コード例 #1
0
void CParEMLearningEngine::Learn()
{
    CStaticGraphicalModel *pGrModel =  this->GetStaticModel();
    PNL_CHECK_IS_NULL_POINTER(pGrModel);
    PNL_CHECK_LEFT_BORDER(GetNumEv() - GetNumberProcEv() , 1);

    CJtreeInfEngine *pCurrentInfEng = NULL;

    CFactor *parameter = NULL;
    int exit = 0;
    int numberOfParameters = pGrModel->GetNumberOfParameters();
    int domainNodes;
    int infIsNeed = 0;
    int itsML = 0;

    // !!!
    float loglik = -FLT_MAX;
    float loglikOld = -FLT_MAX;
    float epsilon = GetPrecisionEM();
    float stopExpression = epsilon + 1.0f;
    int iteration = 0;
    int currentEvidNumber;
    int bMaximize = 0;
    int bSumOnMixtureNode = 0;
    const CEvidence* pCurrentEvid;
    int start_mpi, finish_mpi;
    int NumberOfProcesses, MyRank;
    int numSelfEvidences;
    
    MPI_Comm_size(MPI_COMM_WORLD, &NumberOfProcesses);
    MPI_Comm_rank(MPI_COMM_WORLD, &MyRank);

    int d = 0;
    do
    {
        iteration++;

        numSelfEvidences = (GetNumEv() - GetNumberProcEv()) / NumberOfProcesses;
        start_mpi = GetNumberProcEv() + numSelfEvidences * MyRank; // !!!
        if (MyRank < NumberOfProcesses - 1)
            finish_mpi = start_mpi + numSelfEvidences; // !!!
        else
            finish_mpi = GetNumEv(); // !!!        

        for(int ev = start_mpi; ev < finish_mpi; ev++)
        {
            infIsNeed = 0;
            currentEvidNumber = ev; // !!!

            pCurrentEvid = m_Vector_pEvidences[currentEvidNumber];
            if( !pCurrentEvid)
            {
                PNL_THROW(CNULLPointer, "evidence")
            }

            infIsNeed = !GetObsFlags(ev)->empty(); // !!!

            if(infIsNeed)
            {
                // create inference engine
                if(!pCurrentInfEng)
                {
                    pCurrentInfEng = CJtreeInfEngine::Create(pGrModel);
                }
                pCurrentInfEng->EnterEvidence(pCurrentEvid, bMaximize,
                    bSumOnMixtureNode);
            }

            for(domainNodes = 0; domainNodes < numberOfParameters; domainNodes++)
            {
                parameter = pGrModel->GetFactor(domainNodes);
                if(infIsNeed)
                {
                    int DomainSize;
                    const int *domain;
                    parameter->GetDomain(&DomainSize, &domain);
                    if (IsDomainObserved(DomainSize, domain, currentEvidNumber))
                    {
                        const CEvidence *pEvidences[] = { pCurrentEvid };
                        parameter->UpdateStatisticsML(pEvidences, 1);
                    }
                    else
                    {
                        pCurrentInfEng->MarginalNodes(domain, DomainSize, 1);
                        const CPotential * pMargPot = pCurrentInfEng->GetQueryJPD();
                        parameter ->UpdateStatisticsEM(pMargPot, pCurrentEvid);
                    }
                }
                else
                {
                    const CEvidence *pEvidences[] = { pCurrentEvid };
                    parameter->UpdateStatisticsML(pEvidences, 1);
                }
            }
            itsML = itsML || !infIsNeed;
        }

        for(domainNodes = 0; domainNodes < numberOfParameters; domainNodes++ )
        {
            parameter = pGrModel->GetFactor(domainNodes);
            
            CNumericDenseMatrix<float> *matForSending;
            int matDim;
            const int *pMatRanges;
            int dataLength;
            const float *pDataForSending;

            matForSending = static_cast<CNumericDenseMatrix<float>*>
                ((parameter->GetDistribFun())->GetStatisticalMatrix(stMatTable));

            matForSending->GetRanges(&matDim, &pMatRanges);
            matForSending->GetRawData(&dataLength, &pDataForSending);
            float *pDataRecv = new float[dataLength];
            float *pDataRecv_copy = new float[dataLength];
            MPI_Status status;

            MPI_Allreduce((void*)pDataForSending, pDataRecv, dataLength, MPI_FLOAT, MPI_SUM,
                MPI_COMM_WORLD);

            CNumericDenseMatrix<float> *RecvMatrix =
                static_cast<CNumericDenseMatrix<float>*>
                (parameter->GetDistribFun()->GetStatisticalMatrix(stMatTable));
            int dataLength_new;
            float *pData_new;
            RecvMatrix->GetRawData(&dataLength_new, (const float**)(&pData_new));
            for(int t=0;t<dataLength_new;t++)
                pData_new[t]=pDataRecv[t];
        }
        switch (pGrModel->GetModelType())
        {
        case mtBNet:
            {
                loglikOld = loglik;
                loglik = 0.0f;
                for(domainNodes = 0; domainNodes < numberOfParameters; domainNodes++)
                {
                    parameter = pGrModel->GetFactor(domainNodes);
                    loglik += parameter->ProcessingStatisticalData(m_numberOfAllEvidences);
                }
                break;
            }
        case mtMRF2:
        case mtMNet:
            {
                loglikOld = loglik;
                loglik = _LearnPotentials();
                break;
            }
        default:
            {
                PNL_THROW(CBadConst, "model type")
                    break;
            }
        }

        stopExpression = 
            float(fabs(2 * (loglikOld - loglik) / (loglikOld + loglik)));
        exit = ((stopExpression > epsilon) && (iteration <= GetMaxIterEM())) && !itsML;
        if(exit)
        {
            ClearStatisticData();
        }

        delete pCurrentInfEng;
        pCurrentInfEng = NULL;
    }while(exit);

    if(iteration > GetMaxIterEM())
    {
        PNL_THROW(CNotConverged, "maximum number of iterations")
    }

    SetNumProcEv( GetNumEv() );
}
コード例 #2
0
void CParEMLearningEngine::LearnOMP()
{
    CStaticGraphicalModel *pGrModel =  this->GetStaticModel();
    PNL_CHECK_IS_NULL_POINTER(pGrModel);
    PNL_CHECK_LEFT_BORDER(GetNumEv() - GetNumberProcEv() , 1);

    //omp_set_num_threads(2);
    int numberOfThreads = omp_get_num_procs();
    //CParPearlInfEngine **pCurrentInfEng = new CParPearlInfEngine*[numberOfThreads];
    CJtreeInfEngine **pCurrentInfEng = new CJtreeInfEngine*[numberOfThreads];
    for (int i = 0; i < numberOfThreads; i++)
        pCurrentInfEng[i] = NULL;
    CFactor *parameter1 = NULL;

    int exit = 0;
    int numberOfParameters = pGrModel->GetNumberOfParameters();
    int domainNodes;
    //int itsML = 0;

    // !!!
    float loglik = -FLT_MAX;
    float loglikOld = -FLT_MAX;
    float epsilon = GetPrecisionEM();
    float stopExpression = epsilon + 1.0f;
    int iteration = 0;

    int ev;

    // to create additional factors
    CFactor **ppAllFactors = new CFactor*[numberOfParameters*numberOfThreads];
    bool *was_updated = new bool[numberOfParameters*numberOfThreads];
    int factor;

#pragma omp parallel for private(factor) default(shared)
    for (factor = 0; factor < numberOfParameters; factor++)
    {
        ppAllFactors[factor] = pGrModel->GetFactor(factor);
        ppAllFactors[factor]->GetDistribFun()->ClearStatisticalData();
        was_updated[factor] = false;
        for (int proc = 1; proc < numberOfThreads; proc++)
        {
            ppAllFactors[factor + proc * numberOfParameters] =
                ppAllFactors[factor]->Clone();
            ppAllFactors[factor + proc * numberOfParameters]->GetDistribFun()->
                ClearStatisticalData();
            was_updated[factor + proc * numberOfParameters]= false;
        };
    };

    int* itsML = new int[numberOfThreads];  
    for (int delta = 0; delta < numberOfThreads; delta++)
    {
        itsML[delta] = 0;
    };

    int start_ev, end_ev;
    do
    {
        iteration++;

        start_ev = GetNumberProcEv();
        end_ev = GetNumEv();

#pragma omp parallel for schedule(dynamic) private(ev)
        for (ev = start_ev; ev < end_ev ; ev++)
        {  
            CFactor *parameter = NULL;
            int DomainNodes_new; 
            int bMaximize = 0;
            int bSumOnMixtureNode = 0;
            int infIsNeed = 0;
            int currentEvidNumber = ev; // !!!

            const CEvidence* pCurrentEvid = m_Vector_pEvidences[currentEvidNumber];

            infIsNeed = !GetObsFlags(ev)->empty(); // !!!

            int Num_thread = omp_get_thread_num();

            if (infIsNeed)
            {
                if (!pCurrentInfEng[Num_thread])
                {
                    pCurrentInfEng[Num_thread] = CJtreeInfEngine::Create(
                        (const CStaticGraphicalModel *)pGrModel);
                }
                pCurrentInfEng[Num_thread]->EnterEvidence(pCurrentEvid, bMaximize,
                    bSumOnMixtureNode);
            }
            for (DomainNodes_new = 0; DomainNodes_new < numberOfParameters; 
            DomainNodes_new++)
            {
                parameter = ppAllFactors[DomainNodes_new + 
                    Num_thread * numberOfParameters];
                if (infIsNeed)
                {
                    int DomainSize;
                    const int *domain;
                    parameter->GetDomain(&DomainSize, &domain);
                    if (IsDomainObserved(DomainSize, domain, currentEvidNumber))
                    {
                        const CEvidence *pEvidences[] = { pCurrentEvid };
                        parameter->UpdateStatisticsML(pEvidences, 1);
                        was_updated[DomainNodes_new+Num_thread*numberOfParameters]= true;
                    }
                    else
                    {
                        pCurrentInfEng[Num_thread]->MarginalNodes(domain, DomainSize, 1);
                        const CPotential * pMargPot = 
                            pCurrentInfEng[Num_thread]->GetQueryJPD();
                        parameter ->UpdateStatisticsEM(pMargPot, pCurrentEvid);
                        was_updated[DomainNodes_new+Num_thread*numberOfParameters]= true;
                    }
                }
                else
                {
                    const CEvidence *pEvidences[] = { pCurrentEvid };
                    parameter->UpdateStatisticsML(pEvidences, 1); 
                    was_updated[DomainNodes_new+Num_thread*numberOfParameters]= true;
                }  
            }
            itsML[Num_thread] = itsML[Num_thread] || !infIsNeed;
        }  // end of parallel for

        for (int delta = 1; delta < numberOfThreads; delta++)
        {
            itsML[0] = itsML[0] || itsML[delta];
        };

        //to join factors
#pragma omp parallel for private(factor) default(shared)
        for (factor = 0; factor < numberOfParameters; factor++)
        {
            for (int proc = 1; proc < numberOfThreads; proc++)
            {
                if (was_updated[factor+proc*numberOfParameters])
                {
                    ppAllFactors[factor]->UpdateStatisticsML(ppAllFactors[factor + 
                        proc*numberOfParameters]);
                    ppAllFactors[factor+proc*numberOfParameters]->GetDistribFun()->
                        ClearStatisticalData();
                };
                was_updated[factor+proc*numberOfParameters] = false;
            };
        };

        switch (pGrModel->GetModelType())
        {
        case mtBNet:
            {
                loglikOld = loglik;
                loglik = 0.0f;
                for (domainNodes = 0; domainNodes < numberOfParameters; domainNodes++)
                {
                    parameter1 = pGrModel->GetFactor(domainNodes);
                    loglik += parameter1->ProcessingStatisticalData(
                        m_numberOfAllEvidences);
                }
                break;
            }
        case mtMRF2:
        case mtMNet:
            {
                loglikOld = loglik;
                loglik = _LearnPotentials();
                break;
            }
        default:
            {
                PNL_THROW(CBadConst, "model type")
                    break;
            }
        }
        stopExpression = float(fabs(2 * (loglikOld - loglik) / 
            (loglikOld + loglik)));

        exit = ((stopExpression > epsilon) && (iteration <= GetMaxIterEM())) && !itsML[0];

        if (exit)
        {
            ClearStatisticData();
        }

        m_critValue.push_back(loglik);

        for (int j = 0; j < numberOfThreads; j++)
        {
            delete pCurrentInfEng[j];
            pCurrentInfEng[j] = NULL;
        }
    } while (exit);

    delete [] pCurrentInfEng;

    //”даление дополнительных факторов
    for (factor = numberOfParameters; factor < numberOfParameters * numberOfThreads;
    factor++)
    {
        delete ppAllFactors[factor];
    };

    delete[] ppAllFactors;
    delete[] was_updated;

    if (iteration > GetMaxIterEM())
    {
        PNL_THROW(CNotConverged, "maximum number of iterations")
    }

    SetNumProcEv( GetNumEv() );
}
コード例 #3
0
void CEMLearningEngine::LearnExtraCPDs(int nMaxFamily, pCPDVector* additionalCPDs, floatVector* additionalLLs)
{

    CStaticGraphicalModel *pGrModel =  this->GetStaticModel();
    PNL_CHECK_IS_NULL_POINTER(pGrModel);
    PNL_CHECK_LEFT_BORDER(GetNumEv(), 1);
    
    int numberOfFactors = pGrModel->GetNumberOfFactors();
    int numberOfAddFactors = additionalCPDs->size();
    
    additionalLLs->resize(numberOfAddFactors);
    additionalLLs->clear();
    
    m_vFamilyLogLik.resize(numberOfFactors);
    float	loglik = 0.0f, ll;
    int		i, ev;
    int iteration = 0;
    const CEvidence* pEv;
    
    CFactor *factor = NULL;
    int nnodes;
    const int * domain;
    
    bool bInfIsNeed;
    CInfEngine *pInfEng = m_pInfEngine;
    
    if (IsAllObserved())
    {
        for (i = 0; i < numberOfFactors; i++)
        {
            factor = pGrModel->GetFactor(i);
            factor->UpdateStatisticsML(&m_Vector_pEvidences[GetNumberProcEv()], 
                GetNumEv() - GetNumberProcEv());
        }
        
        for( ev = 0; ev < GetNumEv() ; ev++)
        {
            pEv = m_Vector_pEvidences[ev];
            for( i = 0; i < numberOfAddFactors; i++ )
            {
                factor = static_cast<CFactor*>((*additionalCPDs)[i]);
                factor->UpdateStatisticsML( &pEv, 1 );
            }
        }
        
        switch (pGrModel->GetModelType())
        {
        case mtBNet:
            {
                for( i = 0; i<numberOfFactors; i++ )
                {
                    factor = pGrModel->GetFactor(i);
                    ll = factor->ProcessingStatisticalData( GetNumEv());
                    m_vFamilyLogLik[i] = ll;
                    loglik += ll;
                }
                
                for( i = 0; i < numberOfAddFactors; i++ )
                {
                    factor = static_cast<CFactor*>((*additionalCPDs)[i]);
                    ll = factor->ProcessingStatisticalData( GetNumEv());
                    (*additionalLLs)[i] = ll;
                }
                break;
            }
        case mtMRF2:
        case mtMNet:
            {	
                break;
            }
        default:
            {
                PNL_THROW(CBadConst, "model type" )
                    break;
            }
        }
        m_critValue.push_back(loglik);    
        
    }
    else
    {
コード例 #4
0
void CParEMLearningEngine::LearnContMPI()
{
    CStaticGraphicalModel *pGrModel =  this->GetStaticModel();
    PNL_CHECK_IS_NULL_POINTER(pGrModel);
    PNL_CHECK_LEFT_BORDER(GetNumEv() - GetNumberProcEv() , 1);
    
    CInfEngine *pInfEng = NULL;
  
    pInfEng = CJtreeInfEngine::Create(pGrModel);
      
    
    float loglik = 0.0f;
    int domainNodes;
    CFactor *parameter = NULL;
    int numberOfParameters = pGrModel->GetNumberOfParameters();
    
    int nFactors = pGrModel->GetNumberOfFactors();
    const CEvidence *pEv;
    CFactor *pFactor;
    
    int iteration = 0;
    int ev;
    int i,numSelfEvidences,NumberOfProcesses, MyRank;
    int start_mpi, finish_mpi;
    
    MPI_Comm_size(MPI_COMM_WORLD, &NumberOfProcesses);
    MPI_Comm_rank(MPI_COMM_WORLD, &MyRank);
    
    if (IsAllObserved())
    {
        int i;
        float **evid = NULL;
        EDistributionType dt;
        CFactor *factor = NULL;
        for (i = 0; i < nFactors; i++)
        {
            factor = pGrModel->GetFactor(i);
                 
            factor->UpdateStatisticsML(&m_Vector_pEvidences[GetNumberProcEv()], 
               GetNumEv() - GetNumberProcEv());
            
        }
        m_critValue.push_back(UpdateModel());
    }
    else
    {
        bool bContinue;
        const CPotential * pot;
        
        do
        {
            ClearStatisticData();
            iteration++;

            numSelfEvidences = (GetNumEv() - GetNumberProcEv()) / NumberOfProcesses;
            start_mpi = GetNumberProcEv() + numSelfEvidences * MyRank; 
            if (MyRank < NumberOfProcesses - 1)
                finish_mpi = start_mpi + numSelfEvidences; 
            else
                finish_mpi = GetNumEv();            

            for(int ev = start_mpi; ev < finish_mpi; ev++)
            {
                
                bool bInfIsNeed = !GetObsFlags(ev)->empty(); 
                pEv = m_Vector_pEvidences[ev];
                
                if( bInfIsNeed )
                {
                    pInfEng->EnterEvidence(pEv,      0, 0);
                }
                int i;
                
                for( i = 0; i < nFactors; i++ )
                {
                    pFactor = pGrModel->GetFactor(i);
                    int nnodes;
                    const int * domain;
                    pFactor->GetDomain( &nnodes, &domain );
                    if( bInfIsNeed && !IsDomainObserved(nnodes, domain, ev ) )
                    {
                        pInfEng->MarginalNodes( domain, nnodes, 1 );
                        pot = pInfEng->GetQueryJPD(); 
                        
                        pFactor->UpdateStatisticsEM( /*pInfEng->GetQueryJPD */ pot, pEv );
                    }
                    else
                    {
                        pFactor->UpdateStatisticsML( &pEv, 1 );
                    }
                }
            }
            
            for(domainNodes = 0; domainNodes < numberOfParameters; domainNodes++ )
            {   
                parameter = pGrModel->GetFactor(domainNodes);
                
                C2DNumericDenseMatrix<float> *matMeanForSending;
                C2DNumericDenseMatrix<float> *matCovForSending;
                int dataLengthM,dataLengthC;
                
                const float *pMeanDataForSending;
                const float *pCovDataForSending;
                
                matMeanForSending = static_cast<C2DNumericDenseMatrix<float>*>
                    ((parameter->GetDistribFun())->GetStatisticalMatrix(stMatMu));               
                
                matMeanForSending->GetRawData(&dataLengthM, &pMeanDataForSending);
                
                matCovForSending = static_cast<C2DNumericDenseMatrix<float>*>
                    ((parameter->GetDistribFun())->GetStatisticalMatrix(stMatSigma));               
                
                matCovForSending->GetRawData(&dataLengthC, &pCovDataForSending);
                
                float *pMeanDataRecv = new float[dataLengthM];
                float *pCovDataRecv = new float[dataLengthC];
                MPI_Status status;                         
                
                MPI_Allreduce((void*)pMeanDataForSending, pMeanDataRecv, dataLengthM, MPI_FLOAT, MPI_SUM,
                    MPI_COMM_WORLD);
                MPI_Allreduce((void*)pCovDataForSending, pCovDataRecv, dataLengthC, MPI_FLOAT, MPI_SUM,
                    MPI_COMM_WORLD);
                
                memcpy((void*)pMeanDataForSending,pMeanDataRecv,dataLengthM*sizeof(float));
                
                memcpy((void*)pCovDataForSending,pCovDataRecv,dataLengthC*sizeof(float));
            }                        

            loglik = UpdateModel();
            
            if( GetMaxIterEM() != 1)
            {
                bool flag = iteration == 1 ? true : 
                (fabs(2*(m_critValue.back()-loglik)/(m_critValue.back() + loglik)) > GetPrecisionEM() );
                
                bContinue = GetMaxIterEM() > iteration && flag;
            }
            else
            {
                bContinue = false;
            }
            m_critValue.push_back(loglik);
            
        }while(bContinue);
    }
    SetNumProcEv( GetNumEv() );
}
コード例 #5
0
void CEMLearningEngine::Learn()
{
    CStaticGraphicalModel *pGrModel =  this->GetStaticModel();
    PNL_CHECK_IS_NULL_POINTER(pGrModel);
    PNL_CHECK_LEFT_BORDER(GetNumEv() - GetNumberProcEv() , 1);
    
    CInfEngine *pInfEng = NULL;
    if (m_pInfEngine)
    {
        pInfEng = m_pInfEngine;
    }
    else
    {
        if (!m_bAllObserved)
        {
            pInfEng = CJtreeInfEngine::Create(pGrModel);
            m_pInfEngine = pInfEng;
        }
    }
    
    float loglik = 0.0f;
    
    int nFactors = pGrModel->GetNumberOfFactors();
    const CEvidence *pEv;
    CFactor *pFactor;
    
    int iteration = 0;
    int ev;

    bool IsCastNeed = false;
    int i;
    for( i = 0; i < nFactors; i++ )
    {
        pFactor = pGrModel->GetFactor(i);
        EDistributionType dt = pFactor->GetDistributionType();
        if ( dt == dtSoftMax ) IsCastNeed = true;
    }

    float ** full_evid = NULL;
    if (IsCastNeed)
    {
        BuildFullEvidenceMatrix(&full_evid);
    }

    
    if (IsAllObserved())
    {
        int i;
        float **evid = NULL;
        EDistributionType dt;
        CFactor *factor = NULL;
        for (i = 0; i < nFactors; i++)
        {
            factor = pGrModel->GetFactor(i);
            dt = factor->GetDistributionType();
            if (dt != dtSoftMax)
            {
                factor->UpdateStatisticsML(&m_Vector_pEvidences[GetNumberProcEv()], 
                    GetNumEv() - GetNumberProcEv());
            }
            else
            {
                
                intVector family;
				family.resize(0);
                pGrModel->GetGraph()->GetParents(i, &family);
                family.push_back(i);
                CSoftMaxCPD* SoftMaxFactor = static_cast<CSoftMaxCPD*>(factor);
                SoftMaxFactor->BuildCurrentEvidenceMatrix(&full_evid, 
					&evid,family,m_Vector_pEvidences.size());
				SoftMaxFactor->InitLearnData();
                SoftMaxFactor->SetMaximizingMethod(m_MaximizingMethod);
                SoftMaxFactor->MaximumLikelihood(evid, m_Vector_pEvidences.size(),
                    0.00001f, 0.01f);
                SoftMaxFactor->CopyLearnDataToDistrib();
                for (int k = 0; k < factor->GetDomainSize(); k++)
                {
                    delete [] evid[k];
                }
                delete [] evid;
            }
        }
        m_critValue.push_back(UpdateModel());
    }
    else
    {
        bool bContinue;
        const CPotential * pot;
        
/*        bool IsCastNeed = false;
        int i;
        for( i = 0; i < nFactors; i++ )
        {
            pFactor = pGrModel->GetFactor(i);
            EDistributionType dt = pFactor->GetDistributionType();
            if ( dt == dtSoftMax ) IsCastNeed = true;
        }

        float ** full_evid;
        if (IsCastNeed)
        {
            BuildFullEvidenceMatrix(full_evid);
        }*/
        
        do
        {
            ClearStatisticData();
            iteration++;
            for( ev = GetNumberProcEv(); ev < GetNumEv() ; ev++ )
            {
                bool bInfIsNeed = !GetObsFlags(ev)->empty(); 
                pEv = m_Vector_pEvidences[ev];
                if( bInfIsNeed )
                {
                    pInfEng->EnterEvidence(pEv, 0, 0);
                }
                int i;
                for( i = 0; i < nFactors; i++ )
                {
                    pFactor = pGrModel->GetFactor(i);
                    int nnodes;
                    const int * domain;
                    pFactor->GetDomain( &nnodes, &domain );
                    if( bInfIsNeed && !IsDomainObserved(nnodes, domain, ev ) )
                    {
                        pInfEng->MarginalNodes( domain, nnodes, 1 );
                        pot = pInfEng->GetQueryJPD(); 
                        if ( (!(m_Vector_pEvidences[ev])->IsNodeObserved(i)) && (IsCastNeed) )
                        {
                            Cast(pot, i, ev, &full_evid);
                        }
                        EDistributionType dt;
                        dt = pFactor->GetDistributionType();
                        if ( !(dt == dtSoftMax) )
                            pFactor->UpdateStatisticsEM( /*pInfEng->GetQueryJPD */ pot, pEv );
                    }
                    else
                    {
                        if ((pFactor->GetDistributionType()) != dtSoftMax)
                            pFactor->UpdateStatisticsML( &pEv, 1 );
                    }
                }
            }
            
            int i;
/*
            printf ("\n My Full Evidence Matrix");
            for (i=0; i<nFactors; i++)
            {
                for (j=0; j<GetNumEv(); j++)
                {
                    printf ("%f   ", full_evid[i][j]);
                }
                printf("\n");
            } 
*/            
            float **evid = NULL;
            EDistributionType dt;
            CFactor *factor = NULL;
            // int i;
            for (i = 0; i < nFactors; i++)
            {
                factor = pGrModel->GetFactor(i);
                dt = factor->GetDistributionType();
                if (dt == dtSoftMax)
                {
					intVector family;
				    family.resize(0);
                    pGrModel->GetGraph()->GetParents(i, &family);
                    family.push_back(i);
                    CSoftMaxCPD* SoftMaxFactor = static_cast<CSoftMaxCPD*>(factor);
					SoftMaxFactor->BuildCurrentEvidenceMatrix(&full_evid, 
						&evid,family,m_Vector_pEvidences.size());
                    SoftMaxFactor->InitLearnData();
                    SoftMaxFactor->SetMaximizingMethod(m_MaximizingMethod);
                    //        SoftMaxFactor->MaximumLikelihood(evid, m_numberOfLastEvidences, 
                    SoftMaxFactor->MaximumLikelihood(evid, m_Vector_pEvidences.size(),
                        0.00001f, 0.01f);
                    SoftMaxFactor->CopyLearnDataToDistrib();
                    for (int k = 0; k < factor->GetDomainSize(); k++)
                    {
                        delete [] evid[k];
                    }
                    delete [] evid;
                }
            }
                        
            loglik = UpdateModel();
            
            if( GetMaxIterEM() != 1)
            {
                bool flag = iteration == 1 ? true : 
                (fabs(2*(m_critValue.back()-loglik)/(m_critValue.back() + loglik)) > GetPrecisionEM() );
                
                bContinue = GetMaxIterEM() > iteration && flag;
            }
            else
            {
                bContinue = false;
            }
            m_critValue.push_back(loglik);
            
        }while(bContinue);
    }
    SetNumProcEv( GetNumEv() );
   
    if (IsCastNeed)
    {
        int NumOfNodes = pGrModel->GetGraph()->GetNumberOfNodes();
        for (i=0; i<NumOfNodes; i++)
        {
            delete [] full_evid[i];
        }
        delete [] full_evid;
    }

}