// visitCallInst - This converts all LLVM call instructions into invoke // instructions. The except part of the invoke goes to the "LongJmpBlkPre" // that grabs the exception and proceeds to determine if it's a longjmp // exception or not. void LowerSetJmp::visitCallInst(CallInst& CI) { if (CI.getCalledFunction()) if (!IsTransformableFunction(CI.getCalledFunction()->getName()) || CI.getCalledFunction()->isIntrinsic()) return; BasicBlock* OldBB = CI.getParent(); // If not reachable from a setjmp call, don't transform. if (!DFSBlocks.count(OldBB)) return; BasicBlock* NewBB = OldBB->splitBasicBlock(CI); assert(NewBB && "Couldn't split BB of \"call\" instruction!!"); DFSBlocks.insert(NewBB); NewBB->setName("Call2Invoke"); Function* Func = OldBB->getParent(); // Construct the new "invoke" instruction. TerminatorInst* Term = OldBB->getTerminator(); std::vector<Value*> Params(CI.op_begin() + 1, CI.op_end()); InvokeInst* II = InvokeInst::Create(CI.getCalledValue(), NewBB, PrelimBBMap[Func], Params.begin(), Params.end(), CI.getName(), Term); II->setCallingConv(CI.getCallingConv()); II->setParamAttrs(CI.getParamAttrs()); // Replace the old call inst with the invoke inst and remove the call. CI.replaceAllUsesWith(II); CI.getParent()->getInstList().erase(&CI); // The old terminator is useless now that we have the invoke inst. Term->getParent()->getInstList().erase(Term); ++CallsTransformed; }
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into /// an invoke, we have to turn all of the calls that can throw into /// invokes. This function analyze BB to see if there are any calls, and if so, /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI /// nodes in that block with the values specified in InvokeDestPHIValues. /// /// Returns true to indicate that the next block should be skipped. static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, InvokeInliningInfo &Invoke) { LandingPadInst *LPI = Invoke.getLandingPadInst(); for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *I = BBI++; if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) { unsigned NumClauses = LPI->getNumClauses(); L->reserveClauses(NumClauses); for (unsigned i = 0; i != NumClauses; ++i) L->addClause(LPI->getClause(i)); } // We only need to check for function calls: inlined invoke // instructions require no special handling. CallInst *CI = dyn_cast<CallInst>(I); // If this call cannot unwind, don't convert it to an invoke. // Inline asm calls cannot throw. if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) continue; // Convert this function call into an invoke instruction. First, split the // basic block. BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); // Delete the unconditional branch inserted by splitBasicBlock BB->getInstList().pop_back(); // Create the new invoke instruction. ImmutableCallSite CS(CI); SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, Invoke.getOuterResumeDest(), InvokeArgs, CI->getName(), BB); II->setCallingConv(CI->getCallingConv()); II->setAttributes(CI->getAttributes()); // Make sure that anything using the call now uses the invoke! This also // updates the CallGraph if present, because it uses a WeakVH. CI->replaceAllUsesWith(II); // Delete the original call Split->getInstList().pop_front(); // Update any PHI nodes in the exceptional block to indicate that there is // now a new entry in them. Invoke.addIncomingPHIValuesFor(BB); return false; } return false; }
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into /// an invoke, we have to turn all of the calls that can throw into /// invokes. This function analyze BB to see if there are any calls, and if so, /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI /// nodes in that block with the values specified in InvokeDestPHIValues. /// static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, BasicBlock *InvokeDest, const SmallVectorImpl<Value*> &InvokeDestPHIValues) { for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *I = BBI++; // We only need to check for function calls: inlined invoke // instructions require no special handling. CallInst *CI = dyn_cast<CallInst>(I); if (CI == 0) continue; // If this call cannot unwind, don't convert it to an invoke. if (CI->doesNotThrow()) continue; // Convert this function call into an invoke instruction. // First, split the basic block. BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); // Next, create the new invoke instruction, inserting it at the end // of the old basic block. ImmutableCallSite CS(CI); SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest, InvokeArgs.begin(), InvokeArgs.end(), CI->getName(), BB->getTerminator()); II->setCallingConv(CI->getCallingConv()); II->setAttributes(CI->getAttributes()); // Make sure that anything using the call now uses the invoke! This also // updates the CallGraph if present, because it uses a WeakVH. CI->replaceAllUsesWith(II); // Delete the unconditional branch inserted by splitBasicBlock BB->getInstList().pop_back(); Split->getInstList().pop_front(); // Delete the original call // Update any PHI nodes in the exceptional block to indicate that // there is now a new entry in them. unsigned i = 0; for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I, ++i) cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB); // This basic block is now complete, the caller will continue scanning the // next one. return; } }
/// Replaces the given call site (Call or Invoke) with a gc.statepoint /// intrinsic with an empty deoptimization arguments list. This does /// NOT do explicit relocation for GC support. static Value *ReplaceWithStatepoint(const CallSite &CS /* to replace */) { assert(CS.getInstruction()->getModule() && "must be set"); // TODO: technically, a pass is not allowed to get functions from within a // function pass since it might trigger a new function addition. Refactor // this logic out to the initialization of the pass. Doesn't appear to // matter in practice. // Then go ahead and use the builder do actually do the inserts. We insert // immediately before the previous instruction under the assumption that all // arguments will be available here. We can't insert afterwards since we may // be replacing a terminator. IRBuilder<> Builder(CS.getInstruction()); // Note: The gc args are not filled in at this time, that's handled by // RewriteStatepointsForGC (which is currently under review). // Create the statepoint given all the arguments Instruction *Token = nullptr; uint64_t ID; uint32_t NumPatchBytes; AttributeSet OriginalAttrs = CS.getAttributes(); Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, "statepoint-id"); Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute( AttributeSet::FunctionIndex, "statepoint-num-patch-bytes"); AttrBuilder AttrsToRemove; bool HasID = AttrID.isStringAttribute() && !AttrID.getValueAsString().getAsInteger(10, ID); if (HasID) AttrsToRemove.addAttribute("statepoint-id"); else ID = 0xABCDEF00; bool HasNumPatchBytes = AttrNumPatchBytes.isStringAttribute() && !AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes); if (HasNumPatchBytes) AttrsToRemove.addAttribute("statepoint-num-patch-bytes"); else NumPatchBytes = 0; OriginalAttrs = OriginalAttrs.removeAttributes( CS.getInstruction()->getContext(), AttributeSet::FunctionIndex, AttrsToRemove); if (CS.isCall()) { CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); CallInst *Call = Builder.CreateGCStatepointCall( ID, NumPatchBytes, CS.getCalledValue(), makeArrayRef(CS.arg_begin(), CS.arg_end()), None, None, "safepoint_token"); Call->setTailCall(ToReplace->isTailCall()); Call->setCallingConv(ToReplace->getCallingConv()); // In case if we can handle this set of attributes - set up function // attributes directly on statepoint and return attributes later for // gc_result intrinsic. Call->setAttributes(OriginalAttrs.getFnAttributes()); Token = Call; // Put the following gc_result and gc_relocate calls immediately after // the old call (which we're about to delete). assert(ToReplace->getNextNode() && "not a terminator, must have next"); Builder.SetInsertPoint(ToReplace->getNextNode()); Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); } else if (CS.isInvoke()) { InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); // Insert the new invoke into the old block. We'll remove the old one in a // moment at which point this will become the new terminator for the // original block. Builder.SetInsertPoint(ToReplace->getParent()); InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( ID, NumPatchBytes, CS.getCalledValue(), ToReplace->getNormalDest(), ToReplace->getUnwindDest(), makeArrayRef(CS.arg_begin(), CS.arg_end()), None, None, "safepoint_token"); Invoke->setCallingConv(ToReplace->getCallingConv()); // In case if we can handle this set of attributes - set up function // attributes directly on statepoint and return attributes later for // gc_result intrinsic. Invoke->setAttributes(OriginalAttrs.getFnAttributes()); Token = Invoke; // We'll insert the gc.result into the normal block BasicBlock *NormalDest = ToReplace->getNormalDest(); // Can not insert gc.result in case of phi nodes preset. // Should have removed this cases prior to running this function assert(!isa<PHINode>(NormalDest->begin())); Instruction *IP = &*(NormalDest->getFirstInsertionPt()); Builder.SetInsertPoint(IP); } else { llvm_unreachable("unexpect type of CallSite"); } assert(Token); // Handle the return value of the original call - update all uses to use a // gc_result hanging off the statepoint node we just inserted // Only add the gc_result iff there is actually a used result if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { std::string TakenName = CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), TakenName); GCResult->setAttributes(OriginalAttrs.getRetAttributes()); return GCResult; } else { // No return value for the call. return nullptr; } }
/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls /// in the body of the inlined function into invokes and turn unwind /// instructions into branches to the invoke unwind dest. /// /// II is the invoke instruction being inlined. FirstNewBlock is the first /// block of the inlined code (the last block is the end of the function), /// and InlineCodeInfo is information about the code that got inlined. static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, ClonedCodeInfo &InlinedCodeInfo) { BasicBlock *InvokeDest = II->getUnwindDest(); std::vector<Value*> InvokeDestPHIValues; // If there are PHI nodes in the unwind destination block, we need to // keep track of which values came into them from this invoke, then remove // the entry for this block. BasicBlock *InvokeBlock = II->getParent(); for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) { PHINode *PN = cast<PHINode>(I); // Save the value to use for this edge. InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock)); } Function *Caller = FirstNewBlock->getParent(); // The inlined code is currently at the end of the function, scan from the // start of the inlined code to its end, checking for stuff we need to // rewrite. if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) { for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB) { if (InlinedCodeInfo.ContainsCalls) { for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){ Instruction *I = BBI++; // We only need to check for function calls: inlined invoke // instructions require no special handling. if (!isa<CallInst>(I)) continue; CallInst *CI = cast<CallInst>(I); // If this call cannot unwind, don't convert it to an invoke. if (CI->doesNotThrow()) continue; // Convert this function call into an invoke instruction. // First, split the basic block. BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); // Next, create the new invoke instruction, inserting it at the end // of the old basic block. SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end()); InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest, InvokeArgs.begin(), InvokeArgs.end(), CI->getName(), BB->getTerminator()); II->setCallingConv(CI->getCallingConv()); II->setAttributes(CI->getAttributes()); // Make sure that anything using the call now uses the invoke! CI->replaceAllUsesWith(II); // Delete the unconditional branch inserted by splitBasicBlock BB->getInstList().pop_back(); Split->getInstList().pop_front(); // Delete the original call // Update any PHI nodes in the exceptional block to indicate that // there is now a new entry in them. unsigned i = 0; for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I, ++i) { PHINode *PN = cast<PHINode>(I); PN->addIncoming(InvokeDestPHIValues[i], BB); } // This basic block is now complete, start scanning the next one. break; } } if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { // An UnwindInst requires special handling when it gets inlined into an // invoke site. Once this happens, we know that the unwind would cause // a control transfer to the invoke exception destination, so we can // transform it into a direct branch to the exception destination. BranchInst::Create(InvokeDest, UI); // Delete the unwind instruction! UI->eraseFromParent(); // Update any PHI nodes in the exceptional block to indicate that // there is now a new entry in them. unsigned i = 0; for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I, ++i) { PHINode *PN = cast<PHINode>(I); PN->addIncoming(InvokeDestPHIValues[i], BB); } } } } // Now that everything is happy, we have one final detail. The PHI nodes in // the exception destination block still have entries due to the original // invoke instruction. Eliminate these entries (which might even delete the // PHI node) now. InvokeDest->removePredecessor(II->getParent()); }
/// Replaces the given call site (Call or Invoke) with a gc.statepoint /// intrinsic with an empty deoptimization arguments list. This does /// NOT do explicit relocation for GC support. static Value *ReplaceWithStatepoint(const CallSite &CS, /* to replace */ Pass *P) { BasicBlock *BB = CS.getInstruction()->getParent(); Function *F = BB->getParent(); Module *M = F->getParent(); assert(M && "must be set"); // TODO: technically, a pass is not allowed to get functions from within a // function pass since it might trigger a new function addition. Refactor // this logic out to the initialization of the pass. Doesn't appear to // matter in practice. // Fill in the one generic type'd argument (the function is also vararg) std::vector<Type *> argTypes; argTypes.push_back(CS.getCalledValue()->getType()); Function *gc_statepoint_decl = Intrinsic::getDeclaration( M, Intrinsic::experimental_gc_statepoint, argTypes); // Then go ahead and use the builder do actually do the inserts. We insert // immediately before the previous instruction under the assumption that all // arguments will be available here. We can't insert afterwards since we may // be replacing a terminator. Instruction *insertBefore = CS.getInstruction(); IRBuilder<> Builder(insertBefore); // First, create the statepoint (with all live ptrs as arguments). std::vector<llvm::Value *> args; // target, #args, unused, args Value *Target = CS.getCalledValue(); args.push_back(Target); int callArgSize = CS.arg_size(); args.push_back( ConstantInt::get(Type::getInt32Ty(M->getContext()), callArgSize)); // TODO: add a 'Needs GC-rewrite' later flag args.push_back(ConstantInt::get(Type::getInt32Ty(M->getContext()), 0)); // Copy all the arguments of the original call args.insert(args.end(), CS.arg_begin(), CS.arg_end()); // Create the statepoint given all the arguments Instruction *token = nullptr; AttributeSet return_attributes; if (CS.isCall()) { CallInst *toReplace = cast<CallInst>(CS.getInstruction()); CallInst *call = Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); call->setTailCall(toReplace->isTailCall()); call->setCallingConv(toReplace->getCallingConv()); // Before we have to worry about GC semantics, all attributes are legal AttributeSet new_attrs = toReplace->getAttributes(); // In case if we can handle this set of sttributes - set up function attrs // directly on statepoint and return attrs later for gc_result intrinsic. call->setAttributes(new_attrs.getFnAttributes()); return_attributes = new_attrs.getRetAttributes(); // TODO: handle param attributes token = call; // Put the following gc_result and gc_relocate calls immediately after the // the old call (which we're about to delete) BasicBlock::iterator next(toReplace); assert(BB->end() != next && "not a terminator, must have next"); next++; Instruction *IP = &*(next); Builder.SetInsertPoint(IP); Builder.SetCurrentDebugLocation(IP->getDebugLoc()); } else if (CS.isInvoke()) { InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); // Insert the new invoke into the old block. We'll remove the old one in a // moment at which point this will become the new terminator for the // original block. InvokeInst *invoke = InvokeInst::Create( gc_statepoint_decl, toReplace->getNormalDest(), toReplace->getUnwindDest(), args, "", toReplace->getParent()); invoke->setCallingConv(toReplace->getCallingConv()); // Currently we will fail on parameter attributes and on certain // function attributes. AttributeSet new_attrs = toReplace->getAttributes(); // In case if we can handle this set of sttributes - set up function attrs // directly on statepoint and return attrs later for gc_result intrinsic. invoke->setAttributes(new_attrs.getFnAttributes()); return_attributes = new_attrs.getRetAttributes(); token = invoke; // We'll insert the gc.result into the normal block BasicBlock *normalDest = normalizeBBForInvokeSafepoint( toReplace->getNormalDest(), invoke->getParent()); Instruction *IP = &*(normalDest->getFirstInsertionPt()); Builder.SetInsertPoint(IP); } else { llvm_unreachable("unexpect type of CallSite"); } assert(token); // Handle the return value of the original call - update all uses to use a // gc_result hanging off the statepoint node we just inserted // Only add the gc_result iff there is actually a used result if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { Instruction *gc_result = nullptr; std::vector<Type *> types; // one per 'any' type types.push_back(CS.getType()); // result type auto get_gc_result_id = [&](Type &Ty) { if (Ty.isIntegerTy()) { return Intrinsic::experimental_gc_result_int; } else if (Ty.isFloatingPointTy()) { return Intrinsic::experimental_gc_result_float; } else if (Ty.isPointerTy()) { return Intrinsic::experimental_gc_result_ptr; } else { llvm_unreachable("non java type encountered"); } }; Intrinsic::ID Id = get_gc_result_id(*CS.getType()); Value *gc_result_func = Intrinsic::getDeclaration(M, Id, types); std::vector<Value *> args; args.push_back(token); gc_result = Builder.CreateCall( gc_result_func, args, CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""); cast<CallInst>(gc_result)->setAttributes(return_attributes); return gc_result; } else { // No return value for the call. return nullptr; } }
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into /// an invoke, we have to turn all of the calls that can throw into /// invokes. This function analyze BB to see if there are any calls, and if so, /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI /// nodes in that block with the values specified in InvokeDestPHIValues. /// /// Returns true to indicate that the next block should be skipped. static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, InvokeInliningInfo &Invoke) { for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *I = BBI++; // We only need to check for function calls: inlined invoke // instructions require no special handling. CallInst *CI = dyn_cast<CallInst>(I); if (CI == 0) continue; // LIBUNWIND: merge selector instructions. if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) { EHSelectorInst *Outer = Invoke.getOuterSelector(); if (!Outer) continue; bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner); bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer); // If both selectors contain only cleanups, we don't need to do // anything. TODO: this is really just a very specific instance // of a much more general optimization. if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue; // Otherwise, we just append the outer selector to the inner selector. SmallVector<Value*, 16> NewSelector; for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i) NewSelector.push_back(Inner->getArgOperand(i)); for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i) NewSelector.push_back(Outer->getArgOperand(i)); CallInst *NewInner = IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector); // No need to copy attributes, calling convention, etc. NewInner->takeName(Inner); Inner->replaceAllUsesWith(NewInner); Inner->eraseFromParent(); continue; } // If this call cannot unwind, don't convert it to an invoke. if (CI->doesNotThrow()) continue; // Convert this function call into an invoke instruction. // First, split the basic block. BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); // Delete the unconditional branch inserted by splitBasicBlock BB->getInstList().pop_back(); // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch // directly to the new landing pad. if (Invoke.forwardEHResume(CI, BB)) { // TODO: 'Split' is now unreachable; clean it up. // We want to leave the original call intact so that the call // graph and other structures won't get misled. We also have to // avoid processing the next block, or we'll iterate here forever. return true; } // Otherwise, create the new invoke instruction. ImmutableCallSite CS(CI); SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, Invoke.getOuterUnwindDest(), InvokeArgs, CI->getName(), BB); II->setCallingConv(CI->getCallingConv()); II->setAttributes(CI->getAttributes()); // Make sure that anything using the call now uses the invoke! This also // updates the CallGraph if present, because it uses a WeakVH. CI->replaceAllUsesWith(II); Split->getInstList().pop_front(); // Delete the original call // Update any PHI nodes in the exceptional block to indicate that // there is now a new entry in them. Invoke.addIncomingPHIValuesFor(BB); return false; } return false; }
// Convert the given call to use normalized argument/return types. template <class T> static bool ConvertCall(T *Call, Pass *P) { // Don't try to change calls to intrinsics. if (isa<IntrinsicInst>(Call)) return false; FunctionType *FTy = cast<FunctionType>( Call->getCalledValue()->getType()->getPointerElementType()); FunctionType *NFTy = NormalizeFunctionType(FTy); if (NFTy == FTy) return false; // No change needed. // Convert arguments. SmallVector<Value *, 8> Args; for (unsigned I = 0; I < Call->getNumArgOperands(); ++I) { Value *Arg = Call->getArgOperand(I); if (NFTy->getParamType(I) != FTy->getParamType(I)) { Instruction::CastOps CastType = Call->getAttributes().hasAttribute(I + 1, Attribute::SExt) ? Instruction::SExt : Instruction::ZExt; Arg = CopyDebug(CastInst::Create(CastType, Arg, NFTy->getParamType(I), "arg_ext", Call), Call); } Args.push_back(Arg); } Value *CastFunc = CopyDebug(new BitCastInst(Call->getCalledValue(), NFTy->getPointerTo(), Call->getName() + ".arg_cast", Call), Call); Value *Result = NULL; if (CallInst *OldCall = dyn_cast<CallInst>(Call)) { CallInst *NewCall = CopyDebug(CallInst::Create(CastFunc, Args, "", OldCall), OldCall); NewCall->takeName(OldCall); NewCall->setAttributes(OldCall->getAttributes()); NewCall->setCallingConv(OldCall->getCallingConv()); NewCall->setTailCall(OldCall->isTailCall()); Result = NewCall; if (FTy->getReturnType() != NFTy->getReturnType()) { Result = CopyDebug(new TruncInst(NewCall, FTy->getReturnType(), NewCall->getName() + ".ret_trunc", Call), Call); } } else if (InvokeInst *OldInvoke = dyn_cast<InvokeInst>(Call)) { BasicBlock *Parent = OldInvoke->getParent(); BasicBlock *NormalDest = OldInvoke->getNormalDest(); BasicBlock *UnwindDest = OldInvoke->getUnwindDest(); if (FTy->getReturnType() != NFTy->getReturnType()) { if (BasicBlock *SplitDest = SplitCriticalEdge(Parent, NormalDest)) { NormalDest = SplitDest; } } InvokeInst *New = CopyDebug(InvokeInst::Create(CastFunc, NormalDest, UnwindDest, Args, "", OldInvoke), OldInvoke); New->takeName(OldInvoke); if (FTy->getReturnType() != NFTy->getReturnType()) { Result = CopyDebug(new TruncInst(New, FTy->getReturnType(), New->getName() + ".ret_trunc", NormalDest->getTerminator()), OldInvoke); } else { Result = New; } New->setAttributes(OldInvoke->getAttributes()); New->setCallingConv(OldInvoke->getCallingConv()); } Call->replaceAllUsesWith(Result); Call->eraseFromParent(); return true; }