAztecOption(AZ_max_iter,  1550);
	   solver->SetAztecOption(AZ_poly_ord,  5);
	   solver->SetAztecOption(AZ_overlap,   AZ_none);
	   solver->SetAztecOption(AZ_kspace,    60);
	   solver->SetAztecOption(AZ_aux_vec,   AZ_resid);
	   solver->SetAztecParam(AZ_tol,       4.00e-9);
	   solver->SetAztecParam(AZ_drop,       0.0);
	   solver->SetAztecParam(AZ_ilut_fill,  1.50);
	   solver->SetAztecParam(AZ_omega,      1.);
//     solver->SetAztecOption(AZ_output, AZ_none);
   }
コード例 #4
0
int main(int argc, char *argv[]) {
  int n = 32;                        // spatial discretization (per dimension)
  int num_KL = 2;                    // number of KL terms
  int p = 3;                         // polynomial order
  double mu = 0.1;                   // mean of exponential random field
  double s = 0.2;                    // std. dev. of exponential r.f.
  bool nonlinear_expansion = false;  // nonlinear expansion of diffusion coeff
                                     // (e.g., log-normal)
  bool symmetric = false;            // use symmetric formulation

  double g_mean_exp = 0.172988;      // expected response mean
  double g_std_dev_exp = 0.0380007;  // expected response std. dev.
  double g_tol = 1e-6;               // tolerance on determining success

// Initialize MPI
#ifdef HAVE_MPI
  MPI_Init(&argc,&argv);
#endif

  int MyPID;

  try {

    {
    TEUCHOS_FUNC_TIME_MONITOR("Total PCE Calculation Time");

    // Create a communicator for Epetra objects
    Teuchos::RCP<const Epetra_Comm> globalComm;
#ifdef HAVE_MPI
    globalComm = Teuchos::rcp(new Epetra_MpiComm(MPI_COMM_WORLD));
#else
    globalComm = Teuchos::rcp(new Epetra_SerialComm);
#endif
    MyPID = globalComm->MyPID();

    // Create Stochastic Galerkin basis and expansion
    Teuchos::Array< Teuchos::RCP<const Stokhos::OneDOrthogPolyBasis<int,double> > > bases(num_KL); 
    for (int i=0; i<num_KL; i++)
      bases[i] = Teuchos::rcp(new Stokhos::LegendreBasis<int,double>(p,true));
    Teuchos::RCP<const Stokhos::CompletePolynomialBasis<int,double> > basis = 
      Teuchos::rcp(new Stokhos::CompletePolynomialBasis<int,double>(bases,
		     1e-12));
    int sz = basis->size();
    Teuchos::RCP<Stokhos::Sparse3Tensor<int,double> > Cijk;
    if (nonlinear_expansion)
      Cijk = basis->computeTripleProductTensor(sz);
    else
      Cijk = basis->computeTripleProductTensor(num_KL+1);
    Teuchos::RCP<Stokhos::OrthogPolyExpansion<int,double> > expansion = 
      Teuchos::rcp(new Stokhos::AlgebraicOrthogPolyExpansion<int,double>(basis,
									 Cijk));
    if (MyPID == 0)
      std::cout << "Stochastic Galerkin expansion size = " << sz << std::endl;

    // Create stochastic parallel distribution
    int num_spatial_procs = -1;
    Teuchos::ParameterList parallelParams;
    parallelParams.set("Number of Spatial Processors", num_spatial_procs);
    // parallelParams.set("Rebalance Stochastic Graph", true);
    // Teuchos::ParameterList& isorropia_params = 
    //   parallelParams.sublist("Isorropia");
    // isorropia_params.set("Balance objective", "nonzeros");
    Teuchos::RCP<Stokhos::ParallelData> sg_parallel_data =
      Teuchos::rcp(new Stokhos::ParallelData(basis, Cijk, globalComm,
					     parallelParams));
    Teuchos::RCP<const EpetraExt::MultiComm> sg_comm = 
      sg_parallel_data->getMultiComm();
    Teuchos::RCP<const Epetra_Comm> app_comm = 
      sg_parallel_data->getSpatialComm();

    // Create application
    Teuchos::RCP<twoD_diffusion_ME> model = 
      Teuchos::rcp(new twoD_diffusion_ME(app_comm, n, num_KL, mu, s, basis, 
					 nonlinear_expansion, symmetric));
    
    // Setup stochastic Galerkin algorithmic parameters
    Teuchos::RCP<Teuchos::ParameterList> sgParams = 
      Teuchos::rcp(new Teuchos::ParameterList);
    if (!nonlinear_expansion) {
      sgParams->set("Parameter Expansion Type", "Linear");
      sgParams->set("Jacobian Expansion Type", "Linear");
    }
    
    Teuchos::ParameterList precParams;
    precParams.set("default values", "SA");
    precParams.set("ML output", 0);
    precParams.set("max levels",5);
    precParams.set("increasing or decreasing","increasing");
    precParams.set("aggregation: type", "Uncoupled");
    precParams.set("smoother: type","ML symmetric Gauss-Seidel");
    precParams.set("smoother: sweeps",2);
    precParams.set("smoother: pre or post", "both");
    precParams.set("coarse: max size", 200);
    //precParams.set("PDE equations",sz);
#ifdef HAVE_ML_AMESOS
    precParams.set("coarse: type","Amesos-KLU");
#else
    precParams.set("coarse: type","Jacobi");
#endif

    // Create stochastic Galerkin model evaluator
    Teuchos::RCP<Stokhos::SGModelEvaluator_Interlaced> sg_model =
      Teuchos::rcp(new Stokhos::SGModelEvaluator_Interlaced(
		     model, basis, Teuchos::null,
		     expansion, sg_parallel_data, 
		     sgParams));

    // Set up stochastic parameters
    Teuchos::RCP<Stokhos::EpetraVectorOrthogPoly> sg_p_poly =
      sg_model->create_p_sg(0);
    for (int i=0; i<num_KL; i++) {
      sg_p_poly->term(i,0)[i] = 0.0;
      sg_p_poly->term(i,1)[i] = 1.0;
    }

    // Create vectors and operators
    Teuchos::RCP<const Epetra_Vector> sg_p = sg_p_poly->getBlockVector();
    Teuchos::RCP<Epetra_Vector> sg_x =
      Teuchos::rcp(new Epetra_Vector(*(sg_model->get_x_map())));
    sg_x->PutScalar(0.0);
    Teuchos::RCP<Epetra_Vector> sg_f = 
      Teuchos::rcp(new Epetra_Vector(*(sg_model->get_f_map())));
    Teuchos::RCP<Epetra_Vector> sg_dx = 
      Teuchos::rcp(new Epetra_Vector(*(sg_model->get_x_map())));
    Teuchos::RCP<Epetra_CrsMatrix> sg_J = 
      Teuchos::rcp_dynamic_cast<Epetra_CrsMatrix>(sg_model->create_W());
    Teuchos::RCP<ML_Epetra::MultiLevelPreconditioner> sg_M =
      Teuchos::rcp(new ML_Epetra::MultiLevelPreconditioner(*sg_J, precParams,
							   false));
    
    // Setup InArgs and OutArgs
    EpetraExt::ModelEvaluator::InArgs sg_inArgs = sg_model->createInArgs();
    EpetraExt::ModelEvaluator::OutArgs sg_outArgs = sg_model->createOutArgs();
    sg_inArgs.set_p(1, sg_p);
    sg_inArgs.set_x(sg_x);
    sg_outArgs.set_f(sg_f);
    sg_outArgs.set_W(sg_J);

    // Evaluate model
    sg_model->evalModel(sg_inArgs, sg_outArgs);
    sg_M->ComputePreconditioner();

    // Print initial residual norm
    double norm_f;
    sg_f->Norm2(&norm_f);
    if (MyPID == 0)
      std::cout << "\nInitial residual norm = " << norm_f << std::endl;

    // Setup AztecOO solver
    AztecOO aztec;
    if (symmetric)
      aztec.SetAztecOption(AZ_solver, AZ_cg);
    else
      aztec.SetAztecOption(AZ_solver, AZ_gmres);
    aztec.SetAztecOption(AZ_precond, AZ_none);
    aztec.SetAztecOption(AZ_kspace, 20);
    aztec.SetAztecOption(AZ_conv, AZ_r0);
    aztec.SetAztecOption(AZ_output, 1);
    aztec.SetUserOperator(sg_J.get());
    aztec.SetPrecOperator(sg_M.get());
    aztec.SetLHS(sg_dx.get());
    aztec.SetRHS(sg_f.get());

    // Solve linear system
    aztec.Iterate(1000, 1e-12);

    // Update x
    sg_x->Update(-1.0, *sg_dx, 1.0);

    // Save solution to file
    EpetraExt::VectorToMatrixMarketFile("stochastic_solution_interlaced.mm", 
					*sg_x);

    // Save RHS to file
    EpetraExt::VectorToMatrixMarketFile("stochastic_RHS_interlaced.mm", 
					*sg_f);

    // Save operator to file
    EpetraExt::RowMatrixToMatrixMarketFile("stochastic_operator_interlaced.mm", 
					   *sg_J);

    // Save mean and variance to file
    Teuchos::RCP<Stokhos::EpetraVectorOrthogPoly> sg_x_poly = 
      sg_model->create_x_sg(View, sg_x.get());
    Epetra_Vector mean(*(model->get_x_map()));
    Epetra_Vector std_dev(*(model->get_x_map()));
    sg_x_poly->computeMean(mean);
    sg_x_poly->computeStandardDeviation(std_dev);
    EpetraExt::VectorToMatrixMarketFile("mean_gal_interlaced.mm", mean);
    EpetraExt::VectorToMatrixMarketFile("std_dev_gal_interlaced.mm", std_dev);

    // Compute new residual & response function
    EpetraExt::ModelEvaluator::OutArgs sg_outArgs2 = sg_model->createOutArgs();
    Teuchos::RCP<Epetra_Vector> sg_g = 
      Teuchos::rcp(new Epetra_Vector(*(sg_model->get_g_map(0))));
    sg_f->PutScalar(0.0);
    sg_outArgs2.set_f(sg_f);
    sg_outArgs2.set_g(0, sg_g);
    sg_model->evalModel(sg_inArgs, sg_outArgs2);

    // Print initial residual norm
    sg_f->Norm2(&norm_f);
    if (MyPID == 0)
      std::cout << "\nFinal residual norm = " << norm_f << std::endl;

    // Print mean and standard deviation of responses
    Teuchos::RCP<Stokhos::EpetraVectorOrthogPoly> sg_g_poly =
      sg_model->create_g_sg(0, View, sg_g.get());
    Epetra_Vector g_mean(*(model->get_g_map(0)));
    Epetra_Vector g_std_dev(*(model->get_g_map(0)));
    sg_g_poly->computeMean(g_mean);
    sg_g_poly->computeStandardDeviation(g_std_dev);
    std::cout.precision(16);
    // std::cout << "\nResponse Expansion = " << std::endl;
    // std::cout.precision(12);
    // sg_g_poly->print(std::cout);
    std::cout << "\nResponse Mean =      " << std::endl << g_mean << std::endl;
    std::cout << "Response Std. Dev. = " << std::endl << g_std_dev << std::endl;

    // Determine if example passed
    bool passed = false;
    if (norm_f < 1.0e-10 &&
	std::abs(g_mean[0]-g_mean_exp) < g_tol &&
	std::abs(g_std_dev[0]-g_std_dev_exp) < g_tol)
      passed = true;
    if (MyPID == 0) {
      if (passed)
	std::cout << "Example Passed!" << std::endl;
      else
	std::cout << "Example Failed!" << std::endl;
    }

    }

    Teuchos::TimeMonitor::summarize(std::cout);
    Teuchos::TimeMonitor::zeroOutTimers();

  }
  
  catch (std::exception& e) {
    std::cout << e.what() << std::endl;
  }
  catch (string& s) {
    std::cout << s << std::endl;
  }
  catch (char *s) {
    std::cout << s << std::endl;
  }
  catch (...) {
    std::cout << "Caught unknown exception!" <<std:: endl;
  }

#ifdef HAVE_MPI
  MPI_Finalize() ;
#endif

}
コード例 #5
0
ファイル: cxx_main.cpp プロジェクト: KineticTheory/Trilinos
int main(int argc, char *argv[]) {

#ifdef HAVE_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm (MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif

  // The problem is defined on a 2D grid, global size is nx * nx.
  int nx = 30;
  Teuchos::ParameterList GaleriList;
  GaleriList.set("nx", nx);
  GaleriList.set("ny", nx * Comm.NumProc());
  GaleriList.set("mx", 1);
  GaleriList.set("my", Comm.NumProc());
  Teuchos::RefCountPtr<Epetra_Map> Map = Teuchos::rcp( Galeri::CreateMap("Cartesian2D", Comm, GaleriList) );
  Teuchos::RefCountPtr<Epetra_CrsMatrix> A = Teuchos::rcp( Galeri::CreateCrsMatrix("Laplace2D", &*Map, GaleriList) );
  Teuchos::RefCountPtr<Epetra_MultiVector> LHS = Teuchos::rcp( new Epetra_MultiVector(*Map, 1) );
  Teuchos::RefCountPtr<Epetra_MultiVector> RHS = Teuchos::rcp( new Epetra_MultiVector(*Map, 1) );
  LHS->PutScalar(0.0); RHS->Random();

  // ========================================= //
  // Compare IC preconditioners to no precond. //
  // ----------------------------------------- //

  const double tol = 1e-5;
  const int maxIter = 500;

  // Baseline: No preconditioning
  // Compute number of iterations, to compare to IC later.

  // Here we create an AztecOO object
  LHS->PutScalar(0.0);

  AztecOO solver;
  solver.SetUserMatrix(&*A);
  solver.SetLHS(&*LHS);
  solver.SetRHS(&*RHS);
  solver.SetAztecOption(AZ_solver,AZ_cg);
  //solver.SetPrecOperator(&*PrecDiag);
  solver.SetAztecOption(AZ_output, 16); 
  solver.Iterate(maxIter, tol);

  int Iters = solver.NumIters();
  //cout << "No preconditioner iterations: " << Iters << endl;

#if 0 
  // Not sure how to use Ifpack_CrsRick - leave out for now.
  //
  // I wanna test funky values to be sure that they have the same
  // influence on the algorithms, both old and new
  int    LevelFill = 2;
  double DropTol = 0.3333;
  double Condest;
  
  Teuchos::RefCountPtr<Ifpack_CrsRick> IC;
  Ifpack_IlukGraph mygraph (A->Graph(), 0, 0);
  IC = Teuchos::rcp( new Ifpack_CrsRick(*A, mygraph) );
  IC->SetAbsoluteThreshold(0.00123);
  IC->SetRelativeThreshold(0.9876);
  // Init values from A
  IC->InitValues(*A);
  // compute the factors
  IC->Factor();
  // and now estimate the condition number
  IC->Condest(false,Condest);
  
  if( Comm.MyPID() == 0 ) {
    cout << "Condition number estimate (level-of-fill = "
	 << LevelFill <<  ") = " << Condest << endl;
  }

  // Define label for printing out during the solve phase
  std::string label = "Ifpack_CrsRick Preconditioner: LevelFill = " + toString(LevelFill) + 
                                                 " Overlap = 0"; 
  IC->SetLabel(label.c_str());
  
  // Here we create an AztecOO object
  LHS->PutScalar(0.0);

  AztecOO solver;
  solver.SetUserMatrix(&*A);
  solver.SetLHS(&*LHS);
  solver.SetRHS(&*RHS);
  solver.SetAztecOption(AZ_solver,AZ_cg);
  solver.SetPrecOperator(&*IC);
  solver.SetAztecOption(AZ_output, 16); 
  solver.Iterate(maxIter, tol);

  int RickIters = solver.NumIters();
  //cout << "Ifpack_Rick iterations: " << RickIters << endl;

  // Compare to no preconditioning
  if (RickIters > Iters/2)
    IFPACK_CHK_ERR(-1);

#endif

  //////////////////////////////////////////////////////
  // Same test with Ifpack_IC
  // This is Crout threshold Cholesky, so different than IC(0)

  Ifpack Factory;
  Teuchos::RefCountPtr<Ifpack_Preconditioner> PrecIC = Teuchos::rcp( Factory.Create("IC", &*A) );

  Teuchos::ParameterList List;
  //List.get("fact: ict level-of-fill", 2.);
  //List.get("fact: drop tolerance", 0.3333);
  //List.get("fact: absolute threshold", 0.00123);
  //List.get("fact: relative threshold", 0.9876);
  //List.get("fact: relaxation value", 0.0);

  IFPACK_CHK_ERR(PrecIC->SetParameters(List));
  IFPACK_CHK_ERR(PrecIC->Compute());

  // Here we create an AztecOO object
  LHS->PutScalar(0.0);

  //AztecOO solver;
  solver.SetUserMatrix(&*A);
  solver.SetLHS(&*LHS);
  solver.SetRHS(&*RHS);
  solver.SetAztecOption(AZ_solver,AZ_cg);
  solver.SetPrecOperator(&*PrecIC);
  solver.SetAztecOption(AZ_output, 16); 
  solver.Iterate(maxIter, tol);

  int ICIters = solver.NumIters();
  //cout << "Ifpack_IC iterations: " << ICIters << endl;

  // Compare to no preconditioning
  if (ICIters > Iters/2)
    IFPACK_CHK_ERR(-1);

#if 0
  //////////////////////////////////////////////////////
  // Same test with Ifpack_ICT 
  // This is another threshold Cholesky

  Teuchos::RefCountPtr<Ifpack_Preconditioner> PrecICT = Teuchos::rcp( Factory.Create("ICT", &*A) );

  //Teuchos::ParameterList List;
  //List.get("fact: level-of-fill", 2);
  //List.get("fact: drop tolerance", 0.3333);
  //List.get("fact: absolute threshold", 0.00123);
  //List.get("fact: relative threshold", 0.9876);
  //List.get("fact: relaxation value", 0.0);

  IFPACK_CHK_ERR(PrecICT->SetParameters(List));
  IFPACK_CHK_ERR(PrecICT->Compute());

  // Here we create an AztecOO object
  LHS->PutScalar(0.0);

  solver.SetUserMatrix(&*A);
  solver.SetLHS(&*LHS);
  solver.SetRHS(&*RHS);
  solver.SetAztecOption(AZ_solver,AZ_cg);
  solver.SetPrecOperator(&*PrecICT);
  solver.SetAztecOption(AZ_output, 16); 
  solver.Iterate(maxIter, tol);

  int ICTIters = solver.NumIters();
  //cout << "Ifpack_ICT iterations: " << ICTIters << endl;

  // Compare to no preconditioning
  if (ICTIters > Iters/2)
    IFPACK_CHK_ERR(-1);
#endif

#ifdef HAVE_MPI
  MPI_Finalize() ;
#endif

  return(EXIT_SUCCESS);
}
コード例 #6
0
ファイル: cxx_main.cpp プロジェクト: KineticTheory/Trilinos
int main(int argc, char *argv[]) {

#ifdef HAVE_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm (MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif

  int ierr=HIPS_Initialize(1);
  HIPS_ExitOnError(ierr);

  int MyPID = Comm.MyPID();
  bool verbose = false; 
  if (MyPID==0) verbose = true;

  Teuchos::ParameterList GaleriList;
  int nx = 100; 
  GaleriList.set("nx", nx);
  GaleriList.set("ny", nx * Comm.NumProc());
  //  GaleriList.set("ny", nx);
  GaleriList.set("mx", 1);
  GaleriList.set("my", Comm.NumProc());
                 
  Teuchos::RefCountPtr<Epetra_Map> Map = Teuchos::rcp( Galeri::CreateMap("Cartesian2D", Comm, GaleriList) );
  Teuchos::RefCountPtr<Epetra_CrsMatrix> A = Teuchos::rcp( Galeri::CreateCrsMatrix("Laplace2D", &*Map, GaleriList) );
  Teuchos::RefCountPtr<Epetra_MultiVector> LHS = Teuchos::rcp( new Epetra_MultiVector(*Map, 1) );
  Teuchos::RefCountPtr<Epetra_MultiVector> RHS = Teuchos::rcp( new Epetra_MultiVector(*Map, 1) );
  LHS->PutScalar(0.0); RHS->Random();

  // ============================ //
  // Construct ILU preconditioner //
  // ---------------------------- //

  Teuchos::RefCountPtr<Ifpack_HIPS> RILU;

  RILU = Teuchos::rcp( new Ifpack_HIPS(&*A) );

  Teuchos::ParameterList List;
  List.set("hips: id",0);
  List.set("hips: setup output",2);
  List.set("hips: iteration output",0);
  List.set("hips: drop tolerance",5e-3);
  List.set("hips: graph symmetric",1);
  RILU->SetParameters(List);

  
  RILU->Initialize();
  RILU->Compute();

  // Here we create an AztecOO object
  LHS->PutScalar(0.0);

  int Niters = 50;

  AztecOO solver;
  solver.SetUserMatrix(&*A);
  solver.SetLHS(&*LHS);
  solver.SetRHS(&*RHS);
  solver.SetAztecOption(AZ_solver,AZ_gmres);
  solver.SetPrecOperator(&*RILU);
  solver.SetAztecOption(AZ_output, 1); 
  solver.Iterate(Niters, 1.0e-8);

  int OldIters = solver.NumIters();


  HIPS_Finalize();
  
#ifdef HAVE_MPI
  MPI_Finalize() ;
#endif

  return(EXIT_SUCCESS);
}
コード例 #7
0
ファイル: cxx_main.cpp プロジェクト: KineticTheory/Trilinos
int main(int argc, char *argv[]) {

#ifdef HAVE_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm (MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif
  
  int MyPID = Comm.MyPID();
  bool verbose = false; 
  if (MyPID==0) verbose = true;

  
  /*int npRows = -1;
  int npCols = -1;
  bool useTwoD = false;
  int randomize = 1;
  std::string matrix = "Laplacian";
  
  Epetra_CrsMatrix *AK = NULL;
    std::string filename = "email.mtx";
  read_matrixmarket_file((char*) filename.c_str(), Comm, AK,
			 useTwoD, npRows, npCols,
			 randomize, false,
			 (matrix.find("Laplacian")!=std::string::npos));
  Teuchos::RCP<Epetra_CrsMatrix> A(AK);
  const Epetra_Map *AMap = &(AK->DomainMap());
  Teuchos::RCP<const Epetra_Map> Map(AMap, false);*/

  int nx = 30;
  Teuchos::ParameterList GaleriList;
  GaleriList.set("nx", nx);
  GaleriList.set("ny", nx * Comm.NumProc());
  GaleriList.set("mx", 1);
  GaleriList.set("my", Comm.NumProc());
  Teuchos::RefCountPtr<Epetra_Map> Map = Teuchos::rcp( Galeri::CreateMap("Cartesian2D", Comm, GaleriList) );
  Teuchos::RefCountPtr<Epetra_CrsMatrix> A = Teuchos::rcp( Galeri::CreateCrsMatrix("Laplace2D", &*Map, GaleriList) );

  Teuchos::RefCountPtr<Epetra_MultiVector> LHS = Teuchos::rcp( new Epetra_MultiVector(*Map, 1) );
  Teuchos::RefCountPtr<Epetra_MultiVector> RHS = Teuchos::rcp( new Epetra_MultiVector(*Map, 1) );


  LHS->PutScalar(0.0); RHS->Random();

  // ==================================================== //
  // Compare support graph preconditioners to no precond. //
  // ---------------------------------------------------- //

  const double tol = 1e-5;
  const int maxIter = 500;

  // Baseline: No preconditioning
  // Compute number of iterations, to compare to IC later.

  // Here we create an AztecOO object
  LHS->PutScalar(0.0);

  AztecOO solver;
  solver.SetUserMatrix(&*A);
  solver.SetLHS(&*LHS);
  solver.SetRHS(&*RHS);
  solver.SetAztecOption(AZ_solver,AZ_cg);
  solver.SetAztecOption(AZ_output, 16); 
  solver.Iterate(maxIter, tol);

  int Iters = solver.NumIters();


  int SupportIters;
  Ifpack Factory;
  Teuchos::ParameterList List;

#ifdef HAVE_IFPACK_AMESOS
  //////////////////////////////////////////////////////
  // Same test with Ifpack_SupportGraph
  // Factored with Amesos

  
  Teuchos::RefCountPtr<Ifpack_Preconditioner> PrecSupportAmesos = Teuchos::rcp( Factory.Create("MSF Amesos", &*A) );
  List.set("amesos: solver type","Klu");
  List.set("MST: keep diagonal", 1.0);
  List.set("MST: randomize", 1);
  //List.set("fact: absolute threshold", 3.0);
  
  IFPACK_CHK_ERR(PrecSupportAmesos->SetParameters(List));
  IFPACK_CHK_ERR(PrecSupportAmesos->Initialize());
  IFPACK_CHK_ERR(PrecSupportAmesos->Compute());


  // Here we create an AztecOO object
  LHS->PutScalar(0.0);

  //AztecOO solver;
  solver.SetUserMatrix(&*A);
  solver.SetLHS(&*LHS);
  solver.SetRHS(&*RHS);
  solver.SetAztecOption(AZ_solver,AZ_cg);
  solver.SetPrecOperator(&*PrecSupportAmesos);
  solver.SetAztecOption(AZ_output, 16); 
  solver.Iterate(maxIter, tol);

  SupportIters = solver.NumIters();




  
  // Compare to no preconditioning
  if (SupportIters > 2*Iters)
    IFPACK_CHK_ERR(-1);

#endif

  //////////////////////////////////////////////////////
  // Same test with Ifpack_SupportGraph
  // Factored with IC
  

  
  Teuchos::RefCountPtr<Ifpack_Preconditioner> PrecSupportIC = Teuchos::rcp( Factory.Create("MSF IC", &*A) );

  

  IFPACK_CHK_ERR(PrecSupportIC->SetParameters(List));
  IFPACK_CHK_ERR(PrecSupportIC->Compute());


  // Here we create an AztecOO object                                                                                                                                                                                                        
  LHS->PutScalar(0.0);

  //AztecOO solver;                                                                                                                                                                                                                          
  solver.SetUserMatrix(&*A);
  solver.SetLHS(&*LHS);
  solver.SetRHS(&*RHS);
  solver.SetAztecOption(AZ_solver,AZ_cg);
  solver.SetPrecOperator(&*PrecSupportIC);
  solver.SetAztecOption(AZ_output, 16);
  solver.Iterate(maxIter, tol);

  SupportIters = solver.NumIters();

  // Compare to no preconditioning                                                                                                                                                                                                           
  if (SupportIters > 2*Iters)
    IFPACK_CHK_ERR(-1);
  




#ifdef HAVE_MPI
  MPI_Finalize() ;
#endif

  return(EXIT_SUCCESS);
}
コード例 #8
0
 void switch_to_full_output_mode()
 {
    solver->SetAztecOption(AZ_output, AZ_all);
 }
コード例 #9
0
 //[CK] i took this funtion out of the solve-function
 void switch_to_no_output_mode()
 {
   solver->SetAztecOption(AZ_output, AZ_none);
 }
コード例 #10
0
ファイル: shylu_solve.hpp プロジェクト: jdbooth/Trilinos
int shylu_dist_solve<Epetra_CrsMatrix,Epetra_MultiVector>(
    shylu_symbolic<Epetra_CrsMatrix,Epetra_MultiVector> *ssym,
    shylu_data<Epetra_CrsMatrix,Epetra_MultiVector> *data,
    shylu_config<Epetra_CrsMatrix,Epetra_MultiVector> *config,
    const Epetra_MultiVector& X,
    Epetra_MultiVector& Y
)
{
    int err;
    AztecOO *solver = 0;
    assert(X.Map().SameAs(Y.Map()));
    //assert(X.Map().SameAs(A_->RowMap()));
    const Epetra_MultiVector *newX;
    newX = &X;
    //rd_->redistribute(X, newX);

    int nvectors = newX->NumVectors();

    // May have to use importer/exporter
    Epetra_Map BsMap(-1, data->Snr, data->SRowElems, 0, X.Comm());
    Epetra_Map BdMap(-1, data->Dnr, data->DRowElems, 0, X.Comm());

    Epetra_MultiVector Bs(BsMap, nvectors);
    Epetra_Import BsImporter(BsMap, newX->Map());

    assert(BsImporter.SourceMap().SameAs(newX->Map()));
    assert((newX->Map()).SameAs(BsImporter.SourceMap()));

    Bs.Import(*newX, BsImporter, Insert);
    Epetra_MultiVector Xs(BsMap, nvectors);

    Epetra_SerialComm LComm;        // Use Serial Comm for the local vectors.
    Epetra_Map LocalBdMap(-1, data->Dnr, data->DRowElems, 0, LComm);
    Epetra_MultiVector localrhs(LocalBdMap, nvectors);
    Epetra_MultiVector locallhs(LocalBdMap, nvectors);

    Epetra_MultiVector Z(BdMap, nvectors);

    Epetra_MultiVector Bd(BdMap, nvectors);
    Epetra_Import BdImporter(BdMap, newX->Map());
    assert(BdImporter.SourceMap().SameAs(newX->Map()));
    assert((newX->Map()).SameAs(BdImporter.SourceMap()));
    Bd.Import(*newX, BdImporter, Insert);

    int lda;
    double *values;
    err = Bd.ExtractView(&values, &lda);
    assert (err == 0);
    int nrows = ssym->C->RowMap().NumMyElements();

    // copy to local vector //TODO: OMP ?
    assert(lda == nrows);
    for (int v = 0; v < nvectors; v++)
    {
        for (int i = 0; i < nrows; i++)
        {
            err = localrhs.ReplaceMyValue(i, v, values[i+v*lda]);
            assert (err == 0);
        }
    }

    // TODO : Do we need to reset the lhs and rhs here ?
    if (config->amesosForDiagonal)
    {
        ssym->LP->SetRHS(&localrhs);
        ssym->LP->SetLHS(&locallhs);
        ssym->Solver->Solve();
    }
    else
    {
        ssym->ifSolver->ApplyInverse(localrhs, locallhs);
    }

    err = locallhs.ExtractView(&values, &lda);
    assert (err == 0);

    // copy to distributed vector //TODO: OMP ?
    assert(lda == nrows);
    for (int v = 0; v < nvectors; v++)
    {
        for (int i = 0; i < nrows; i++)
        {
            err = Z.ReplaceMyValue(i, v, values[i+v*lda]);
            assert (err == 0);
        }
    }

    Epetra_MultiVector temp1(BsMap, nvectors);
    ssym->R->Multiply(false, Z, temp1);
    Bs.Update(-1.0, temp1, 1.0);

    Xs.PutScalar(0.0);

    Epetra_LinearProblem Problem(data->Sbar.get(), &Xs, &Bs);
    if (config->schurSolver == "Amesos")
    {
        Amesos_BaseSolver *solver2 = data->dsolver;
        data->LP2->SetLHS(&Xs);
        data->LP2->SetRHS(&Bs);
        //cout << "Calling solve *****************************" << endl;
        solver2->Solve();
        //cout << "Out of solve *****************************" << endl;
    }
    else
    {
        if (config->libName == "Belos")
        {
            solver = data->innersolver;
            solver->SetLHS(&Xs);
            solver->SetRHS(&Bs);
        }
        else
        {
            // See the comment above on why we are not able to reuse the solver
            // when outer solve is AztecOO as well.
            solver = new AztecOO();
            //solver.SetPrecOperator(precop_);
            solver->SetAztecOption(AZ_solver, AZ_gmres);
            // Do not use AZ_none
            solver->SetAztecOption(AZ_precond, AZ_dom_decomp);
            //solver->SetAztecOption(AZ_precond, AZ_none);
            //solver->SetAztecOption(AZ_precond, AZ_Jacobi);
            ////solver->SetAztecOption(AZ_precond, AZ_Neumann);
            //solver->SetAztecOption(AZ_overlap, 3);
            //solver->SetAztecOption(AZ_subdomain_solve, AZ_ilu);
            //solver->SetAztecOption(AZ_output, AZ_all);
            //solver->SetAztecOption(AZ_diagnostics, AZ_all);
            solver->SetProblem(Problem);
        }

        // What should be a good inner_tolerance :-) ?
        solver->Iterate(config->inner_maxiters, config->inner_tolerance);
    }

    Epetra_MultiVector temp(BdMap, nvectors);
    ssym->C->Multiply(false, Xs, temp);
    temp.Update(1.0, Bd, -1.0);

    //Epetra_SerialComm LComm;        // Use Serial Comm for the local vectors.
    //Epetra_Map LocalBdMap(-1, data->Dnr, data->DRowElems, 0, LComm);
    //Epetra_MultiVector localrhs(LocalBdMap, nvectors);
    //Epetra_MultiVector locallhs(LocalBdMap, nvectors);

    //int lda;
    //double *values;
    err = temp.ExtractView(&values, &lda);
    assert (err == 0);
    //int nrows = data->Cptr->RowMap().NumMyElements();

    // copy to local vector //TODO: OMP ?
    assert(lda == nrows);
    for (int v = 0; v < nvectors; v++)
    {
        for (int i = 0; i < nrows; i++)
        {
            err = localrhs.ReplaceMyValue(i, v, values[i+v*lda]);
            assert (err == 0);
        }
    }

    if (config->amesosForDiagonal)
    {
        ssym->LP->SetRHS(&localrhs);
        ssym->LP->SetLHS(&locallhs);
        ssym->Solver->Solve();
    }
    else
    {
        ssym->ifSolver->ApplyInverse(localrhs, locallhs);
    }

    err = locallhs.ExtractView(&values, &lda);
    assert (err == 0);

    // copy to distributed vector //TODO: OMP ?
    assert(lda == nrows);
    for (int v = 0; v < nvectors; v++)
    {
        for (int i = 0; i < nrows; i++)
        {
            err = temp.ReplaceMyValue(i, v, values[i+v*lda]);
            assert (err == 0);
        }
    }

    // For checking faults
    //if (NumApplyInverse_ == 5)  temp.ReplaceMyValue(0, 0, 0.0);

    Epetra_Export XdExporter(BdMap, Y.Map());
    Y.Export(temp, XdExporter, Insert);

    Epetra_Export XsExporter(BsMap, Y.Map());
    Y.Export(Xs, XsExporter, Insert);

    if (config->libName == "Belos" || config->schurSolver == "Amesos")
    {
        // clean up
    }
    else
    {
        delete solver;
    }
    return 0;
}//end shylu_dist_solve <epetra,epetra>
コード例 #11
0
 //
 // [JW] i prefer this option pack .. ilut with gmres(1k krylov) 
 //   btw: 10k krylov vectors is a ram killer ... 
 //       aztecOO documentation suggests krylov vectors around max iterations .. - 1k ..
 //
 void set_options_pack7()
 {
    solver->SetAztecOption(AZ_solver, AZ_gmres);
    solver->SetAztecOption(AZ_kspace, 1000);
 }
コード例 #12
0
/*  aztec/examples
 *    AZ_defaults(options, params);
 *   
 *    options[AZ_solver]   = AZ_cgs;
 *    options[AZ_scaling]  = AZ_none;
 *    options[AZ_precond]  = AZ_ls;
 *    options[AZ_conv]     = AZ_r0;
 *    options[AZ_output]   = 1;
 *    options[AZ_pre_calc] = AZ_calc;
 *    options[AZ_max_iter] = 1550;
 *    options[AZ_poly_ord] = 5;
 *    options[AZ_overlap]  = AZ_none;
 *    options[AZ_kspace]   = 60;
 *    options[AZ_aux_vec]  = AZ_resid;
 *    params[AZ_tol]       = 4.00e-9;
 *    params[AZ_drop]      = 0.0;
 *    params[AZ_ilut_fill] = 1.5;
 *    params[AZ_omega]     = 1.;
 *
 *
 *
 * */
   void set_options_pack4()
   {
      solver->SetAztecOption(AZ_solver, AZ_bicgstab);
//     solver->SetAztecOption(AZ_output, AZ_none);
   }
コード例 #13
0
ファイル: cxx_main.cpp プロジェクト: KineticTheory/Trilinos
int main(int argc, char *argv[]) {

#ifdef HAVE_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm (MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif

  Teuchos::ParameterList GaleriList;
  int nx = 30; 

  GaleriList.set("nx", nx);
  //  GaleriList.set("ny", nx * Comm.NumProc());
  GaleriList.set("ny", nx);
  GaleriList.set("mx", 1);
  GaleriList.set("my", Comm.NumProc());
  GaleriList.set("alpha", .0);
  GaleriList.set("diff", 1.0);
  GaleriList.set("conv", 100.0);

  Teuchos::RefCountPtr<Epetra_Map> Map = Teuchos::rcp( Galeri::CreateMap64("Cartesian2D", Comm, GaleriList) );
  Teuchos::RefCountPtr<Epetra_CrsMatrix> A = Teuchos::rcp( Galeri::CreateCrsMatrix("UniFlow2D", &*Map, GaleriList) );
  Teuchos::RefCountPtr<Epetra_MultiVector> LHS = Teuchos::rcp( new Epetra_MultiVector(*Map, 1) );
  Teuchos::RefCountPtr<Epetra_MultiVector> RHS = Teuchos::rcp( new Epetra_MultiVector(*Map, 1) );
  LHS->PutScalar(0.0); RHS->Random();
  Ifpack Factory;  
  int Niters = 100;

  // ============================= //
  // Construct IHSS preconditioner //
  // ============================= //
  Teuchos::RefCountPtr<Ifpack_Preconditioner> Prec = Teuchos::rcp( Factory.Create("IHSS", &*A,0) );
  Teuchos::ParameterList List;
  List.set("ihss: hermetian type","ILU");
  List.set("ihss: skew hermetian type","ILU");
  List.set("ihss: ratio eigenvalue",100.0);
  // Could set sublist values here to better control the ILU, but this isn't needed for this example.
  IFPACK_CHK_ERR(Prec->SetParameters(List));
  IFPACK_CHK_ERR(Prec->Compute());

  // ============================= //
  // Create solver Object          //
  // ============================= //

  AztecOO solver;
  solver.SetUserMatrix(&*A);
  solver.SetLHS(&*LHS);
  solver.SetRHS(&*RHS);
  solver.SetAztecOption(AZ_solver,AZ_gmres);
  solver.SetPrecOperator(&*Prec);
  solver.SetAztecOption(AZ_output, 1); 
  solver.Iterate(Niters, 1e-8);

  // ============================= //
  // Construct SORa preconditioner //
  // ============================= //
  Teuchos::RefCountPtr<Ifpack_Preconditioner> Prec2 = Teuchos::rcp( Factory.Create("SORa", &*A,0) );
  Teuchos::ParameterList List2;
  List2.set("sora: sweeps",1);
  // Could set sublist values here to better control the ILU, but this isn't needed for this example.
  IFPACK_CHK_ERR(Prec2->SetParameters(List2));
  IFPACK_CHK_ERR(Prec2->Compute());

  // ============================= //
  // Create solver Object          //
  // ============================= //
  AztecOO solver2;
  LHS->PutScalar(0.0);
  solver2.SetUserMatrix(&*A);
  solver2.SetLHS(&*LHS);
  solver2.SetRHS(&*RHS);
  solver2.SetAztecOption(AZ_solver,AZ_gmres);
  solver2.SetPrecOperator(&*Prec2);
  solver2.SetAztecOption(AZ_output, 1); 
  solver2.Iterate(Niters, 1e-8);

#ifdef HAVE_MPI
  MPI_Finalize() ;
#endif

  return(EXIT_SUCCESS);
}
コード例 #14
0
ファイル: shylu_solve.hpp プロジェクト: jdbooth/Trilinos
int shylu_local_solve<Epetra_CrsMatrix, Epetra_MultiVector>
(
    shylu_symbolic<Epetra_CrsMatrix,Epetra_MultiVector> *ssym,
    shylu_data<Epetra_CrsMatrix,Epetra_MultiVector> *data,
    shylu_config<Epetra_CrsMatrix,Epetra_MultiVector> *config,
    const Epetra_MultiVector& X,
    Epetra_MultiVector& Y
)
{
    int err;
#ifndef NDEBUG
    int nvectors = X.NumVectors();
    assert (nvectors == data->localrhs->NumVectors());
#endif // NDEBUG

    // Initialize the X vector for iterative solver
    data->Xs->PutScalar(0.0);

    // Get local portion of X
    data->localrhs->Import(X, *(data->BdImporter), Insert);


    data->localrhs->Print(std::cout);
    std::cout << " " << std::endl;
    data->locallhs->Print(std::cout);

    // locallhs is z in paper
    if (config->amesosForDiagonal) {
        std::cout << "calling amesos for diagon" << endl;
        ssym->OrigLP->SetRHS((data->localrhs).getRawPtr());
        ssym->OrigLP->SetLHS((data->locallhs).getRawPtr());
        std::cout << "set RHS and LHS " << std::endl;
        ssym->ReIdx_LP->fwd();
        ssym->Solver->Solve();
    }
    else {
        ssym->ifSolver->ApplyInverse(*(data->localrhs), *(data->locallhs));
    }

    err = ssym->R->Multiply(false, *(data->locallhs), *(data->temp1));
    assert (err == 0);

    // Export temp1 to a dist vector - temp2
    data->temp2->Import(*(data->temp1), *(data->DistImporter), Insert);

    //Epetra_MultiVector Bs(SMap, nvectors); // b_2 - R * z in ShyLU paper
    data->Bs->Import(X, *(data->BsImporter), Insert);
    data->Bs->Update(-1.0, *(data->temp2), 1.0);

    AztecOO *solver = 0;
    Epetra_LinearProblem Problem(data->Sbar.get(),
                                 (data->Xs).getRawPtr(), (data->Bs).getRawPtr());
    if ((config->schurSolver == "G") || (config->schurSolver == "IQR"))
    {
        IFPACK_CHK_ERR(data->iqrSolver->Solve(*(data->schur_op),
                                              *(data->Bs), *(data->Xs)));
    }
    else if (config->schurSolver == "Amesos")
    {
        Amesos_BaseSolver *solver2 = data->dsolver;
        data->OrigLP2->SetLHS((data->Xs).getRawPtr());
        data->OrigLP2->SetRHS((data->Bs).getRawPtr());
        data->ReIdx_LP2->fwd();
        //cout << "Calling solve *****************************" << endl;
        solver2->Solve();
        //cout << "Out of solve *****************************" << endl;
    }
    else
    {
        if (config->libName == "Belos")
        {
            solver = data->innersolver;
            solver->SetLHS((data->Xs).getRawPtr());
            solver->SetRHS((data->Bs).getRawPtr());
        }
        else
        {
            // See the comment above on why we are not able to reuse the solver
            // when outer solve is AztecOO as well.
            solver = new AztecOO();
            //solver.SetPrecOperator(precop_);
            solver->SetAztecOption(AZ_solver, AZ_gmres);
            // Do not use AZ_none
            solver->SetAztecOption(AZ_precond, AZ_dom_decomp);
            //solver->SetAztecOption(AZ_precond, AZ_none);
            //solver->SetAztecOption(AZ_precond, AZ_Jacobi);
            ////solver->SetAztecOption(AZ_precond, AZ_Neumann);
            //solver->SetAztecOption(AZ_overlap, 3);
            //solver->SetAztecOption(AZ_subdomain_solve, AZ_ilu);
            //solver->SetAztecOption(AZ_output, AZ_all);
            //solver->SetAztecOption(AZ_diagnostics, AZ_all);
            solver->SetProblem(Problem);
        }

        // What should be a good inner_tolerance :-) ?
        solver->Iterate(config->inner_maxiters, config->inner_tolerance);
    }

    // Import Xs locally
    data->LocalXs->Import(*(data->Xs), *(data->XsImporter), Insert);

    err = ssym->C->Multiply(false, *(data->LocalXs), *(data->temp3));
    assert (err == 0);
    data->temp3->Update(1.0, *(data->localrhs), -1.0);

    if (config->amesosForDiagonal) {
        ssym->OrigLP->SetRHS((data->temp3).getRawPtr());
        ssym->OrigLP->SetLHS((data->locallhs).getRawPtr());
        ssym->ReIdx_LP->fwd();
        ssym->Solver->Solve();
    }
    else {
        ssym->ifSolver->ApplyInverse(*(data->temp3), *(data->locallhs));
    }

    Y.Export(*(data->locallhs), *(data->XdExporter), Insert);
    Y.Export(*(data->LocalXs), *(data->XsExporter), Insert);

    if (config->libName == "Belos" || config->schurSolver == "Amesos")
    {
        // clean up
    }
    else
    {
        delete solver;
    }
    return 0;
}
コード例 #15
0
ファイル: cxx_main.cpp プロジェクト: cakeisalie/oomphlib_003
int main(int argc, char *argv[]) {

#ifdef HAVE_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm (MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif

  int MyPID = Comm.MyPID();
  bool verbose = false; 
  if (MyPID==0) verbose = true;

  // The problem is defined on a 2D grid, global size is nx * nx.
  int nx = 30;
  Teuchos::ParameterList GaleriList;
  GaleriList.set("nx", nx);
  GaleriList.set("ny", nx * Comm.NumProc());
  GaleriList.set("mx", 1);
  GaleriList.set("my", Comm.NumProc());
  Teuchos::RefCountPtr<Epetra_Map> Map = Teuchos::rcp( Galeri::CreateMap("Cartesian2D", Comm, GaleriList) );
  Teuchos::RefCountPtr<Epetra_CrsMatrix> A = Teuchos::rcp( Galeri::CreateCrsMatrix("Laplace2D", &*Map, GaleriList) );
  Teuchos::RefCountPtr<Epetra_MultiVector> LHS = Teuchos::rcp( new Epetra_MultiVector(*Map, 1) );
  Teuchos::RefCountPtr<Epetra_MultiVector> RHS = Teuchos::rcp( new Epetra_MultiVector(*Map, 1) );
  LHS->PutScalar(0.0); RHS->Random();

  // ============================ //
  // Construct ILU preconditioner //
  // ---------------------------- //

  // I wanna test funky values to be sure that they have the same
  // influence on the algorithms, both old and new
  int    LevelFill = 2;
  double DropTol = 0.3333;
  double Condest;
  
  Teuchos::RefCountPtr<Ifpack_CrsIct> ICT;
  ICT = Teuchos::rcp( new Ifpack_CrsIct(*A,DropTol,LevelFill) );
  ICT->SetAbsoluteThreshold(0.00123);
  ICT->SetRelativeThreshold(0.9876);
  // Init values from A
  ICT->InitValues(*A);
  // compute the factors
  ICT->Factor();
  // and now estimate the condition number
  ICT->Condest(false,Condest);
  
  if( Comm.MyPID() == 0 ) {
    cout << "Condition number estimate (level-of-fill = "
	 << LevelFill <<  ") = " << Condest << endl;
  }

  // Define label for printing out during the solve phase
  string label = "Ifpack_CrsIct Preconditioner: LevelFill = " + toString(LevelFill) + 
                                                 " Overlap = 0"; 
  ICT->SetLabel(label.c_str());
  
  // Here we create an AztecOO object
  LHS->PutScalar(0.0);

  int Niters = 1200;

  AztecOO solver;
  solver.SetUserMatrix(&*A);
  solver.SetLHS(&*LHS);
  solver.SetRHS(&*RHS);
  solver.SetAztecOption(AZ_solver,AZ_cg);
  solver.SetPrecOperator(&*ICT);
  solver.SetAztecOption(AZ_output, 16); 
  solver.Iterate(Niters, 5.0e-5);

  int OldIters = solver.NumIters();

  // now rebuild the same preconditioner using ICT, we expect the same
  // number of iterations

  Ifpack Factory;
  Teuchos::RefCountPtr<Ifpack_Preconditioner> Prec = Teuchos::rcp( Factory.Create("IC", &*A) );

  Teuchos::ParameterList List;
  List.get("fact: level-of-fill", 2);
  List.get("fact: drop tolerance", 0.3333);
  List.get("fact: absolute threshold", 0.00123);
  List.get("fact: relative threshold", 0.9876);
  List.get("fact: relaxation value", 0.0);

  IFPACK_CHK_ERR(Prec->SetParameters(List));
  IFPACK_CHK_ERR(Prec->Compute());

  // Here we create an AztecOO object
  LHS->PutScalar(0.0);

  solver.SetUserMatrix(&*A);
  solver.SetLHS(&*LHS);
  solver.SetRHS(&*RHS);
  solver.SetAztecOption(AZ_solver,AZ_cg);
  solver.SetPrecOperator(&*Prec);
  solver.SetAztecOption(AZ_output, 16); 
  solver.Iterate(Niters, 5.0e-5);

  int NewIters = solver.NumIters();

  if (OldIters != NewIters)
    IFPACK_CHK_ERR(-1);

#ifdef HAVE_MPI
  MPI_Finalize() ;
#endif

  return(EXIT_SUCCESS);
}
コード例 #16
0
void set_options_pack_fem()
   {
      solver->SetAztecOption(AZ_precond,          AZ_dom_decomp );
      solver->SetAztecOption(AZ_subdomain_solve,  AZ_lu);
      solver->SetAztecOption(AZ_solver,           AZ_cg);
   }
コード例 #17
0
ファイル: ex1.cpp プロジェクト: cakeisalie/oomphlib_003
int main(int argc, char *argv[]) {

#ifdef HAVE_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm (MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif

  int MyPID = Comm.MyPID();
  bool verbose = false; 
  if (MyPID==0) verbose = true;

  // matrix downloaded from MatrixMarket
  char FileName[] = "../HBMatrices/fidap005.rua";

  Epetra_Map * readMap; // Pointers because of Trilinos_Util_ReadHb2Epetra
  Epetra_CrsMatrix * readA; 
  Epetra_Vector * readx; 
  Epetra_Vector * readb;
  Epetra_Vector * readxexact;
   
  // Call routine to read in HB problem
  Trilinos_Util_ReadHb2Epetra(FileName, Comm, readMap, readA, readx, 
			      readb, readxexact);

  int NumGlobalElements = readMap->NumGlobalElements();

  // Create uniform distributed map
  Epetra_Map map(NumGlobalElements, 0, Comm);

  // Create Exporter to distribute read-in matrix and vectors

  Epetra_Export exporter(*readMap, map);
  Epetra_CrsMatrix A(Copy, map, 0);
  Epetra_Vector x(map);
  Epetra_Vector b(map);
  Epetra_Vector xexact(map);

  Epetra_Time FillTimer(Comm);
  A.Export(*readA, exporter, Add);
  x.Export(*readx, exporter, Add);
  b.Export(*readb, exporter, Add);
  xexact.Export(*readxexact, exporter, Add);

  A.FillComplete();
  
  delete readA;
  delete readx;
  delete readb;
  delete readxexact;
  delete readMap;
  
  // ============================ //
  // Construct ILU preconditioner //
  // ---------------------------- //

  //  modify those parameters 
  int    LevelFill = 1;
  double DropTol = 0.0;
  double Condest;
  
  Ifpack_CrsIct * ICT = NULL;
  ICT = new Ifpack_CrsIct(A,DropTol,LevelFill);
  // Init values from A
  ICT->InitValues(A);
  // compute the factors
  ICT->Factor();
  // and now estimate the condition number
  ICT->Condest(false,Condest);
  
  cout << Condest << endl;
    
  if( Comm.MyPID() == 0 ) {
    cout << "Condition number estimate (level-of-fill = "
	 << LevelFill <<  ") = " << Condest << endl;
  }

  // Define label for printing out during the solve phase
  string label = "Ifpack_CrsIct Preconditioner: LevelFill = " + toString(LevelFill) + 
                                                 " Overlap = 0"; 
  ICT->SetLabel(label.c_str());
  
  // Here we create an AztecOO object
  AztecOO solver;
  solver.SetUserMatrix(&A);
  solver.SetLHS(&x);
  solver.SetRHS(&b);
  solver.SetAztecOption(AZ_solver,AZ_cg);
  
  // Here we set the IFPACK preconditioner and specify few parameters
  
  solver.SetPrecOperator(ICT);

  int Niters = 1200;
  solver.SetAztecOption(AZ_kspace, Niters);
  solver.SetAztecOption(AZ_output, 20); 
  solver.Iterate(Niters, 5.0e-5);

  if (ICT!=0) delete ICT;
				       
#ifdef HAVE_MPI
  MPI_Finalize() ;
#endif

return 0 ;
}
コード例 #18
0
ファイル: cxx_main.cpp プロジェクト: cakeisalie/oomphlib_003
int main(int argc, char *argv[]) {

#ifdef HAVE_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm (MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif

  int MyPID = Comm.MyPID();
  bool verbose = false; 
  if (MyPID==0) verbose = true;

  Teuchos::ParameterList GaleriList;
  int nx = 30; 

  GaleriList.set("nx", nx);
  GaleriList.set("ny", nx * Comm.NumProc());
  GaleriList.set("mx", 1);
  GaleriList.set("my", Comm.NumProc());
  Teuchos::RefCountPtr<Epetra_Map> Map = Teuchos::rcp( Galeri::CreateMap("Cartesian2D", Comm, GaleriList) );
  Teuchos::RefCountPtr<Epetra_CrsMatrix> A = Teuchos::rcp( Galeri::CreateCrsMatrix("Laplace2D", &*Map, GaleriList) );
  Teuchos::RefCountPtr<Epetra_MultiVector> LHS = Teuchos::rcp( new Epetra_MultiVector(*Map, 1) );
  Teuchos::RefCountPtr<Epetra_MultiVector> RHS = Teuchos::rcp( new Epetra_MultiVector(*Map, 1) );
  LHS->PutScalar(0.0); RHS->Random();

  // ============================ //
  // Construct ILU preconditioner //
  // ---------------------------- //

  // I wanna test funky values to be sure that they have the same
  // influence on the algorithms, both old and new
  int    LevelFill = 2;
  double DropTol = 0.3333;
  double Athresh = 0.0123;
  double Rthresh = 0.9876;
  double Relax   = 0.1;
  int    Overlap = 2;
  
  Teuchos::RefCountPtr<Ifpack_IlukGraph> Graph;
  Teuchos::RefCountPtr<Ifpack_CrsRiluk> RILU;

  Graph = Teuchos::rcp( new Ifpack_IlukGraph(A->Graph(), LevelFill, Overlap) );
  int ierr;
  ierr = Graph->ConstructFilledGraph();
  IFPACK_CHK_ERR(ierr);

  RILU = Teuchos::rcp( new Ifpack_CrsRiluk(*Graph) );
  RILU->SetAbsoluteThreshold(Athresh);
  RILU->SetRelativeThreshold(Rthresh);
  RILU->SetRelaxValue(Relax);
  int initerr = RILU->InitValues(*A);
  if (initerr!=0) cout << Comm << "*ERR* InitValues = " << initerr;

  RILU->Factor();

  // Define label for printing out during the solve phase
  string label = "Ifpack_CrsRiluk Preconditioner: LevelFill = " + toString(LevelFill) +
                                                 " Overlap = " + toString(Overlap) +
                                                 " Athresh = " + toString(Athresh) +
                                                 " Rthresh = " + toString(Rthresh);
  // Here we create an AztecOO object
  LHS->PutScalar(0.0);

  int Niters = 1200;

  AztecOO solver;
  solver.SetUserMatrix(&*A);
  solver.SetLHS(&*LHS);
  solver.SetRHS(&*RHS);
  solver.SetAztecOption(AZ_solver,AZ_gmres);
  solver.SetPrecOperator(&*RILU);
  solver.SetAztecOption(AZ_output, 16); 
  solver.Iterate(Niters, 5.0e-5);

  int OldIters = solver.NumIters();

  // now rebuild the same preconditioner using RILU, we expect the same
  // number of iterations

  Ifpack Factory;
  Teuchos::RefCountPtr<Ifpack_Preconditioner> Prec = Teuchos::rcp( Factory.Create("ILU", &*A, Overlap) );

  Teuchos::ParameterList List;
  List.get("fact: level-of-fill", LevelFill);
  List.get("fact: drop tolerance", DropTol);
  List.get("fact: absolute threshold", Athresh);
  List.get("fact: relative threshold", Rthresh);
  List.get("fact: relax value", Relax);

  IFPACK_CHK_ERR(Prec->SetParameters(List));
  IFPACK_CHK_ERR(Prec->Compute());

  // Here we create an AztecOO object
  LHS->PutScalar(0.0);

  solver.SetUserMatrix(&*A);
  solver.SetLHS(&*LHS);
  solver.SetRHS(&*RHS);
  solver.SetAztecOption(AZ_solver,AZ_gmres);
  solver.SetPrecOperator(&*Prec);
  solver.SetAztecOption(AZ_output, 16); 
  solver.Iterate(Niters, 5.0e-5);

  int NewIters = solver.NumIters();

  if (OldIters != NewIters)
    IFPACK_CHK_ERR(-1);


#ifdef HAVE_IFPACK_SUPERLU
  // Now test w/ SuperLU's ILU, if we've got it
  Teuchos::RefCountPtr<Ifpack_Preconditioner> Prec2 = Teuchos::rcp( Factory.Create("SILU", &*A,0) ); 
  Teuchos::ParameterList SList;
  SList.set("fact: drop tolerance",1e-4);
  SList.set("fact: zero pivot threshold",.1);
  SList.set("fact: maximum fill factor",10.0);
  // NOTE: There is a bug in SuperLU 4.0 which will crash the code if the maximum fill factor is set too low.
  // This bug was reported to Sherry Li on 4/8/10.
  SList.set("fact: silu drop rule",9);

  IFPACK_CHK_ERR(Prec2->SetParameters(SList));
  IFPACK_CHK_ERR(Prec2->Compute());

  LHS->PutScalar(0.0);
  solver.SetPrecOperator(&*Prec2);
  solver.Iterate(Niters, 5.0e-5);
  Prec2->Print(cout);

#endif


#ifdef HAVE_MPI
  MPI_Finalize() ;
#endif

  return(EXIT_SUCCESS);
}