コード例 #1
0
void ColorMatcher::calculateHistogram(const ed::Entity& e, ColorHistogram& histogram) const
{
    ed::MeasurementConstPtr msr = e.lastMeasurement();
    if (!msr)
        return;

    histogram.resize(ColorNameTable::NUM_COLORS);
    histogram.assign(ColorNameTable::NUM_COLORS, 0);

    // get color image
    const cv::Mat& img = msr->image()->getRGBImage();

    int pixel_count = 0;

    for(ed::ImageMask::const_iterator it = msr->imageMask().begin(img.cols); it != msr->imageMask().end(); ++it)
    {
        ++pixel_count;
        const cv::Point2i& p = *it;

        // Calculate prob distribution
        const cv::Vec3b& bgr = img.at<cv::Vec3b>(p);

        const float* probs = color_table_.rgbToDistribution(bgr[2], bgr[1], bgr[0]);

        for(unsigned int i = 0; i < ColorNameTable::NUM_COLORS; ++i)
            histogram[i] += probs[i];
    }

    // normalize histogram
    for(unsigned int i = 0; i < ColorNameTable::NUM_COLORS; ++i)
        histogram[i] /= pixel_count;
}
コード例 #2
0
ColorHistogram ColorHistogram::ScaleHistogram(const vector<float>& gain) const {
  const ColorHistogramIndexLUT& lut =
    ColorHistogramIndexLUTFactory::Instance().GetLUT(
      lum_bins_, color_bins_, color_bins_);
  ColorHistogram result = EmptyCopy();
  if (!IsSparse()) {
    for (int i = 0; i < total_bins_; ++i) {
      const float value = bins_[i];
      if (value) {
        const std::tuple<int, int, int>& idx_3d = lut.Ind2Sub(i);
        const float bin_lum = std::min(lum_bins_ - 1.f, std::get<0>(idx_3d) * gain[0]);
        const float bin_col1 = std::min(color_bins_ - 1.f, std::get<1>(idx_3d) * gain[1]);
        const float bin_col2 = std::min(color_bins_ - 1.f, std::get<2>(idx_3d) * gain[2]);
        result.AddValueInterpolated(bin_lum, bin_col1, bin_col2, value);
      }
    }
  } else {
    for (const auto& bin : sparse_bins_) {
      const std::tuple<int, int, int>& idx_3d = lut.Ind2Sub(bin.first);
      const float bin_lum = std::min(lum_bins_ - 1.f, std::get<0>(idx_3d) * gain[0]);
      const float bin_col1 = std::min(color_bins_ - 1.f, std::get<1>(idx_3d) * gain[1]);
      const float bin_col2 = std::min(color_bins_ - 1.f, std::get<2>(idx_3d) * gain[2]);
      result.AddValueInterpolated(bin_lum, bin_col1, bin_col2, bin.second);
    }
  }
  DCHECK_LT(fabs(WeightSum() - result.WeightSum()), 1e-3f);

  return result;
}
コード例 #3
0
ファイル: main.cpp プロジェクト: xgdgsc/CompareTwoImages
 double compare(const Mat &image)
 {
     input = hist.colorReduce(image,div);
     inputH = hist.getHistogram(input);
    // return compareHist(refH,inputH,CV_COMP_BHATTACHARYYA);
     //return compareHist(refH,inputH,CV_COMP_CHISQR);
     //return compareHist(refH,inputH,CV_COMP_INTERSECT);
     return compareHist(refH,inputH,CV_COMP_CORREL);
 }
コード例 #4
0
ファイル: CAMShift.cpp プロジェクト: NitishGoel/OpenCV2
int main()
{
	VideoCapture capture(0);
	if(!capture.isOpened())
	{
		cout<<"Camera could not be opened";
		exit(0);
	}

	Mat frame;
	capture.read(frame);
	
	Rect rect(220,100,170,170);
	
	Mat imageROI= frame(rect);
	
	Mat hsv;
	ColorHistogram hc;
	ContentFinder finder;
	int minSat=65;int channels[]={0};
	namedWindow("image 2");
	while(1)
	{
		MatND colorhist=hc.getHueHistogram(imageROI,minSat);
		finder.setHistogram(colorhist);
		int a=capture.read(frame);	
		if(!a)
		{
			exit(0);
		}
		cv::cvtColor(frame, hsv, CV_BGR2HSV);
		std::vector<cv::Mat> v;
		cv::split(hsv,v);
		threshold(v[1],v[1],minSat,255,cv::THRESH_BINARY);
		// Get back-projection of hue histogram
		Mat result= finder.find(hsv,0.0f,180.0f,channels,1);
		// Eliminate low stauration pixels
		cv::bitwise_and(result,v[1],result);
		cv::TermCriteria criteria(cv::TermCriteria::MAX_ITER,10,0.01);
		
		cv::CamShift(result,rect,criteria);
		
		cv::rectangle(frame, rect, cv::Scalar(0,0,255));
		imshow("image 2",frame);
		int c= cvWaitKey(10);
		if(char(c)==27)
		{
			exit(0);
		}
		//cv::imshow("Image",result);
		Mat imageROI= frame(rect);
	}
	cv::waitKey(0);
	return 0;
}
コード例 #5
0
double ColorHistogram::GenericDistance(
    const ColorHistogram& rhs,
    std::function<float(float,float)> fun) const {
  DCHECK(IsSparse() == rhs.IsSparse());
  double sum = 0;
  if (!IsSparse()) {
    for (int i = 0; i < total_bins_; ++i) {
      sum += fun(bins_[i], rhs.bins_[i]);
    }
  } else {
    // Sparse processing.
    for (const auto& bin : sparse_bins_) {
      const auto& rhs_bin_iter = rhs.sparse_bins_.find(bin.first);
      sum += fun(bin.second, rhs_bin_iter != rhs.sparse_bins_.end() ?
                             rhs_bin_iter->second : 0.0f);
    }

    // Process rhs bins that we might have missed.
    for (const auto& rhs_bin : rhs.sparse_bins_) {
      const auto& bin_iter = sparse_bins_.find(rhs_bin.first);
      if (bin_iter == sparse_bins_.end()) {
        sum += fun(0, rhs_bin.second);
      }
    }
  }

  return sum;
}
コード例 #6
0
float ColorHistogram::KLDivergence(const ColorHistogram& rhs) const {
  DCHECK(IsNormalized() && rhs.IsNormalized());
  const double eps = 1e-10;
  return 0.5 * GenericDistance(rhs, [eps](float a, float b) -> float {
    const double ratio = (a + eps) / (b + eps);
    return a * std::log(ratio) + b * std::log(1.0 / ratio);
  });
}
コード例 #7
0
float ColorHistogram::JSDivergence(const ColorHistogram& rhs) const {
  DCHECK(IsNormalized() && rhs.IsNormalized());
  const double eps = 1e-10;
  return 0.5 * GenericDistance(rhs, [eps](float a, float b) -> float {
    const double inv_mean = 1.0 / ((a + b) * 0.5 + eps);
    const double ratio_a = (a + eps) * inv_mean;
    const double ratio_b = (b + eps) * inv_mean;
    return a * std::log(ratio_a) + b * std::log(ratio_b);
  });
}
コード例 #8
0
float ColorHistogram::ChiSquareDist(const ColorHistogram& rhs) const {
  DCHECK(IsNormalized() && rhs.IsNormalized());
  return 0.5 * GenericDistance(rhs, [](float a, float b) -> float {
    const float add = a + b;
    if (fabs(add) > 1e-12) {
      const float sub = a - b;
      return sub * sub / add;
    } else {
      return 0.0f;
    }
  });
}
コード例 #9
0
char detectBlueBlock(Mat image)
{
	int T=15; //面积与边长之比的阈值
	ColorHistogram hc;	
	MatND colorhist = hc.getHueHistogram(image);
	//遍历直方图数据
	//hc.getHistogramStat(colorhist);
	/*
	Mat histImg = hc.getHistogramImage(colorhist);
	namedWindow("BlueBlockHistogram");
	imshow("BlueBlockHistogram", histImg);*/

	Mat thresholded, thresholded1, thresholded2, thresholded3;
	threshold(hc.v[0], thresholded1, 100, 255, 1);
	threshold(hc.v[0], thresholded2, 124, 255, 0); 
	threshold(hc.v[1], thresholded3, 125, 255, 1); //变成黑色
	thresholded = thresholded1+thresholded2+thresholded3;
	//imshow("1", thresholded1);
	//imshow("2", thresholded2);
	//imshow("3", thresholded3);

	//namedWindow("BlueBlockBinary");
	//imshow("BlueBlockBinary", thresholded);
	int top = (int) (0.05*thresholded.rows); 
	int bottom = (int) (0.05*thresholded.rows);
    int left = (int) (0.05*thresholded.cols); 
	int right = (int) (0.05*thresholded.cols);
	Scalar value = Scalar( 255 );
    copyMakeBorder( thresholded, thresholded, top, bottom, left, right, 0, value );
	
	/*
	Mat eroded;
	erode(thresholded, eroded, Mat());
	namedWindow("ErodedImage");
	imshow("ErodedImage", eroded);

	Mat dilated;
	erode(thresholded, dilated, Mat());
	namedWindow("DilatedImage");
	imshow("DilatedImage", dilated);*/

	//闭运算
	Mat closed;
	morphologyEx(thresholded, closed, MORPH_CLOSE,  Mat());
	//namedWindow("ClosedImage");
	//imshow("ClosedImage", closed);

	vector<vector<Point>>contours;
	findContours(closed, contours, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
	//筛选不合格轮廓
	int cmin = 100; //最小轮廓长度
	vector<vector<Point>>::const_iterator itc = contours.begin();
	while (itc != contours.end())	
	{
		if (itc->size()<cmin)
			itc = contours.erase(itc);
		else
			itc++;
	}

	Mat result(closed.size(), CV_8U, Scalar(255));
	double area, length, p;
	double a[2] = {0,0}; 
	cout << "Size=" << contours.size() << endl;
	for ( int i=0; i<contours.size(); i++)
	{
		area = abs(contourArea( contours[i] ));
		length = abs(arcLength( contours[i], true ));
		p = area/length;
		if (p > a[0]) 
		{
			a[1] = a[0];
			a[0] = p;
		}
		else if (p > a[1]) a[1] = p; 
 		cout << "Area=" << area << "   " << "Length=" << length << "  " << "Property=" << p << endl;
	}
	drawContours(result, contours, -1, Scalar(0), 1);
	//namedWindow("DrawContours");
	//imshow("DrawContours", result);
	cout << "Property=" << a[1] << endl;
	//waitKey();
	
	if (a[1] > T) return BLUEBLOCK;
			  else return NOTHING;
}
コード例 #10
0
int main()
{
	// Read input image
    cv::Mat image= cv::imread("waves.jpg",0);
	if (!image.data)
		return 0; 

	// define image ROI
	cv::Mat imageROI;
	imageROI= image(cv::Rect(216,33,24,30)); // Cloud region

	// Display reference patch
	cv::namedWindow("Reference");
	cv::imshow("Reference",imageROI);

	// Find histogram of reference
	Histogram1D h;
	cv::Mat hist= h.getHistogram(imageROI);
	cv::namedWindow("Reference Hist");
	cv::imshow("Reference Hist",h.getHistogramImage(imageROI));

	// Create the content finder
	ContentFinder finder;

	// set histogram to be back-projected
	finder.setHistogram(hist);
	finder.setThreshold(-1.0f);

	// Get back-projection
	cv::Mat result1;
	result1= finder.find(image);

	// Create negative image and display result
	cv::Mat tmp;
	result1.convertTo(tmp,CV_8U,-1.0,255.0);
	cv::namedWindow("Backprojection result");
	cv::imshow("Backprojection result",tmp);

	// Get binary back-projection
	finder.setThreshold(0.12f);
	result1= finder.find(image);

	// Draw a rectangle around the reference area
	cv::rectangle(image, cv::Rect(216, 33, 24, 30), cv::Scalar(0, 0, 0));

	// Display image
	cv::namedWindow("Image");
	cv::imshow("Image",image);

	// Display result
	cv::namedWindow("Detection Result");
	cv::imshow("Detection Result",result1);

	// Load color image
	ColorHistogram hc;
    cv::Mat color= cv::imread("waves.jpg");

	// extract region of interest
	imageROI= color(cv::Rect(0,0,100,45)); // blue sky area

	// Get 3D colour histogram (8 bins per channel)
	hc.setSize(8); // 8x8x8
	cv::Mat shist= hc.getHistogram(imageROI);

	// set histogram to be back-projected
	finder.setHistogram(shist);
	finder.setThreshold(0.05f);

	// Get back-projection of color histogram
	result1= finder.find(color);

	cv::namedWindow("Color Detection Result");
	cv::imshow("Color Detection Result",result1);

	// Second color image
	cv::Mat color2= cv::imread("dog.jpg");

	cv::namedWindow("Second Image");
	cv::imshow("Second Image",color2);

	// Get back-projection of color histogram
	cv::Mat result2= finder.find(color2);

	cv::namedWindow("Result color (2)");
	cv::imshow("Result color (2)",result2);

	// Get ab color histogram
	hc.setSize(256); // 256x256
	cv::Mat colorhist= hc.getabHistogram(imageROI);

	// display 2D histogram
	colorhist.convertTo(tmp,CV_8U,-1.0,255.0);
	cv::namedWindow("ab histogram");
	cv::imshow("ab histogram",tmp);

	// set histogram to be back-projected
	finder.setHistogram(colorhist);
	finder.setThreshold(0.05f);

	// Convert to Lab space
	cv::Mat lab;
	cv::cvtColor(color, lab, CV_BGR2Lab);

	// Get back-projection of ab histogram
	int ch[2]={1,2};
	result1= finder.find(lab,0,256.0f,ch);

	cv::namedWindow("Result ab (1)");
	cv::imshow("Result ab (1)",result1);

	// Second colour image
	cv::cvtColor(color2, lab, CV_BGR2Lab);

	// Get back-projection of ab histogram
	result2= finder.find(lab,0,256.0,ch);

	cv::namedWindow("Result ab (2)");
	cv::imshow("Result ab (2)",result2);

	// Draw a rectangle around the reference sky area
    cv::rectangle(color,cv::Rect(0,0,100,45),cv::Scalar(0,0,0));
	cv::namedWindow("Color Image");
	cv::imshow("Color Image",color);

	
	// Get Hue colour histogram
	hc.setSize(180); // 180 bins
	colorhist= hc.getHueHistogram(imageROI);

	// set histogram to be back-projected
	finder.setHistogram(colorhist);

	// Convert to HSV space
	cv::Mat hsv;
	cv::cvtColor(color, hsv, CV_BGR2HSV);

	// Get back-projection of hue histogram
	ch[0]=0;
	result1= finder.find(hsv,0.0f,180.0f,ch);

	cv::namedWindow("Result Hue (1)");
	cv::imshow("Result Hue (1)",result1);

	// Second colour image
	color2= cv::imread("dog.jpg");

	// Convert to HSV space
	cv::cvtColor(color2, hsv, CV_BGR2HSV);

	// Get back-projection of hue histogram
	result2= finder.find(hsv,0.0f,180.0f,ch);

	cv::namedWindow("Result Hue (2)");
	cv::imshow("Result Hue (2)",result2);

	cv::waitKey();
	return 0;
}
コード例 #11
0
ファイル: main.cpp プロジェクト: Rookiee/Learning_OpenCV
int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);
/*

    //创建ColorHistogram 对象
    ColorHistogram ch;

    // load the image
    Mat image = imread("/Users/Haoyang/Downloads/Pics/waves.jpg");

    namedWindow("Origianl");
    imshow("Original",image);

    if(image.data) {
        // reduce color
        colorReduce(image,32);
        // set ROI
        Mat blueROI = image(Rect(0,0,165,75));

        namedWindow("ROI");
        imshow("ROI",blueROI);

        // compute the histogram
        cv::MatND hist = ch.getColorHistogram(blueROI);
        // 创建ContentFinder 对象
        ContentFinder *finder = new ContentFinder;
        finder->setHistogram(hist);
        finder->setThreshold(0.05f);

//        std::cout << finder->getThreshold() << std::endl;
        std::cout << finder->getMinValue() << std::endl;
        std::cout << finder->getMaxValue() << std::endl;


        // Get back-projection of color histgram

        cv::Mat result = finder->find(image,finder->getMinValue(),
                                      finder->getMaxValue(),finder->getChannels(),
                                      3);
        namedWindow("Result");
        imshow("Result",result);

    }
    else
        std::cerr << "你妹,读文件出错!" << std::endl;

*/
    /*****************************************************************/
    /********************** MEAN SHIFT ALGORITHM *********************/

    // 读入第一张图片
    Mat image1 = imread("/Users/Haoyang/Downloads/Pics/baboon1.jpg");
    // 获取脸部,作为ROI
    Mat image1ROI = image1(Rect(110,260,35,40));
//    namedWindow("temp",cv::WINDOW_AUTOSIZE);
//    imshow("temp",image1ROI);

    // Get the hue histogram
    int minSat = 65;
    ColorHistogram hc;
    cv::MatND colorhist = hc.getHueHistogram(image1ROI,minSat);
    
    ContentFinder *finder = new ContentFinder;
    // 将得到的脸部的 1D hue histogram作为参数输入,
    // 用来设置ContentFinder 的私有变量
    finder->setHistogram(colorhist);
    
    // 打开第二张图像
    Mat image2 = imread("/Users/Haoyang/Downlaods/Pics/baboon2.jpg");
    // Convert to hsv color space
    Mat hsv;
    cv::cvtColor(image2, hsv,CV_BGR2HSV);
    // split the image
    std::vector<Mat> v;
    cv::split(image2,v);
    // Identify pixels with low saturation
    cv::threshold(v[1],v[1],minSat,255,cv::THRESH_BINARY);
    
    // next, obtain the back-projection of the hue channel of this image
    // using the previously obtained histogram
    // Get back - projection of hue histogram, using find method
    Mat result = finder->find(hsv,0.0f,180,hc.getChannel(),1);
    // Eliminate low staturation pixels
    cv::bitwise_and(result,v[1],result);

    Rect rect(110,260,35,40);
    cv::rectangle(image2,rect,cv::Scalar(0,0,255));
    TermCriteria criteria(TermCriteria::MAX_ITER,10,0.01);
//    cv::meanShift(result,rect,criteria);
    cv::meanShift(result,rect,criteria);

    namedWindow("Result");
    imshow("Result",result);


    
    return a.exec();
}
コード例 #12
0
int main()
{
	// Read reference image
	cv::Mat image= cv::imread("../images/baboon1.jpg");
	if (!image.data)
		return 0;

	// Define ROI
	cv::Mat imageROI= image(cv::Rect(110,260,35,40));
	cv::rectangle(image, cv::Rect(110,260,35,40), cv::Scalar(0,0,255));

	// Display image
	cv::namedWindow("Image 1");
	cv::imshow("Image 1",image);

	// Get the Hue histogram
	int minSat=65;
	ColorHistogram hc;
	cv::MatND colorhist= hc.getHueHistogram(imageROI, minSat);

	ObjectFinder finder;
	finder.setHistogram(colorhist);
	finder.setThreshold(0.2f);

	// Second image
	image= cv::imread("../images/baboon3.jpg");

 	// Display image
	cv::namedWindow("Image 2");
	cv::imshow("Image 2",image);

	// Convert to HSV space
	cv::Mat hsv;
	cv::cvtColor(image, hsv, CV_BGR2HSV);

	// Split the image
	vector<cv::Mat> v;
	cv::split(hsv,v);

	// Eliminate pixels with low saturation
	cv::threshold(v[1],v[1],minSat,255,cv::THRESH_BINARY);
	cv::namedWindow("Saturation");
	cv::imshow("Saturation",v[1]);

    // Get back-projection of hue histogram
	int ch[1]={0};
	cv::Mat result= finder.find(hsv,0.0f,180.0f,ch,1);

	cv::namedWindow("Result Hue");
	cv::imshow("Result Hue",result);

	// Eliminate low stauration pixels
	cv::bitwise_and(result,v[1],result);
	cv::namedWindow("Result Hue and raw");
	cv::imshow("Result Hue and raw",result);

	cv::Rect rect(110,260,35,40);
	cv::rectangle(image, rect, cv::Scalar(0,0,255));

	cv::TermCriteria criteria(cv::TermCriteria::MAX_ITER,10,0.01);
	cout << "meanshift= " << cv::meanShift(result,rect,criteria) << endl;

	cv::rectangle(image, rect, cv::Scalar(0,255,0));

	// Display image
	cv::namedWindow("Image 2 result");
	cv::imshow("Image 2 result",image);

	cv::waitKey();
	return 0;
}
コード例 #13
0
ファイル: main.cpp プロジェクト: xgdgsc/CompareTwoImages
 void setRefrenceImage(const Mat &image)
 {
     reference = hist.colorReduce(image,div);
     refH = hist.getHistogram(reference);
 }