コード例 #1
0
ファイル: Connection.cpp プロジェクト: seantalts/ultramysql
void Connection::scramble(const char *_scramble1, const char *_scramble2, UINT8 _outToken[20])
{
  std::string seed;
  seed += _scramble1;
  seed += _scramble2;

  CSHA1 passdg;
  UINT8 stage1_hash[20];
  passdg.Update ( (UINT8 *) m_password.c_str(), m_password.size());
  passdg.Final();
  passdg.GetHash(stage1_hash);


  CSHA1 stage2dg;
  UINT8 stage2_hash[20];
  stage2dg.Update (stage1_hash, 20);
  stage2dg.Final();
  stage2dg.GetHash(stage2_hash);

  CSHA1 finaldg;
  UINT8 final_hash[20];
  finaldg.Update( (UINT8*) seed.c_str(), seed.size());
  finaldg.Update(stage2_hash, 20);
  finaldg.Final();
  finaldg.GetHash(final_hash);

  for (int index = 0; index < 20; index ++)
  {
    _outToken[index] = final_hash[index] ^ stage1_hash[index]; 
  }
}
コード例 #2
0
void EncoreBootImage::prepareImageHeader(boot_image_header_t & header)
{
	// get identifier for the first bootable section
	Section * firstBootSection = findFirstBootableSection();
	section_id_t firstBootSectionID = 0;
	if (firstBootSection)
	{
		firstBootSectionID = firstBootSection->getIdentifier();
	}
	
	// fill in header fields
	header.m_signature[0] = 'S';
	header.m_signature[1] = 'T';
	header.m_signature[2] = 'M';
	header.m_signature[3] = 'P';
	header.m_majorVersion = ROM_BOOT_IMAGE_MAJOR_VERSION;
	header.m_minorVersion = ROM_BOOT_IMAGE_MINOR_VERSION;
	header.m_flags = ENDIAN_HOST_TO_LITTLE_U16(m_headerFlags);
	header.m_imageBlocks = ENDIAN_HOST_TO_LITTLE_U32(getImageSize());
	header.m_firstBootableSectionID = ENDIAN_HOST_TO_LITTLE_U32(firstBootSectionID);
	header.m_keyCount = ENDIAN_HOST_TO_LITTLE_U16((uint16_t)m_keys.size());
	header.m_headerBlocks = ENDIAN_HOST_TO_LITTLE_U16((uint16_t)numberOfCipherBlocks(sizeof(header)));
	header.m_sectionCount = ENDIAN_HOST_TO_LITTLE_U16((uint16_t)m_sections.size());
	header.m_sectionHeaderSize = ENDIAN_HOST_TO_LITTLE_U16((uint16_t)numberOfCipherBlocks(sizeof(section_header_t)));
	header.m_signature2[0] = 's';
	header.m_signature2[1] = 'g';
	header.m_signature2[2] = 't';
	header.m_signature2[3] = 'l';
	header.m_timestamp = ENDIAN_HOST_TO_LITTLE_U64(getTimestamp());
	header.m_driveTag = m_driveTag;

	// Prepare version fields by converting them to the correct byte order.
	header.m_productVersion = m_productVersion;
	header.m_componentVersion = m_componentVersion;
	header.m_productVersion.fixByteOrder();
	header.m_componentVersion.fixByteOrder();

	// the fields are dependant on others
	header.m_keyDictionaryBlock = ENDIAN_HOST_TO_LITTLE_U16(header.m_headerBlocks + header.m_sectionCount * header.m_sectionHeaderSize);
	header.m_firstBootTagBlock = ENDIAN_HOST_TO_LITTLE_U32(header.m_keyDictionaryBlock + header.m_keyCount * 2);
	
	// generate random pad bytes
	RandomNumberGenerator rng;
	rng.generateBlock(header.m_padding0, sizeof(header.m_padding0));
	rng.generateBlock(header.m_padding1, sizeof(header.m_padding1));
	
	// compute SHA-1 digest over the image header
	uint8_t * message = reinterpret_cast<uint8_t *>(&header.m_signature);
	uint32_t length = static_cast<uint32_t>(sizeof(header) - sizeof(header.m_digest)); // include padding
	
	CSHA1 hash;
	hash.Reset();
	hash.Update(message, length);
	hash.Final();
	hash.GetHash(header.m_digest);
}
コード例 #3
0
ファイル: util.cpp プロジェクト: RiseCakoPlusplus/brtGHost
string sha1(const string& input)
{
    SHA1.Reset();
    SHA1.Update((unsigned char *)input.c_str(), input.size());
    SHA1.Final();
    unsigned char uResult[20];
    SHA1.GetHash(uResult);

    BYTEARRAY MapSHA1 = UTIL_CreateByteArray( uResult, 20 );
    string sResult = UTIL_ByteArrayToHexStringWithoutSpaces(MapSHA1);

    return sResult;
}
コード例 #4
0
string generateSHA(string& value)
{
	CSHA1 sha;

	sha.Update((UINT_8*)value.c_str(), value.length());

	sha.Final();

	UINT_8 digest[20];
	if (sha.GetHash(digest))
	{
		const int size = sizeof(digest) / sizeof(UINT_8);
		return binToHex((char*)digest, size);
	}

	return "";
}
コード例 #5
0
ファイル: TorrentFile.cpp プロジェクト: vdrive/TrapperKeeper
void TorrentFile::CreateInfoHash() {
	if(info_len == 0) return;
	CSHA1 sha;

	unsigned char * info  = new unsigned char[info_len];
	for(int i = 0; i < info_len; i++) {
		info[i] = (unsigned char)m_data[info_start+i];
	}
	sha.Update(info, info_len);
	sha.Final();
	unsigned char * temp = new unsigned char[256];
	
	sha.GetHash(temp);
	char retStr[61];
	retStr[0] = 0;
	char szTemp[4];
	char c[2];
	c[1] = 0;
	for(int i = 0; i < 20; i++) {
		sprintf(szTemp, "%u", temp[i]);
		int value = atoi(szTemp);
		m_info_hash[i] = value;
		if((value > 0 && value < 255) && (isalnum(value))) {
			c[0] = value;
			strcat(retStr, c);
		}
		else {
			c[0] = '%';
			strcat(retStr, c);
			if(value < 16) strcat(retStr, "0");
			itoa(value, szTemp, 16);
			strcat(retStr, szTemp);
		}
	}

	retStr[60] = 0;
	m_info_hash_string = retStr;
	delete [] info;
	info = NULL;
	delete [] temp;

}
コード例 #6
0
 CCData *TimeHashVerifier::encode_verification(CCString *private_key, CCString *public_key, CCString *secret_key) {
     time_t now = this->time_gen(NULL);
     CSHA1 hexhash;
     char timehex[9] = {0,};
     sprintf(timehex, "%08lx", now);
     hexhash.Update((UINT_8 *)private_key->getCString(), private_key->length());
     hexhash.Update((UINT_8 *)public_key->getCString(), public_key->length());
     hexhash.Update((UINT_8 *)timehex, 8);
     hexhash.Final();
     unsigned char hexhashbin[20];
     hexhash.GetHash(hexhashbin);
     char hexhashhex[41] = {0,};
     for (int i = 0; i < 20; i++) {
         sprintf(hexhashhex + i * 2, "%02x", hexhashbin[i]);
     }
     int verification_len = public_key->length() + 1 + 8 + 40;
     char verification[verification_len + 1];
     bzero(verification, verification_len + 1);
     sprintf(verification, "%s$%8lx%s", public_key->getCString(), now, hexhashhex);
     CCData *data = new CCData(new CCData((unsigned char *)verification, verification_len));
     //data->autorelease();
     return data;
 }
コード例 #7
0
//! \todo Optimize writing section data. Right now it only writes one block at a
//!		time, which is of course quite slow (in relative terms).
//!	\todo Refactor this into several different methods for writing each region
//!		of the image. Use a context structure to keep track of shared data between
//!		each of the methods.
//! \todo Refactor the section and boot tag writing code to only have a single
//!		copy of the block writing and encryption loop.
void EncoreBootImage::writeToStream(std::ostream & stream)
{
	// always generate the session key or DEK even if image is unencrypted
	m_sessionKey.randomize();
	
	// prepare to compute CBC-MACs with each KEK
	unsigned i;
	smart_array_ptr<RijndaelCBCMAC> macs(0);
	if (isEncrypted())
	{
		macs = new RijndaelCBCMAC[m_keys.size()];
		for (i=0; i < m_keys.size(); ++i)
		{
			RijndaelCBCMAC mac(m_keys[i]);
			(macs.get())[i] = mac;
		}
	}
	
	// prepare to compute SHA-1 digest over entire image
	CSHA1 hash;
	hash.Reset();
	
	// count of total blocks written to the file
	unsigned fileBlocksWritten = 0;

	// we need some pieces of the header down below
	boot_image_header_t imageHeader;
	prepareImageHeader(imageHeader);
	
	// write plaintext header
	{
		// write header
		assert(sizeOfPaddingForCipherBlocks(sizeof(boot_image_header_t)) == 0);
		stream.write(reinterpret_cast<char *>(&imageHeader), sizeof(imageHeader));
		fileBlocksWritten += numberOfCipherBlocks(sizeof(imageHeader));
		
		// update CBC-MAC over image header
		if (isEncrypted())
		{
			for (i=0; i < m_keys.size(); ++i)
			{
				(macs.get())[i].update(reinterpret_cast<uint8_t *>(&imageHeader), sizeof(imageHeader));
			}
		}
		
		// update SHA-1
		hash.Update(reinterpret_cast<uint8_t *>(&imageHeader), sizeof(imageHeader));
	}
	
	// write plaintext section table
	{
		section_iterator_t it = beginSection();
		for (; it != endSection(); ++it)
		{
			Section * section = *it;
			
			// write header for this section
			assert(sizeOfPaddingForCipherBlocks(sizeof(section_header_t)) == 0);
			section_header_t sectionHeader;
			section->fillSectionHeader(sectionHeader);
			stream.write(reinterpret_cast<char *>(&sectionHeader), sizeof(sectionHeader));
			fileBlocksWritten += numberOfCipherBlocks(sizeof(sectionHeader));
			
			// update CBC-MAC over this entry
			if (isEncrypted())
			{
				for (i=0; i < m_keys.size(); ++i)
				{
					(macs.get())[i].update(reinterpret_cast<uint8_t *>(&sectionHeader), sizeof(sectionHeader));
				}
			}
			
			// update SHA-1
			hash.Update(reinterpret_cast<uint8_t *>(&sectionHeader), sizeof(sectionHeader));
		}
	}
	
	// finished with the CBC-MAC
	if (isEncrypted())
	{
		for (i=0; i < m_keys.size(); ++i)
		{
			(macs.get())[i].finalize();
		}
	}
	
	// write key dictionary
	if (isEncrypted())
	{
		key_iterator_t it = beginKeys();
		for (i=0; it != endKeys(); ++it, ++i)
		{
			// write CBC-MAC result for this key, then update SHA-1
			RijndaelCBCMAC & mac = (macs.get())[i];
			const RijndaelCBCMAC::block_t & macResult = mac.getMAC();
			stream.write(reinterpret_cast<const char *>(&macResult), sizeof(RijndaelCBCMAC::block_t));
			hash.Update(reinterpret_cast<const uint8_t *>(&macResult), sizeof(RijndaelCBCMAC::block_t));
			fileBlocksWritten++;
			
			// encrypt DEK with this key, write it out, and update image digest
			Rijndael cipher;
			cipher.init(Rijndael::CBC, Rijndael::Encrypt, *it, Rijndael::Key16Bytes, imageHeader.m_iv);
			AESKey<128>::key_t wrappedSessionKey;
			cipher.blockEncrypt(m_sessionKey, sizeof(AESKey<128>::key_t) * 8, wrappedSessionKey);
			stream.write(reinterpret_cast<char *>(&wrappedSessionKey), sizeof(wrappedSessionKey));
			hash.Update(reinterpret_cast<uint8_t *>(&wrappedSessionKey), sizeof(wrappedSessionKey));
			fileBlocksWritten++;
		}
	}
	
	// write sections and boot tags
	{
		section_iterator_t it = beginSection();
		for (; it != endSection(); ++it)
		{
			section_iterator_t itCopy = it;
			bool isLastSection = (++itCopy == endSection());
			
			Section * section = *it;
			cipher_block_t block;
			unsigned blockCount = section->getBlockCount();
			unsigned blocksWritten = 0;
			
			Rijndael cipher;
			cipher.init(Rijndael::CBC, Rijndael::Encrypt, m_sessionKey, Rijndael::Key16Bytes, imageHeader.m_iv);
			
			// Compute the number of padding blocks needed to align the section. This first
			// call to getPadBlockCountForOffset() passes an offset that excludes
			// the boot tag for this section.
			unsigned paddingBlocks = getPadBlockCountForSection(section, fileBlocksWritten);
			
			// Insert nop commands as padding to align the start of the section, if
			// the section has special alignment requirements.
			NopCommand nop;
			while (paddingBlocks--)
			{
				blockCount = nop.getBlockCount();
				blocksWritten = 0;
				while (blocksWritten < blockCount)
				{
					nop.getBlocks(blocksWritten, 1, &block);
					
					if (isEncrypted())
					{
						// re-init after encrypt to update IV
						cipher.blockEncrypt(block, sizeof(cipher_block_t) * 8, block);
						cipher.init(Rijndael::CBC, Rijndael::Encrypt, m_sessionKey, Rijndael::Key16Bytes, block);
					}
					
					stream.write(reinterpret_cast<char *>(&block), sizeof(cipher_block_t));
					hash.Update(reinterpret_cast<uint8_t *>(&block), sizeof(cipher_block_t));
					
					blocksWritten++;
					fileBlocksWritten++;
				}
			}
			
			// reinit cipher for boot tag
			cipher.init(Rijndael::CBC, Rijndael::Encrypt, m_sessionKey, Rijndael::Key16Bytes, imageHeader.m_iv);
			
			// write boot tag
			TagCommand tag(*section);
			tag.setLast(isLastSection);
			if (!isLastSection)
			{
				// If this isn't the last section, the tag needs to include any
				// padding for the next section in its length, otherwise the ROM
				// won't be able to find the next section's boot tag.
				unsigned nextSectionOffset = fileBlocksWritten + section->getBlockCount() + 1;
				tag.setSectionLength(section->getBlockCount() + getPadBlockCountForSection(*itCopy, nextSectionOffset));
			}
			blockCount = tag.getBlockCount();
			blocksWritten = 0;
			while (blocksWritten < blockCount)
			{
				tag.getBlocks(blocksWritten, 1, &block);
				
				if (isEncrypted())
				{
					// re-init after encrypt to update IV
					cipher.blockEncrypt(block, sizeof(cipher_block_t) * 8, block);
					cipher.init(Rijndael::CBC, Rijndael::Encrypt, m_sessionKey, Rijndael::Key16Bytes, block);
				}
				
				stream.write(reinterpret_cast<char *>(&block), sizeof(cipher_block_t));
				hash.Update(reinterpret_cast<uint8_t *>(&block), sizeof(cipher_block_t));
				
				blocksWritten++;
				fileBlocksWritten++;
			}
			
			// reinit cipher for section data
			cipher.init(Rijndael::CBC, Rijndael::Encrypt, m_sessionKey, Rijndael::Key16Bytes, imageHeader.m_iv);
			
			// write section data
			blockCount = section->getBlockCount();
			blocksWritten = 0;
			while (blocksWritten < blockCount)
			{
				section->getBlocks(blocksWritten, 1, &block);
				
				// Only encrypt the section contents if the entire boot image is encrypted
				// and the section doesn't have the "leave unencrypted" flag set. Even if the
				// section is unencrypted the boot tag will remain encrypted.
				if (isEncrypted() && !section->getLeaveUnencrypted())
				{
					// re-init after encrypt to update IV
					cipher.blockEncrypt(block, sizeof(cipher_block_t) * 8, block);
					cipher.init(Rijndael::CBC, Rijndael::Encrypt, m_sessionKey, Rijndael::Key16Bytes, block);
				}
				
				stream.write(reinterpret_cast<char *>(&block), sizeof(cipher_block_t));
				hash.Update(reinterpret_cast<uint8_t *>(&block), sizeof(cipher_block_t));
				
				blocksWritten++;
				fileBlocksWritten++;
			}
		}
	}
	
	// write SHA-1 digest over entire image
	{
		// allocate enough room for digest and bytes to pad out to the next cipher block
		const unsigned padBytes = sizeOfPaddingForCipherBlocks(sizeof(sha1_digest_t));
		unsigned digestBlocksSize = sizeof(sha1_digest_t) + padBytes;
		smart_array_ptr<uint8_t> digestBlocks = new uint8_t[digestBlocksSize];
		hash.Final();
		hash.GetHash(digestBlocks.get());
		
		// set the pad bytes to random values
		RandomNumberGenerator rng;
		rng.generateBlock(&(digestBlocks.get())[sizeof(sha1_digest_t)], padBytes);
		
		// encrypt with session key
		if (isEncrypted())
		{
			Rijndael cipher;
			cipher.init(Rijndael::CBC, Rijndael::Encrypt, m_sessionKey, Rijndael::Key16Bytes, imageHeader.m_iv);
			cipher.blockEncrypt(digestBlocks.get(), digestBlocksSize * 8, digestBlocks.get());
		}
		
		// write to the stream
		stream.write(reinterpret_cast<char *>(digestBlocks.get()), digestBlocksSize);
	}
}