void* problem_convert_to_osi(Problem *p) { int i; double rowLb, rowUb; OsiSolverInterface *solver = new OsiClpSolverInterface(); CoinBuild cb; solver->setIntParam(OsiNameDiscipline, 2); solver->messageHandler()->setLogLevel(0); solver->setHintParam(OsiDoReducePrint,true,OsiHintTry); for(i = 0; i < p->numCols; i++) { solver->addCol(0, NULL, NULL, p->colLb[i], p->colUb[i], p->objCoef[i]); solver->setColName(i, p->colName[i]); if(p->colType[i] == CONTINUOUS) solver->setContinuous(i); else solver->setInteger(i); } for(i = 0; i < p->numRows; i++) { switch(p->rowSense[i]) { case 'E': rowLb = p->rhs[i]; rowUb = p->rhs[i]; break; case 'L': rowLb = -p->infty; rowUb = p->rhs[i]; break; case 'G': rowLb = p->rhs[i]; rowUb = p->infty; break; default: fprintf(stderr, "Error: invalid type of constraint!\n"); exit(EXIT_FAILURE); } cb.addRow(p->rowNElements[i], p->idxsByRow[i], p->coefsByRow[i], rowLb, rowUb); } solver->addRows(cb); for(i = 0; i < p->numRows; i++) solver->setRowName(i, p->rowName[i]); return solver; }
int main(int argc, const char *argv[]) { try { // Empty model ClpSimplex model; // Objective - just nonzeros int objIndex[] = {0, 2}; double objValue[] = {1.0, 4.0}; // Upper bounds - as dense vector double upper[] = {2.0, COIN_DBL_MAX, 4.0}; // Create space for 3 columns model.resize(0, 3); // Fill in int i; // Virtuous way // First objective for (i = 0; i < 2; i++) model.setObjectiveCoefficient(objIndex[i], objValue[i]); // Now bounds (lower will be zero by default but do again) for (i = 0; i < 3; i++) { model.setColumnLower(i, 0.0); model.setColumnUpper(i, upper[i]); } /* We could also have done in non-virtuous way e.g. double * objective = model.objective(); and then set directly */ // Faster to add rows all at once - but this is easier to show // Now add row 1 as >= 2.0 int row1Index[] = {0, 2}; double row1Value[] = {1.0, 1.0}; model.addRow(2, row1Index, row1Value, 2.0, COIN_DBL_MAX); // Now add row 2 as == 1.0 int row2Index[] = {0, 1, 2}; double row2Value[] = {1.0, -5.0, 1.0}; model.addRow(3, row2Index, row2Value, 1.0, 1.0); // solve model.dual(); /* Adding one row at a time has a significant overhead so let's try a more complicated but faster way First time adding in 10000 rows one by one */ model.allSlackBasis(); ClpSimplex modelSave = model; double time1 = CoinCpuTime(); int k; for (k = 0; k < 10000; k++) { int row2Index[] = {0, 1, 2}; double row2Value[] = {1.0, -5.0, 1.0}; model.addRow(3, row2Index, row2Value, 1.0, 1.0); } printf("Time for 10000 addRow is %g\n", CoinCpuTime() - time1); model.dual(); model = modelSave; // Now use build CoinBuild buildObject; time1 = CoinCpuTime(); for (k = 0; k < 10000; k++) { int row2Index[] = {0, 1, 2}; double row2Value[] = {1.0, -5.0, 1.0}; buildObject.addRow(3, row2Index, row2Value, 1.0, 1.0); } model.addRows(buildObject); printf("Time for 10000 addRow using CoinBuild is %g\n", CoinCpuTime() - time1); model.dual(); model = modelSave; int del[] = {0, 1, 2}; model.deleteRows(2, del); // Now use build +-1 CoinBuild buildObject2; time1 = CoinCpuTime(); for (k = 0; k < 10000; k++) { int row2Index[] = {0, 1, 2}; double row2Value[] = {1.0, -1.0, 1.0}; buildObject2.addRow(3, row2Index, row2Value, 1.0, 1.0); } model.addRows(buildObject2, true); printf("Time for 10000 addRow using CoinBuild+-1 is %g\n", CoinCpuTime() - time1); model.dual(); model = modelSave; model.deleteRows(2, del); // Now use build +-1 CoinModel modelObject2; time1 = CoinCpuTime(); for (k = 0; k < 10000; k++) { int row2Index[] = {0, 1, 2}; double row2Value[] = {1.0, -1.0, 1.0}; modelObject2.addRow(3, row2Index, row2Value, 1.0, 1.0); } model.addRows(modelObject2, true); printf("Time for 10000 addRow using CoinModel+-1 is %g\n", CoinCpuTime() - time1); model.dual(); model = ClpSimplex(); // Now use build +-1 CoinModel modelObject3; time1 = CoinCpuTime(); for (k = 0; k < 10000; k++) { int row2Index[] = {0, 1, 2}; double row2Value[] = {1.0, -1.0, 1.0}; modelObject3.addRow(3, row2Index, row2Value, 1.0, 1.0); } model.loadProblem(modelObject3, true); printf("Time for 10000 addRow using CoinModel load +-1 is %g\n", CoinCpuTime() - time1); model.writeMps("xx.mps"); model.dual(); model = modelSave; // Now use model CoinModel modelObject; time1 = CoinCpuTime(); for (k = 0; k < 10000; k++) { int row2Index[] = {0, 1, 2}; double row2Value[] = {1.0, -5.0, 1.0}; modelObject.addRow(3, row2Index, row2Value, 1.0, 1.0); } model.addRows(modelObject); printf("Time for 10000 addRow using CoinModel is %g\n", CoinCpuTime() - time1); model.dual(); model.writeMps("b.mps"); // Method using least memory - but most complicated time1 = CoinCpuTime(); // Assumes we know exact size of model and matrix // Empty model ClpSimplex model2; { // Create space for 3 columns and 10000 rows int numberRows = 10000; int numberColumns = 3; // This is fully dense - but would not normally be so int numberElements = numberRows * numberColumns; // Arrays will be set to default values model2.resize(numberRows, numberColumns); double * elements = new double [numberElements]; CoinBigIndex * starts = new CoinBigIndex [numberColumns+1]; int * rows = new int [numberElements];; int * lengths = new int[numberColumns]; // Now fill in - totally unsafe but .... // no need as defaults to 0.0 double * columnLower = model2.columnLower(); double * columnUpper = model2.columnUpper(); double * objective = model2.objective(); double * rowLower = model2.rowLower(); double * rowUpper = model2.rowUpper(); // Columns - objective was packed for (k = 0; k < 2; k++) { int iColumn = objIndex[k]; objective[iColumn] = objValue[k]; } for (k = 0; k < numberColumns; k++) columnUpper[k] = upper[k]; // Rows for (k = 0; k < numberRows; k++) { rowLower[k] = 1.0; rowUpper[k] = 1.0; } // Now elements double row2Value[] = {1.0, -5.0, 1.0}; CoinBigIndex put = 0; for (k = 0; k < numberColumns; k++) { starts[k] = put; lengths[k] = numberRows; double value = row2Value[k]; for (int i = 0; i < numberRows; i++) { rows[put] = i; elements[put] = value; put++; } } starts[numberColumns] = put; // assign to matrix CoinPackedMatrix * matrix = new CoinPackedMatrix(true, 0.0, 0.0); matrix->assignMatrix(true, numberRows, numberColumns, numberElements, elements, rows, starts, lengths); ClpPackedMatrix * clpMatrix = new ClpPackedMatrix(matrix); model2.replaceMatrix(clpMatrix, true); printf("Time for 10000 addRow using hand written code is %g\n", CoinCpuTime() - time1); // If matrix is really big could switch off creation of row copy // model2.setSpecialOptions(256); } model2.dual(); model2.writeMps("a.mps"); // Print column solution int numberColumns = model.numberColumns(); // Alternatively getColSolution() double * columnPrimal = model.primalColumnSolution(); // Alternatively getReducedCost() double * columnDual = model.dualColumnSolution(); // Alternatively getColLower() double * columnLower = model.columnLower(); // Alternatively getColUpper() double * columnUpper = model.columnUpper(); // Alternatively getObjCoefficients() double * columnObjective = model.objective(); int iColumn; std::cout << " Primal Dual Lower Upper Cost" << std::endl; for (iColumn = 0; iColumn < numberColumns; iColumn++) { double value; std::cout << std::setw(6) << iColumn << " "; value = columnPrimal[iColumn]; if (fabs(value) < 1.0e5) std::cout << setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << setiosflags(std::ios::scientific) << std::setw(14) << value; value = columnDual[iColumn]; if (fabs(value) < 1.0e5) std::cout << setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << setiosflags(std::ios::scientific) << std::setw(14) << value; value = columnLower[iColumn]; if (fabs(value) < 1.0e5) std::cout << setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << setiosflags(std::ios::scientific) << std::setw(14) << value; value = columnUpper[iColumn]; if (fabs(value) < 1.0e5) std::cout << setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << setiosflags(std::ios::scientific) << std::setw(14) << value; value = columnObjective[iColumn]; if (fabs(value) < 1.0e5) std::cout << setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << setiosflags(std::ios::scientific) << std::setw(14) << value; std::cout << std::endl; } std::cout << "--------------------------------------" << std::endl; // Test CoinAssert std::cout << "If Clp compiled with -g below should give assert, if with -O1 or COIN_ASSERT CoinError" << std::endl; model = modelSave; model.deleteRows(2, del); // Deliberate error model.deleteColumns(1, del + 2); // Now use build +-1 CoinBuild buildObject3; time1 = CoinCpuTime(); for (k = 0; k < 10000; k++) { int row2Index[] = {0, 1, 2}; double row2Value[] = {1.0, -1.0, 1.0}; buildObject3.addRow(3, row2Index, row2Value, 1.0, 1.0); } model.addRows(buildObject3, true); } catch (CoinError e) { e.print(); if (e.lineNumber() >= 0) std::cout << "This was from a CoinAssert" << std::endl; } return 0; }
int main(int argc, const char *argv[]) { { // Empty model ClpSimplex model; // Bounds on rows - as dense vector double lower[] = {2.0, 1.0}; double upper[] = {COIN_DBL_MAX, 1.0}; // Create space for 2 rows model.resize(2, 0); // Fill in int i; // Now row bounds for (i = 0; i < 2; i++) { model.setRowLower(i, lower[i]); model.setRowUpper(i, upper[i]); } // Now add column 1 int column1Index[] = {0, 1}; double column1Value[] = {1.0, 1.0}; model.addColumn(2, column1Index, column1Value, 0.0, 2, 1.0); // Now add column 2 int column2Index[] = {1}; double column2Value[] = { -5.0}; model.addColumn(1, column2Index, column2Value, 0.0, COIN_DBL_MAX, 0.0); // Now add column 3 int column3Index[] = {0, 1}; double column3Value[] = {1.0, 1.0}; model.addColumn(2, column3Index, column3Value, 0.0, 4.0, 4.0); // solve model.dual(); /* Adding one column at a time has a significant overhead so let's try a more complicated but faster way First time adding in 10000 columns one by one */ model.allSlackBasis(); ClpSimplex modelSave = model; double time1 = CoinCpuTime(); int k; for (k = 0; k < 10000; k++) { int column2Index[] = {0, 1}; double column2Value[] = {1.0, -5.0}; model.addColumn(2, column2Index, column2Value, 0.0, 1.0, 10000.0); } printf("Time for 10000 addColumn is %g\n", CoinCpuTime() - time1); model.dual(); model = modelSave; // Now use build CoinBuild buildObject; time1 = CoinCpuTime(); for (k = 0; k < 100000; k++) { int column2Index[] = {0, 1}; double column2Value[] = {1.0, -5.0}; buildObject.addColumn(2, column2Index, column2Value, 0.0, 1.0, 10000.0); } model.addColumns(buildObject); printf("Time for 100000 addColumn using CoinBuild is %g\n", CoinCpuTime() - time1); model.dual(); model = modelSave; // Now use build +-1 int del[] = {0, 1, 2}; model.deleteColumns(3, del); CoinBuild buildObject2; time1 = CoinCpuTime(); for (k = 0; k < 10000; k++) { int column2Index[] = {0, 1}; double column2Value[] = {1.0, 1.0, -1.0}; int bias = k & 1; buildObject2.addColumn(2, column2Index, column2Value + bias, 0.0, 1.0, 10000.0); } model.addColumns(buildObject2, true); printf("Time for 10000 addColumn using CoinBuild+-1 is %g\n", CoinCpuTime() - time1); model.dual(); model = modelSave; // Now use build +-1 model.deleteColumns(3, del); CoinModel modelObject2; time1 = CoinCpuTime(); for (k = 0; k < 10000; k++) { int column2Index[] = {0, 1}; double column2Value[] = {1.0, 1.0, -1.0}; int bias = k & 1; modelObject2.addColumn(2, column2Index, column2Value + bias, 0.0, 1.0, 10000.0); } model.addColumns(modelObject2, true); printf("Time for 10000 addColumn using CoinModel+-1 is %g\n", CoinCpuTime() - time1); //model.writeMps("xx.mps"); model.dual(); model = modelSave; // Now use model CoinModel modelObject; time1 = CoinCpuTime(); for (k = 0; k < 100000; k++) { int column2Index[] = {0, 1}; double column2Value[] = {1.0, -5.0}; modelObject.addColumn(2, column2Index, column2Value, 0.0, 1.0, 10000.0); } model.addColumns(modelObject); printf("Time for 100000 addColumn using CoinModel is %g\n", CoinCpuTime() - time1); model.dual(); // Print column solution Just first 3 columns int numberColumns = model.numberColumns(); numberColumns = CoinMin(3, numberColumns); // Alternatively getColSolution() double * columnPrimal = model.primalColumnSolution(); // Alternatively getReducedCost() double * columnDual = model.dualColumnSolution(); // Alternatively getColLower() double * columnLower = model.columnLower(); // Alternatively getColUpper() double * columnUpper = model.columnUpper(); // Alternatively getObjCoefficients() double * columnObjective = model.objective(); int iColumn; std::cout << " Primal Dual Lower Upper Cost" << std::endl; for (iColumn = 0; iColumn < numberColumns; iColumn++) { double value; std::cout << std::setw(6) << iColumn << " "; value = columnPrimal[iColumn]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; value = columnDual[iColumn]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; value = columnLower[iColumn]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; value = columnUpper[iColumn]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; value = columnObjective[iColumn]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; std::cout << std::endl; } std::cout << "--------------------------------------" << std::endl; } { // Now copy a model ClpSimplex model; int status; if (argc < 2) { #if defined(SAMPLEDIR) status = model.readMps(SAMPLEDIR "/p0033.mps", true); #else fprintf(stderr, "Do not know where to find sample MPS files.\n"); exit(1); #endif } else status = model.readMps(argv[1]); if (status) { printf("errors on input\n"); exit(77); } model.initialSolve(); int numberRows = model.numberRows(); int numberColumns = model.numberColumns(); const double * rowLower = model.rowLower(); const double * rowUpper = model.rowUpper(); // Start off model2 ClpSimplex model2; model2.addRows(numberRows, rowLower, rowUpper, NULL); // Build object CoinBuild buildObject; // Add columns const double * columnLower = model.columnLower(); const double * columnUpper = model.columnUpper(); const double * objective = model.objective(); CoinPackedMatrix * matrix = model.matrix(); const int * row = matrix->getIndices(); const int * columnLength = matrix->getVectorLengths(); const CoinBigIndex * columnStart = matrix->getVectorStarts(); const double * elementByColumn = matrix->getElements(); for (int iColumn = 0; iColumn < numberColumns; iColumn++) { CoinBigIndex start = columnStart[iColumn]; buildObject.addColumn(columnLength[iColumn], row + start, elementByColumn + start, columnLower[iColumn], columnUpper[iColumn], objective[iColumn]); } // add in model2.addColumns(buildObject); model2.initialSolve(); } { // and again ClpSimplex model; int status; if (argc < 2) { #if defined(SAMPLEDIR) status = model.readMps(SAMPLEDIR "/p0033.mps", true); #else fprintf(stderr, "Do not know where to find sample MPS files.\n"); exit(1); #endif } else status = model.readMps(argv[1]); if (status) { printf("errors on input\n"); exit(77); } model.initialSolve(); int numberRows = model.numberRows(); int numberColumns = model.numberColumns(); const double * rowLower = model.rowLower(); const double * rowUpper = model.rowUpper(); // Build object CoinModel buildObject; for (int iRow = 0; iRow < numberRows; iRow++) buildObject.setRowBounds(iRow, rowLower[iRow], rowUpper[iRow]); // Add columns const double * columnLower = model.columnLower(); const double * columnUpper = model.columnUpper(); const double * objective = model.objective(); CoinPackedMatrix * matrix = model.matrix(); const int * row = matrix->getIndices(); const int * columnLength = matrix->getVectorLengths(); const CoinBigIndex * columnStart = matrix->getVectorStarts(); const double * elementByColumn = matrix->getElements(); for (int iColumn = 0; iColumn < numberColumns; iColumn++) { CoinBigIndex start = columnStart[iColumn]; buildObject.addColumn(columnLength[iColumn], row + start, elementByColumn + start, columnLower[iColumn], columnUpper[iColumn], objective[iColumn]); } // add in ClpSimplex model2; model2.loadProblem(buildObject); model2.initialSolve(); } return 0; }
int main (int argc, const char *argv[]) { /* Define your favorite OsiSolver. CbcModel clones the solver so use solver1 up to the time you pass it to CbcModel then use a pointer to cloned solver (model.solver()) */ OsiClpSolverInterface solver1; /* From now on we can build model in a solver independent way. You can add rows one at a time but for large problems this is slow so this example uses CoinBuild or CoinModel */ OsiSolverInterface * solver = &solver1; // Data (is exmip1.mps in Mps/Sample // Objective double objValue[]={1.0,2.0,0.0,0.0,0.0,0.0,0.0,-1.0}; // Lower bounds for columns double columnLower[]={2.5,0.0,0.0,0.0,0.5,0.0,0.0,0.0}; // Upper bounds for columns double columnUpper[]={COIN_DBL_MAX,4.1,1.0,1.0,4.0, COIN_DBL_MAX,COIN_DBL_MAX,4.3}; // Lower bounds for row activities double rowLower[]={2.5,-COIN_DBL_MAX,-COIN_DBL_MAX,1.8,3.0}; // Upper bounds for row activities double rowUpper[]={COIN_DBL_MAX,2.1,4.0,5.0,15.0}; // Matrix stored packed int column[] = {0,1,3,4,7, 1,2, 2,5, 3,6, 4,7}; double element[] = {3.0,1.0,-2.0,-1.0,-1.0, 2.0,1.1, 1.0,1.0, 2.8,-1.2, 1.0,1.9}; int starts[]={0,5,7,9,11,13}; // Integer variables (note upper bound already 1.0) int whichInt[]={2,3}; int numberRows=(int) (sizeof(rowLower)/sizeof(double)); int numberColumns=(int) (sizeof(columnLower)/sizeof(double)); #define BUILD 2 #if BUILD==1 // Using CoinBuild // First do columns (objective and bounds) int i; // We are not adding elements for (i=0;i<numberColumns;i++) { solver->addCol(0,NULL,NULL,columnLower[i],columnUpper[i], objValue[i]); } // mark as integer for (i=0;i<(int) (sizeof(whichInt)/sizeof(int));i++) solver->setInteger(whichInt[i]); // Now build rows CoinBuild build; for (i=0;i<numberRows;i++) { int startRow = starts[i]; int numberInRow = starts[i+1]-starts[i]; build.addRow(numberInRow,column+startRow,element+startRow, rowLower[i],rowUpper[i]); } // add rows into solver solver->addRows(build); #else /* using CoinModel - more flexible but still beta. Can do exactly same way but can mix and match much more. Also all operations are on building object */ CoinModel build; // First do columns (objective and bounds) int i; for (i=0;i<numberColumns;i++) { build.setColumnBounds(i,columnLower[i],columnUpper[i]); build.setObjective(i,objValue[i]); } // mark as integer for (i=0;i<(int) (sizeof(whichInt)/sizeof(int));i++) build.setInteger(whichInt[i]); // Now build rows for (i=0;i<numberRows;i++) { int startRow = starts[i]; int numberInRow = starts[i+1]-starts[i]; build.addRow(numberInRow,column+startRow,element+startRow, rowLower[i],rowUpper[i]); } // add rows into solver solver->loadFromCoinModel(build); #endif // Pass to solver CbcModel model(*solver); model.solver()->setHintParam(OsiDoReducePrint,true,OsiHintTry); // Set up some cut generators and defaults // Probing first as gets tight bounds on continuous CglProbing generator1; generator1.setUsingObjective(true); generator1.setMaxPass(3); generator1.setMaxProbe(100); generator1.setMaxLook(50); generator1.setRowCuts(3); // generator1.snapshot(*model.solver()); //generator1.createCliques(*model.solver(),2,1000,true); //generator1.setMode(0); CglGomory generator2; // try larger limit generator2.setLimit(300); CglKnapsackCover generator3; CglOddHole generator4; generator4.setMinimumViolation(0.005); generator4.setMinimumViolationPer(0.00002); // try larger limit generator4.setMaximumEntries(200); CglClique generator5; generator5.setStarCliqueReport(false); generator5.setRowCliqueReport(false); CglMixedIntegerRounding mixedGen; CglFlowCover flowGen; // Add in generators model.addCutGenerator(&generator1,-1,"Probing"); model.addCutGenerator(&generator2,-1,"Gomory"); model.addCutGenerator(&generator3,-1,"Knapsack"); model.addCutGenerator(&generator4,-1,"OddHole"); model.addCutGenerator(&generator5,-1,"Clique"); model.addCutGenerator(&flowGen,-1,"FlowCover"); model.addCutGenerator(&mixedGen,-1,"MixedIntegerRounding"); OsiClpSolverInterface * osiclp = dynamic_cast< OsiClpSolverInterface*> (model.solver()); // go faster stripes if (osiclp->getNumRows()<300&&osiclp->getNumCols()<500) { osiclp->setupForRepeatedUse(2,0); printf("trying slightly less reliable but faster version (? Gomory cuts okay?)\n"); printf("may not be safe if doing cuts in tree which need accuracy (level 2 anyway)\n"); } // Allow rounding heuristic CbcRounding heuristic1(model); model.addHeuristic(&heuristic1); // And local search when new solution found CbcHeuristicLocal heuristic2(model); model.addHeuristic(&heuristic2); // Redundant definition of default branching (as Default == User) CbcBranchUserDecision branch; model.setBranchingMethod(&branch); // Definition of node choice CbcCompareUser compare; model.setNodeComparison(compare); // Do initial solve to continuous model.initialSolve(); // Could tune more model.setMinimumDrop(CoinMin(1.0, fabs(model.getMinimizationObjValue())*1.0e-3+1.0e-4)); if (model.getNumCols()<500) model.setMaximumCutPassesAtRoot(-100); // always do 100 if possible else if (model.getNumCols()<5000) model.setMaximumCutPassesAtRoot(100); // use minimum drop else model.setMaximumCutPassesAtRoot(20); //model.setMaximumCutPasses(5); // Switch off strong branching if wanted // model.setNumberStrong(0); // Do more strong branching if small if (model.getNumCols()<5000) model.setNumberStrong(10); model.solver()->setIntParam(OsiMaxNumIterationHotStart,100); // If time is given then stop after that number of minutes if (argc>2) { int minutes = atoi(argv[2]); std::cout<<"Stopping after "<<minutes<<" minutes"<<std::endl; assert (minutes>=0); model.setDblParam(CbcModel::CbcMaximumSeconds,60.0*minutes); } // Switch off most output if (model.getNumCols()<3000) { model.messageHandler()->setLogLevel(1); //model.solver()->messageHandler()->setLogLevel(0); } else { model.messageHandler()->setLogLevel(2); model.solver()->messageHandler()->setLogLevel(1); } double time1 = CoinCpuTime(); // Do complete search model.branchAndBound(); std::cout<<" Branch and cut took "<<CoinCpuTime()-time1<<" seconds, " <<model.getNodeCount()<<" nodes with objective " <<model.getObjValue() <<(!model.status() ? " Finished" : " Not finished") <<std::endl; // Print more statistics std::cout<<"Cuts at root node changed objective from "<<model.getContinuousObjective() <<" to "<<model.rootObjectiveAfterCuts()<<std::endl; int numberGenerators = model.numberCutGenerators(); for (int iGenerator=0;iGenerator<numberGenerators;iGenerator++) { CbcCutGenerator * generator = model.cutGenerator(iGenerator); std::cout<<generator->cutGeneratorName()<<" was tried " <<generator->numberTimesEntered()<<" times and created " <<generator->numberCutsInTotal()<<" cuts of which " <<generator->numberCutsActive()<<" were active after adding rounds of cuts" <<std::endl; } // Print solution if any - we can't get names from Osi! if (model.getMinimizationObjValue()<1.0e50) { int numberColumns = model.solver()->getNumCols(); const double * solution = model.solver()->getColSolution(); int iColumn; std::cout<<std::setiosflags(std::ios::fixed|std::ios::showpoint)<<std::setw(14); std::cout<<"--------------------------------------"<<std::endl; for (iColumn=0;iColumn<numberColumns;iColumn++) { double value=solution[iColumn]; if (fabs(value)>1.0e-7&&model.solver()->isInteger(iColumn)) std::cout<<std::setw(6)<<iColumn<<" "<<value<<std::endl; } std::cout<<"--------------------------------------"<<std::endl; std::cout<<std::resetiosflags(std::ios::fixed|std::ios::showpoint|std::ios::scientific); } return 0; }
int main(int argc, const char *argv[]) { ClpSimplex model; int status; if (argc < 2) { #if defined(SAMPLEDIR) status = model.readMps(SAMPLEDIR "/p0033.mps", true); #else fprintf(stderr, "Do not know where to find sample MPS files.\n"); exit(1); #endif } else status = model.readMps(argv[1]); if (status) { printf("errors on input\n"); exit(77); } { // check if we need to change bounds to rows int numberColumns = model.numberColumns(); const double * columnLower = model.columnLower(); const double * columnUpper = model.columnUpper(); int iColumn; CoinBuild build; double one = 1.0; for (iColumn = 0; iColumn < numberColumns; iColumn++) { if (columnUpper[iColumn] < 1.0e20 && columnLower[iColumn] > -1.0e20) { if (fabs(columnLower[iColumn]) < fabs(columnUpper[iColumn])) { double value = columnUpper[iColumn]; model.setColumnUpper(iColumn, COIN_DBL_MAX); build.addRow(1, &iColumn, &one, -COIN_DBL_MAX, value); } else { double value = columnLower[iColumn]; model.setColumnLower(iColumn, -COIN_DBL_MAX); build.addRow(1, &iColumn, &one, value, COIN_DBL_MAX); } } } if (build.numberRows()) model.addRows(build); } int numberColumns = model.numberColumns(); const double * columnLower = model.columnLower(); const double * columnUpper = model.columnUpper(); int numberRows = model.numberRows(); double * rowLower = CoinCopyOfArray(model.rowLower(), numberRows); double * rowUpper = CoinCopyOfArray(model.rowUpper(), numberRows); const double * objective = model.objective(); CoinPackedMatrix * matrix = model.matrix(); // get transpose CoinPackedMatrix rowCopy = *matrix; int iRow, iColumn; int numberExtraRows = 0; for (iRow = 0; iRow < numberRows; iRow++) { if (rowLower[iRow] <= -1.0e20) { } else if (rowUpper[iRow] >= 1.0e20) { } else { if (rowUpper[iRow] != rowLower[iRow]) numberExtraRows++; } } const int * row = matrix->getIndices(); const int * columnLength = matrix->getVectorLengths(); const CoinBigIndex * columnStart = matrix->getVectorStarts(); const double * elementByColumn = matrix->getElements(); double objOffset = 0.0; for (iColumn = 0; iColumn < numberColumns; iColumn++) { double offset = 0.0; if (columnUpper[iColumn] >= 1.0e20) { if (columnLower[iColumn] > -1.0e20) offset = columnLower[iColumn]; } else if (columnLower[iColumn] <= -1.0e20) { offset = columnUpper[iColumn]; } else { // taken care of before abort(); } if (offset) { objOffset += offset * objective[iColumn]; for (CoinBigIndex j = columnStart[iColumn]; j < columnStart[iColumn] + columnLength[iColumn]; j++) { int iRow = row[j]; if (rowLower[iRow] > -1.0e20) rowLower[iRow] -= offset * elementByColumn[j]; if (rowUpper[iRow] < 1.0e20) rowUpper[iRow] -= offset * elementByColumn[j]; } } } int * which = new int[numberRows+numberExtraRows]; rowCopy.reverseOrdering(); rowCopy.transpose(); double * fromRowsLower = new double[numberRows+numberExtraRows]; double * fromRowsUpper = new double[numberRows+numberExtraRows]; double * newObjective = new double[numberRows+numberExtraRows]; double * fromColumnsLower = new double[numberColumns]; double * fromColumnsUpper = new double[numberColumns]; for (iColumn = 0; iColumn < numberColumns; iColumn++) { // Offset is already in if (columnUpper[iColumn] >= 1.0e20) { if (columnLower[iColumn] > -1.0e20) { fromColumnsLower[iColumn] = -COIN_DBL_MAX; fromColumnsUpper[iColumn] = objective[iColumn]; } else { // free fromColumnsLower[iColumn] = objective[iColumn]; fromColumnsUpper[iColumn] = objective[iColumn]; } } else if (columnLower[iColumn] <= -1.0e20) { fromColumnsLower[iColumn] = objective[iColumn]; fromColumnsUpper[iColumn] = COIN_DBL_MAX; } else { abort(); } } int kRow = 0; for (iRow = 0; iRow < numberRows; iRow++) { if (rowLower[iRow] <= -1.0e20) { assert(rowUpper[iRow] < 1.0e20); newObjective[kRow] = -rowUpper[iRow]; fromRowsLower[kRow] = -COIN_DBL_MAX; fromRowsUpper[kRow] = 0.0; which[kRow] = iRow; kRow++; } else if (rowUpper[iRow] >= 1.0e20) { newObjective[kRow] = -rowLower[iRow]; fromRowsLower[kRow] = 0.0; fromRowsUpper[kRow] = COIN_DBL_MAX; which[kRow] = iRow; kRow++; } else { if (rowUpper[iRow] == rowLower[iRow]) { newObjective[kRow] = -rowLower[iRow]; fromRowsLower[kRow] = -COIN_DBL_MAX;; fromRowsUpper[kRow] = COIN_DBL_MAX; which[kRow] = iRow; kRow++; } else { // range newObjective[kRow] = -rowUpper[iRow]; fromRowsLower[kRow] = -COIN_DBL_MAX; fromRowsUpper[kRow] = 0.0; which[kRow] = iRow; kRow++; newObjective[kRow] = -rowLower[iRow]; fromRowsLower[kRow] = 0.0; fromRowsUpper[kRow] = COIN_DBL_MAX; which[kRow] = iRow; kRow++; } } } if (numberExtraRows) { CoinPackedMatrix newCopy; newCopy.submatrixOfWithDuplicates(rowCopy, kRow, which); rowCopy = newCopy; } ClpSimplex modelDual; modelDual.loadProblem(rowCopy, fromRowsLower, fromRowsUpper, newObjective, fromColumnsLower, fromColumnsUpper); modelDual.setObjectiveOffset(objOffset); delete [] fromRowsLower; delete [] fromRowsUpper; delete [] fromColumnsLower; delete [] fromColumnsUpper; delete [] newObjective; delete [] which; delete [] rowLower; delete [] rowUpper; modelDual.writeMps("dual.mps"); return 0; }