コード例 #1
0
ファイル: GNEConnectorFrame.cpp プロジェクト: cbrafter/sumo
long
GNEConnectorFrame::onCmdSelectDeadStarts(FXObject*, FXSelector, void*) {
    GNENet* net = myViewNet->getNet();
    std::set<GUIGlID> selectIDs;
    // every edge knows only its outgoing connections so we look at whole junctions
    const std::vector<GNEJunction*> junctions = net->retrieveJunctions();
    for (std::vector<GNEJunction*>::const_iterator junction_it = junctions.begin(); junction_it != junctions.end(); junction_it++) {
        // first collect all outgoing lanes
        const EdgeVector& outgoing = (*junction_it)->getNBNode()->getOutgoingEdges();
        for (EdgeVector::const_iterator it = outgoing.begin(); it != outgoing.end(); it++) {
            GNEEdge* edge = net->retrieveEdge((*it)->getID());
            const std::set<GUIGlID> laneIDs = edge->getLaneGlIDs();
            for (std::set<GUIGlID>::const_iterator lid_it = laneIDs.begin(); lid_it != laneIDs.end(); lid_it++) {
                selectIDs.insert(*lid_it);
            }
        }
        // then remove all approached lanes
        const EdgeVector& incoming = (*junction_it)->getNBNode()->getIncomingEdges();
        for (EdgeVector::const_iterator it = incoming.begin(); it != incoming.end(); it++) {
            GNEEdge* edge = net->retrieveEdge((*it)->getID());
            NBEdge* nbe = edge->getNBEdge();
            const std::vector<NBEdge::Connection>& connections = nbe->getConnections();
            for (std::vector<NBEdge::Connection>::const_iterator con_it = connections.begin(); con_it != connections.end(); con_it++) {
                GNEEdge* approachedEdge = net->retrieveEdge(con_it->toEdge->getID());
                GNELane* approachedLane = approachedEdge->getLanes()[con_it->toLane];
                selectIDs.erase(approachedLane->getGlID());
            }
        }
    }
    myViewNet->getViewParent()->getSelectorFrame()->handleIDs(
        std::vector<GUIGlID>(selectIDs.begin(), selectIDs.end()),
        false, GNESelectorFrame::SET_REPLACE);
    return 1;
}
コード例 #2
0
ファイル: GNEConnectorFrame.cpp プロジェクト: cbrafter/sumo
long
GNEConnectorFrame::onCmdSelectConflicts(FXObject*, FXSelector, void*) {
    std::vector<GUIGlID> selectIDs;
    // conflicts happen per edge so we can look at each edge in isolation
    const std::vector<GNEEdge*> edges = myViewNet->getNet()->retrieveEdges();
    for (std::vector<GNEEdge*>::const_iterator edge_it = edges.begin(); edge_it != edges.end(); edge_it++) {
        NBEdge* nbe = (*edge_it)->getNBEdge();
        const EdgeVector destinations = nbe->getConnectedEdges();
        const std::vector<NBEdge::Connection>& connections = nbe->getConnections();
        for (EdgeVector::const_iterator dest_it = destinations.begin(); dest_it != destinations.end(); dest_it++) {
            GNEEdge* dest = myViewNet->getNet()->retrieveEdge((*dest_it)->getID());
            const GNEEdge::LaneVector& destLanes = dest->getLanes();
            for (GNEEdge::LaneVector::const_iterator it_lane = destLanes.begin(); it_lane != destLanes.end(); it_lane++) {
                const bool isConflicted = count_if(
                                              connections.begin(), connections.end(),
                                              NBEdge::connections_toedgelane_finder(*dest_it, (int)(*it_lane)->getIndex(), -1)) > 1;
                if (isConflicted) {
                    selectIDs.push_back((*it_lane)->getGlID());
                }
            }
        }

    }
    myViewNet->getViewParent()->getSelectorFrame()->handleIDs(selectIDs, false, GNESelectorFrame::SET_REPLACE);
    return 1;
}
コード例 #3
0
ファイル: GNEJunction.cpp プロジェクト: aarongolliver/sumo
void
GNEJunction::setLogicValid(bool valid, GNEUndoList* undoList, const std::string& status) {
    myHasValidLogic = valid;
    if (!valid) {
        assert(undoList != 0);
        assert(undoList->hasCommandGroup());
        undoList->add(new GNEChange_Attribute(this, GNE_ATTR_MODIFICATION_STATUS, status));
        // allow edges to recompute their connections
        NBTurningDirectionsComputer::computeTurnDirectionsForNode(&myNBNode, false);
        EdgeVector incoming = EdgeVector(myNBNode.getIncomingEdges());
        for (EdgeVector::iterator it = incoming.begin(); it != incoming.end(); it++) {
            NBEdge* srcNBE = *it;
            NBEdge* turnEdge = srcNBE->getTurnDestination();
            GNEEdge* srcEdge = myNet->retrieveEdge(srcNBE->getID());
            std::vector<NBEdge::Connection> connections = srcNBE->getConnections(); // make a copy!
            // delete in reverse so that undoing will add connections in the original order
            for (std::vector<NBEdge::Connection>::reverse_iterator con_it = connections.rbegin(); con_it != connections.rend(); con_it++) {
                bool hasTurn = con_it->toEdge == turnEdge;
                undoList->add(new GNEChange_Connection(
                                  srcEdge, con_it->fromLane, con_it->toEdge->getID(),
                                  con_it->toLane, con_it->mayDefinitelyPass, false), true);
                // needs to come after GNEChange_Connection
                // XXX bug: this code path will not be used on a redo!
                if (hasTurn) {
                    myNet->addExplicitTurnaround(srcNBE->getID());
                }
            }
            undoList->add(new GNEChange_Attribute(srcEdge, GNE_ATTR_MODIFICATION_STATUS, status), true);
        }
        invalidateTLS(undoList);
    } else {
        rebuildCrossings(false);
    }
}
コード例 #4
0
ファイル: NWWriter_DlrNavteq.cpp プロジェクト: behrisch/sumo
void
NWWriter_DlrNavteq::writeConnectedLanes(const OptionsCont& oc, NBNodeCont& nc) {
    OutputDevice& device = OutputDevice::getDevice(oc.getString("dlr-navteq-output") + "_connected_lanes.txt");
    writeHeader(device, oc);
    // write format specifier
    device << "#Lane connections related to LINK-IDs and NODE-ID.\n";
    device << "#column format like pointcollection.\n";
    device << "#NODE-ID\tVEHICLE-TYPE\tFROM_LANE\tTO_LANE\tTHROUGH_TRAFFIC\tLINK_IDs[2..*]\n";
    // write record for every connection
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        NBNode* n = (*i).second;
        const EdgeVector& incoming = n->getIncomingEdges();
        for (EdgeVector::const_iterator j = incoming.begin(); j != incoming.end(); ++j) {
            NBEdge* from = *j;
            const SVCPermissions fromPerm = from->getPermissions();
            const std::vector<NBEdge::Connection>& connections = from->getConnections();
            for (std::vector<NBEdge::Connection>::const_iterator it_c = connections.begin(); it_c != connections.end(); it_c++) {
                const NBEdge::Connection& c = *it_c;
                device
                        << n->getID() << "\t"
                        << getAllowedTypes(fromPerm & c.toEdge->getPermissions()) << "\t"
                        << c.fromLane + 1 << "\t" // one-based
                        << c.toLane + 1 << "\t" // one-based
                        << 1 << "\t" // no information regarding permissibility of through traffic
                        << from->getID() << "\t"
                        << c.toEdge->getID() << "\t"
                        << "\n";
            }
        }
    }
    device.close();
}
コード例 #5
0
void
NIXMLTrafficLightsHandler::addTlConnection(const SUMOSAXAttributes& attrs) {
    bool ok = true;
    // parse identifying attributes
    NBEdge* from = retrieveEdge(attrs, SUMO_ATTR_FROM, ok);
    NBEdge* to = retrieveEdge(attrs, SUMO_ATTR_TO, ok);
    if (!ok) {
        return;
    }
    int fromLane = retrieveLaneIndex(attrs, SUMO_ATTR_FROM_LANE, from, ok);
    int toLane = retrieveLaneIndex(attrs, SUMO_ATTR_TO_LANE, to, ok);
    if (!ok) {
        return;
    }
    // retrieve connection
    const std::vector<NBEdge::Connection>& connections = from->getConnections();
    std::vector<NBEdge::Connection>::const_iterator con_it;
    con_it = find_if(connections.begin(), connections.end(),
                     NBEdge::connections_finder(fromLane, to, toLane));
    if (con_it == connections.end()) {
        WRITE_ERROR("Connection from=" + from->getID() + " to=" + to->getID() +
                    " fromLane=" + toString(fromLane) + " toLane=" + toString(toLane) + " not found");
        return;
    }
    NBEdge::Connection c = *con_it;
    // read other  attributes
    std::string tlID = attrs.getOptStringReporting(SUMO_ATTR_TLID, 0, ok, "");
    if (tlID == "") {
        // we are updating an existing tl-controlled connection
        tlID = c.tlID;
        assert(tlID != "");
    }
    int tlIndex = attrs.getOptIntReporting(SUMO_ATTR_TLLINKINDEX, 0, ok, -1);
    if (tlIndex == -1) {
        // we are updating an existing tl-controlled connection
        tlIndex = c.tlLinkNo;
    }

    // register the connection with all definitions
    const std::map<std::string, NBTrafficLightDefinition*>& programs = myTLLCont.getPrograms(tlID);
    if (programs.size() > 0) {
        std::map<std::string, NBTrafficLightDefinition*>::const_iterator it;
        for (it = programs.begin(); it != programs.end(); it++) {
            NBLoadedSUMOTLDef* tlDef = dynamic_cast<NBLoadedSUMOTLDef*>(it->second);
            if (tlDef) {
                tlDef->addConnection(from, c.toEdge, c.fromLane, c.toLane, tlIndex);
            } else {
                throw ProcessError("Corrupt traffic light definition '"
                                   + tlID + "' (program '" + it->first + "')");
            }
        }
    } else {
        WRITE_ERROR("The traffic light '" + tlID + "' is not known.");
    }
}
コード例 #6
0
ファイル: GNEConnectorFrame.cpp プロジェクト: planetsumo/sumo
long
GNEConnectorFrame::onCmdSelectPass(FXObject*, FXSelector, void*) {
    std::vector<GUIGlID> selectIDs;
    const std::vector<GNEEdge*> edges = myViewNet->getNet()->retrieveEdges();
    for (std::vector<GNEEdge*>::const_iterator edge_it = edges.begin(); edge_it != edges.end(); edge_it++) {
        GNEEdge* edge = *edge_it;
        NBEdge* nbe = edge->getNBEdge();
        const std::vector<NBEdge::Connection>& connections = nbe->getConnections();
        for (std::vector<NBEdge::Connection>::const_iterator it = connections.begin(); it != connections.end(); ++it) {
            if (it->mayDefinitelyPass) {
                GNELane* lane = edge->getLanes()[it->fromLane];
                selectIDs.push_back(lane->getGlID());
            }
        }
    }
    myViewNet->getViewParent()->getSelectorFrame()->handleIDs(selectIDs, false, GNESelectorFrame::SET_REPLACE);
    return 1;
}
コード例 #7
0
std::set<NBEdge*>
NBTrafficLightDefinition::collectReachable(EdgeVector outer, const EdgeVector& within, bool checkControlled) {
    std::set<NBEdge*> reachable;
    while (outer.size() > 0) {
        NBEdge* from = outer.back();
        outer.pop_back();
        std::vector<NBEdge::Connection>& cons = from->getConnections();
        for (std::vector<NBEdge::Connection>::iterator k = cons.begin(); k != cons.end(); k++) {
            NBEdge* to = (*k).toEdge;
            if (reachable.count(to) == 0 &&
                    (find(within.begin(), within.end(), to) != within.end()) &&
                    (!checkControlled || from->mayBeTLSControlled((*k).fromLane, to, (*k).toLane))) {
                reachable.insert(to);
                outer.push_back(to);
            }
        }
    }
    return reachable;
}
コード例 #8
0
ファイル: NWWriter_XML.cpp プロジェクト: harora/ITS
void
NWWriter_XML::writeTrafficLights(const OptionsCont& oc, NBTrafficLightLogicCont& tc, NBEdgeCont& ec) {
    OutputDevice& device = OutputDevice::getDevice(oc.getString("plain-output-prefix") + ".tll.xml");
    device.writeXMLHeader("tlLogics", NWFrame::MAJOR_VERSION + " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo-sim.org/xsd/tllogic_file.xsd\"");
    NWWriter_SUMO::writeTrafficLights(device, tc);
    // we also need to remember the associations between tlLogics and connections
    // since the information in con.xml is insufficient
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        NBEdge* e = (*i).second;
        // write this edge's tl-controlled connections
        const std::vector<NBEdge::Connection> connections = e->getConnections();
        for (std::vector<NBEdge::Connection>::const_iterator c = connections.begin(); c != connections.end(); ++c) {
            if (c->tlID != "") {
                NWWriter_SUMO::writeConnection(device, *e, *c, false, NWWriter_SUMO::TLL);
            }
        }
    }
    device.close();
}
コード例 #9
0
ファイル: NWWriter_SUMO.cpp プロジェクト: aarongolliver/sumo
bool
NWWriter_SUMO::writeInternalConnections(OutputDevice& into, const NBNode& n) {
    bool ret = false;
    const std::vector<NBEdge*>& incoming = n.getIncomingEdges();
    for (std::vector<NBEdge*>::const_iterator i = incoming.begin(); i != incoming.end(); ++i) {
        NBEdge* from = *i;
        const std::vector<NBEdge::Connection>& connections = from->getConnections();
        for (std::vector<NBEdge::Connection>::const_iterator j = connections.begin(); j != connections.end(); ++j) {
            const NBEdge::Connection& c = *j;
            assert(c.toEdge != 0);
            if (c.haveVia) {
                // internal split
                writeInternalConnection(into, c.id, c.toEdge->getID(), c.internalLaneIndex, c.toLane, c.viaID + "_0");
                writeInternalConnection(into, c.viaID, c.toEdge->getID(), 0, c.toLane, "");
            } else {
                // no internal split
                writeInternalConnection(into, c.id, c.toEdge->getID(), c.internalLaneIndex, c.toLane, "");
            }
            ret = true;
        }
    }
    return ret;
}
コード例 #10
0
void
NBTurningDirectionsComputer::computeTurnDirectionsForNode(NBNode* node) {
    const std::vector<NBEdge*>& incoming = node->getIncomingEdges();
    const std::vector<NBEdge*>& outgoing = node->getOutgoingEdges();
    std::vector<Combination> combinations;
    for (std::vector<NBEdge*>::const_iterator j = outgoing.begin(); j != outgoing.end(); ++j) {
        NBEdge* outedge = *j;
        for (std::vector<NBEdge*>::const_iterator k = incoming.begin(); k != incoming.end(); ++k) {
            NBEdge* e = *k;
            if (e->getConnections().size() != 0 && !e->isConnectedTo(outedge)) {
                // has connections, but not to outedge; outedge will not be the turn direction
                //
                // @todo: this seems to be needed due to legacy issues; actually, we could regard
                //  such pairs, too, and it probably would increase the accuracy. But there is
                //  no mechanism implemented, yet, which would avoid adding them as turnarounds though
                //  no connection is specified.
                continue;
            }

            // @todo: check whether NBHelpers::relAngle is properly defined and whether it should really be used, here
            SUMOReal angle = fabs(NBHelpers::relAngle(e->getAngleAtNode(node), outedge->getAngleAtNode(node)));
            if (angle < 160) {
                continue;
            }
            if (e->getFromNode() == outedge->getToNode()) {
                // they connect the same nodes; should be the turnaround direction
                // we'll assign a maximum number
                //
                // @todo: indeed, we have observed some pathological intersections
                //  see "294831560" in OSM/adlershof. Here, several edges are connecting
                //  same nodes. We have to do the angle check before...
                //
                // @todo: and well, there are some other as well, see plain import
                //  of delphi_muenchen (elmar), intersection "59534191". Not that it would
                //  be realistic in any means; we will warn, here.
                angle += 360;
            }
            Combination c;
            c.from = e;
            c.to = outedge;
            c.angle = angle;
            combinations.push_back(c);
        }
    }
    // sort combinations so that the ones with the highest angle are at the begin
    std::sort(combinations.begin(), combinations.end(), combination_by_angle_sorter());
    std::set<NBEdge*> seen;
    bool haveWarned = false;
    for (std::vector<Combination>::const_iterator j = combinations.begin(); j != combinations.end(); ++j) {
        if (seen.find((*j).from) != seen.end() || seen.find((*j).to) != seen.end()) {
            // do not regard already set edges
            if ((*j).angle > 360 && !haveWarned) {
                WRITE_WARNING("Ambiguity in turnarounds computation at node '" + node->getID() + "'.");
                haveWarned = true;
            }
            continue;
        }
        // mark as seen
        seen.insert((*j).from);
        seen.insert((*j).to);
        // set turnaround information
        (*j).from->setTurningDestination((*j).to);
    }
}
コード例 #11
0
void
NBNodeCont::joinNodeClusters(NodeClusters clusters,
                             NBDistrictCont& dc, NBEdgeCont& ec, NBTrafficLightLogicCont& tlc) {
    for (NodeClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) {
        std::set<NBNode*> cluster = *i;
        assert(cluster.size() > 1);
        Position pos;
        bool setTL;
        std::string id;
        TrafficLightType type;
        analyzeCluster(cluster, id, pos, setTL, type);
        if (!insert(id, pos)) {
            // should not fail
            WRITE_WARNING("Could not join junctions " + id);
            continue;
        }
        NBNode* newNode = retrieve(id);
        if (setTL) {
            NBTrafficLightDefinition* tlDef = new NBOwnTLDef(id, newNode, 0, type);
            if (!tlc.insert(tlDef)) {
                // actually, nothing should fail here
                delete tlDef;
                throw ProcessError("Could not allocate tls '" + id + "'.");
            }
        }
        // collect edges
        std::set<NBEdge*> allEdges;
        for (std::set<NBNode*>::const_iterator j = cluster.begin(); j != cluster.end(); ++j) {
            const EdgeVector& edges = (*j)->getEdges();
            allEdges.insert(edges.begin(), edges.end());
        }

        // remap and remove edges which are completely within the new intersection
        for (std::set<NBEdge*>::iterator j = allEdges.begin(); j != allEdges.end();) {
            NBEdge* e = (*j);
            NBNode* from = e->getFromNode();
            NBNode* to = e->getToNode();
            if (cluster.count(from) > 0 && cluster.count(to) > 0) {
                for (std::set<NBEdge*>::iterator l = allEdges.begin(); l != allEdges.end(); ++l) {
                    if (e != *l) {
                        (*l)->replaceInConnections(e, e->getConnections());
                    }
                }
                ec.erase(dc, e);
                allEdges.erase(j++); // erase does not invalidate the other iterators
            } else {
                ++j;
            }
        }

        // remap edges which are incoming / outgoing
        for (std::set<NBEdge*>::iterator j = allEdges.begin(); j != allEdges.end(); ++j) {
            NBEdge* e = (*j);
            std::vector<NBEdge::Connection> conns = e->getConnections();
            const bool outgoing = cluster.count(e->getFromNode()) > 0;
            NBNode* from = outgoing ? newNode : e->getFromNode();
            NBNode* to   = outgoing ? e->getToNode() : newNode;
            e->reinitNodes(from, to);
            // re-add connections which previously existed and may still valid.
            // connections to removed edges will be ignored
            for (std::vector<NBEdge::Connection>::iterator k = conns.begin(); k != conns.end(); ++k) {
                e->addLane2LaneConnection((*k).fromLane, (*k).toEdge, (*k).toLane, NBEdge::L2L_USER, false, (*k).mayDefinitelyPass);
            }
        }
        // remove original nodes
        registerJoinedCluster(cluster);
        for (std::set<NBNode*>::const_iterator j = cluster.begin(); j != cluster.end(); ++j) {
            erase(*j);
        }
    }
}
コード例 #12
0
ファイル: NWWriter_SUMO.cpp プロジェクト: aarongolliver/sumo
// ===========================================================================
// method definitions
// ===========================================================================
// ---------------------------------------------------------------------------
// static methods
// ---------------------------------------------------------------------------
void
NWWriter_SUMO::writeNetwork(const OptionsCont& oc, NBNetBuilder& nb) {
    // check whether a sumo net-file shall be generated
    if (!oc.isSet("output-file")) {
        return;
    }
    OutputDevice& device = OutputDevice::getDevice(oc.getString("output-file"));
    const std::string lefthand = oc.getBool("lefthand") ? " " + toString(SUMO_ATTR_LEFTHAND) + "=\"true\"" : "";
    const int cornerDetail = oc.getInt("junctions.corner-detail");
    const int linkDetail = oc.getInt("junctions.internal-link-detail");
    const std::string junctionCornerDetail = (cornerDetail > 0
            ? " " + toString(SUMO_ATTR_CORNERDETAIL) + "=\"" + toString(cornerDetail) + "\"" : "");
    const std::string junctionLinkDetail = (oc.isDefault("junctions.internal-link-detail") ? "" :
                                            " " + toString(SUMO_ATTR_LINKDETAIL) + "=\"" + toString(linkDetail) + "\"");
    device.writeXMLHeader("net", NWFrame::MAJOR_VERSION + lefthand + junctionCornerDetail + junctionLinkDetail +
                          " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo.dlr.de/xsd/net_file.xsd\""); // street names may contain non-ascii chars
    device.lf();
    // get involved container
    const NBNodeCont& nc = nb.getNodeCont();
    const NBEdgeCont& ec = nb.getEdgeCont();
    const NBDistrictCont& dc = nb.getDistrictCont();

    // write network offsets and projection
    GeoConvHelper::writeLocation(device);

    // write edge types and restrictions
    nb.getTypeCont().writeTypes(device);

    // write inner lanes
    bool origNames = oc.getBool("output.original-names");
    if (!oc.getBool("no-internal-links")) {
        bool hadAny = false;
        for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
            hadAny |= writeInternalEdges(device, *(*i).second, origNames);
        }
        if (hadAny) {
            device.lf();
        }
    }

    // write edges with lanes and connected edges
    bool noNames = !oc.getBool("output.street-names");
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        writeEdge(device, *(*i).second, noNames, origNames);
    }
    device.lf();

    // write tls logics
    writeTrafficLights(device, nb.getTLLogicCont());

    // write the nodes (junctions)
    std::set<NBNode*> roundaboutNodes;
    const bool checkLaneFoesAll = oc.getBool("check-lane-foes.all");
    const bool checkLaneFoesRoundabout = !checkLaneFoesAll && oc.getBool("check-lane-foes.roundabout");
    if (checkLaneFoesRoundabout) {
        const std::set<EdgeSet>& roundabouts = ec.getRoundabouts();
        for (std::set<EdgeSet>::const_iterator i = roundabouts.begin(); i != roundabouts.end(); ++i) {
            for (EdgeSet::const_iterator j = (*i).begin(); j != (*i).end(); ++j) {
                roundaboutNodes.insert((*j)->getToNode());
            }
        }
    }
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        const bool checkLaneFoes = checkLaneFoesAll || (checkLaneFoesRoundabout && roundaboutNodes.count((*i).second) > 0);
        writeJunction(device, *(*i).second, checkLaneFoes);
    }
    device.lf();
    const bool includeInternal = !oc.getBool("no-internal-links");
    if (includeInternal) {
        // ... internal nodes if not unwanted
        bool hadAny = false;
        for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
            hadAny |= writeInternalNodes(device, *(*i).second);
        }
        if (hadAny) {
            device.lf();
        }
    }

    // write the successors of lanes
    unsigned int numConnections = 0;
    for (std::map<std::string, NBEdge*>::const_iterator it_edge = ec.begin(); it_edge != ec.end(); it_edge++) {
        NBEdge* from = it_edge->second;
        from->sortOutgoingConnectionsByIndex();
        const std::vector<NBEdge::Connection> connections = from->getConnections();
        numConnections += (unsigned int)connections.size();
        for (std::vector<NBEdge::Connection>::const_iterator it_c = connections.begin(); it_c != connections.end(); it_c++) {
            writeConnection(device, *from, *it_c, includeInternal);
        }
    }
    if (numConnections > 0) {
        device.lf();
    }
    if (includeInternal) {
        // ... internal successors if not unwanted
        bool hadAny = false;
        for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
            hadAny |= writeInternalConnections(device, *(*i).second);
        }
        if (hadAny) {
            device.lf();
        }
    }
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        NBNode* node = (*i).second;
        // write connections from pedestrian crossings
        const std::vector<NBNode::Crossing>& crossings = node->getCrossings();
        for (std::vector<NBNode::Crossing>::const_iterator it = crossings.begin(); it != crossings.end(); it++) {
            NWWriter_SUMO::writeInternalConnection(device, (*it).id, (*it).nextWalkingArea, 0, 0, "");
        }
        // write connections from pedestrian walking areas
        const std::vector<NBNode::WalkingArea>& WalkingAreas = node->getWalkingAreas();
        for (std::vector<NBNode::WalkingArea>::const_iterator it = WalkingAreas.begin(); it != WalkingAreas.end(); it++) {
            if ((*it).nextCrossing != "") {
                const NBNode::Crossing& nextCrossing = node->getCrossing((*it).nextCrossing);
                // connection to next crossing (may be tls-controlled)
                device.openTag(SUMO_TAG_CONNECTION);
                device.writeAttr(SUMO_ATTR_FROM, (*it).id);
                device.writeAttr(SUMO_ATTR_TO, (*it).nextCrossing);
                device.writeAttr(SUMO_ATTR_FROM_LANE, 0);
                device.writeAttr(SUMO_ATTR_TO_LANE, 0);
                if (node->isTLControlled()) {
                    device.writeAttr(SUMO_ATTR_TLID, (*node->getControllingTLS().begin())->getID());
                    assert(nextCrossing.tlLinkNo >= 0);
                    device.writeAttr(SUMO_ATTR_TLLINKINDEX, nextCrossing.tlLinkNo);
                }
                device.writeAttr(SUMO_ATTR_DIR, LINKDIR_STRAIGHT);
                device.writeAttr(SUMO_ATTR_STATE, nextCrossing.priority ? LINKSTATE_MAJOR : LINKSTATE_MINOR);
                device.closeTag();
            }
            // optional connections from/to sidewalk
            for (std::vector<std::string>::const_iterator it_sw = (*it).nextSidewalks.begin(); it_sw != (*it).nextSidewalks.end(); ++it_sw) {
                NWWriter_SUMO::writeInternalConnection(device, (*it).id, (*it_sw), 0, 0, "");
            }
            for (std::vector<std::string>::const_iterator it_sw = (*it).prevSidewalks.begin(); it_sw != (*it).prevSidewalks.end(); ++it_sw) {
                NWWriter_SUMO::writeInternalConnection(device, (*it_sw), (*it).id, 0, 0, "");
            }
        }
    }

    // write loaded prohibitions
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        writeProhibitions(device, i->second->getProhibitions());
    }

    // write roundabout information
    writeRoundabouts(device, ec.getRoundabouts(), ec);

    // write the districts
    for (std::map<std::string, NBDistrict*>::const_iterator i = dc.begin(); i != dc.end(); i++) {
        writeDistrict(device, *(*i).second);
    }
    if (dc.size() != 0) {
        device.lf();
    }
    device.close();
}
コード例 #13
0
// ===========================================================================
// method definitions
// ===========================================================================
// ---------------------------------------------------------------------------
// static methods
// ---------------------------------------------------------------------------
void
NWWriter_SUMO::writeNetwork(const OptionsCont& oc, NBNetBuilder& nb) {
    // check whether a sumo net-file shall be generated
    if (!oc.isSet("output-file")) {
        return;
    }
    OutputDevice& device = OutputDevice::getDevice(oc.getString("output-file"));
    device.writeXMLHeader("net", NWFrame::MAJOR_VERSION + " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo.sf.net/xsd/net_file.xsd\""); // street names may contain non-ascii chars
    device.lf();
    // get involved container
    const NBNodeCont& nc = nb.getNodeCont();
    const NBEdgeCont& ec = nb.getEdgeCont();
    const NBDistrictCont& dc = nb.getDistrictCont();

    // write network offsets and projection
    writeLocation(device);

    // write inner lanes
    bool origNames = oc.getBool("output.original-names");
    if (!oc.getBool("no-internal-links")) {
        bool hadAny = false;
        for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
            hadAny |= writeInternalEdges(device, *(*i).second, origNames);
        }
        if (hadAny) {
            device.lf();
        }
    }

    // write edges with lanes and connected edges
    bool noNames = !oc.getBool("output.street-names");
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        writeEdge(device, *(*i).second, noNames, origNames);
    }
    device.lf();

    // write tls logics
    writeTrafficLights(device, nb.getTLLogicCont());

    // write the nodes (junctions)
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        writeJunction(device, *(*i).second);
    }
    device.lf();
    const bool includeInternal = !oc.getBool("no-internal-links");
    if (includeInternal) {
        // ... internal nodes if not unwanted
        bool hadAny = false;
        for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
            hadAny |= writeInternalNodes(device, *(*i).second);
        }
        if (hadAny) {
            device.lf();
        }
    }

    // write the successors of lanes
    unsigned int numConnections = 0;
    for (std::map<std::string, NBEdge*>::const_iterator it_edge = ec.begin(); it_edge != ec.end(); it_edge++) {
        NBEdge* from = it_edge->second;
        from->sortOutgoingConnectionsByIndex();
        const std::vector<NBEdge::Connection> connections = from->getConnections();
        numConnections += (unsigned int)connections.size();
        for (std::vector<NBEdge::Connection>::const_iterator it_c = connections.begin(); it_c != connections.end(); it_c++) {
            writeConnection(device, *from, *it_c, includeInternal);
        }
    }
    if (numConnections > 0) {
        device.lf();
    }
    if (includeInternal) {
        // ... internal successors if not unwanted
        bool hadAny = false;
        for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
            hadAny |= writeInternalConnections(device, *(*i).second);
        }
        if (hadAny) {
            device.lf();
        }
    }
    // write loaded prohibitions
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        writeProhibitions(device, i->second->getProhibitions());
    }

    // write roundabout information
    const std::vector<EdgeVector>& roundabouts = nb.getRoundabouts();
    for (std::vector<EdgeVector>::const_iterator i = roundabouts.begin(); i != roundabouts.end(); ++i) {
        writeRoundabout(device, *i);
    }
    if (roundabouts.size() != 0) {
        device.lf();
    }

    // write the districts
    for (std::map<std::string, NBDistrict*>::const_iterator i = dc.begin(); i != dc.end(); i++) {
        writeDistrict(device, *(*i).second);
    }
    if (dc.size() != 0) {
        device.lf();
    }
    device.close();
}
コード例 #14
0
ファイル: NWWriter_XML.cpp プロジェクト: harora/ITS
void
NWWriter_XML::writeEdgesAndConnections(const OptionsCont& oc, NBNodeCont& nc, NBEdgeCont& ec) {
    const GeoConvHelper& gch = GeoConvHelper::getFinal();
    bool useGeo = oc.exists("proj.plain-geo") && oc.getBool("proj.plain-geo");
    const bool geoAccuracy = useGeo || gch.usingInverseGeoProjection();

    OutputDevice& edevice = OutputDevice::getDevice(oc.getString("plain-output-prefix") + ".edg.xml");
    edevice.writeXMLHeader("edges", NWFrame::MAJOR_VERSION + " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo-sim.org/xsd/edges_file.xsd\"");
    OutputDevice& cdevice = OutputDevice::getDevice(oc.getString("plain-output-prefix") + ".con.xml");
    cdevice.writeXMLHeader("connections", NWFrame::MAJOR_VERSION + " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo-sim.org/xsd/connections_file.xsd\"");
    bool noNames = !oc.getBool("output.street-names");
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        // write the edge itself to the edges-files
        NBEdge* e = (*i).second;
        edevice.openTag(SUMO_TAG_EDGE);
        edevice.writeAttr(SUMO_ATTR_ID, e->getID());
        edevice.writeAttr(SUMO_ATTR_FROM, e->getFromNode()->getID());
        edevice.writeAttr(SUMO_ATTR_TO, e->getToNode()->getID());
        if (!noNames && e->getStreetName() != "") {
            edevice.writeAttr(SUMO_ATTR_NAME, StringUtils::escapeXML(e->getStreetName()));
        }
        edevice.writeAttr(SUMO_ATTR_PRIORITY, e->getPriority());
        // write the type if given
        if (e->getTypeID() != "") {
            edevice.writeAttr(SUMO_ATTR_TYPE, e->getTypeID());
        }
        edevice.writeAttr(SUMO_ATTR_NUMLANES, e->getNumLanes());
        if (!e->hasLaneSpecificSpeed()) {
            edevice.writeAttr(SUMO_ATTR_SPEED, e->getSpeed());
        }
        // write non-default geometry
        if (!e->hasDefaultGeometry()) {
            PositionVector geom = e->getGeometry();
            if (useGeo) {
                for (int i = 0; i < (int) geom.size(); i++) {
                    gch.cartesian2geo(geom[i]);
                }
            }
            if (geoAccuracy) {
                edevice.setPrecision(GEO_OUTPUT_ACCURACY);
            }
            edevice.writeAttr(SUMO_ATTR_SHAPE, geom);
            if (geoAccuracy) {
                edevice.setPrecision();
            }
        }
        // write the spread type if not default ("right")
        if (e->getLaneSpreadFunction() != LANESPREAD_RIGHT) {
            edevice.writeAttr(SUMO_ATTR_SPREADTYPE, toString(e->getLaneSpreadFunction()));
        }
        // write the length if it was specified
        if (e->hasLoadedLength()) {
            edevice.writeAttr(SUMO_ATTR_LENGTH, e->getLoadedLength());
        }
        // some attributes can be set by edge default or per lane. Write as default if possible (efficiency)
        if (e->getLaneWidth() != NBEdge::UNSPECIFIED_WIDTH && !e->hasLaneSpecificWidth()) {
            edevice.writeAttr(SUMO_ATTR_WIDTH, e->getLaneWidth());
        }
        if (e->getOffset() != NBEdge::UNSPECIFIED_OFFSET && !e->hasLaneSpecificOffset()) {
            edevice.writeAttr(SUMO_ATTR_OFFSET, e->getOffset());
        }
        if (!e->needsLaneSpecificOutput()) {
            edevice.closeTag();
        } else {
            for (unsigned int i = 0; i < e->getLanes().size(); ++i) {
                const NBEdge::Lane& lane = e->getLanes()[i];
                edevice.openTag(SUMO_TAG_LANE);
                edevice.writeAttr(SUMO_ATTR_INDEX, i);
                // write allowed lanes
                NWWriter_SUMO::writePermissions(edevice, lane.permissions);
                NWWriter_SUMO::writePreferences(edevice, lane.preferred);
                // write other attributes
                if (lane.width != NBEdge::UNSPECIFIED_WIDTH && e->hasLaneSpecificWidth()) {
                    edevice.writeAttr(SUMO_ATTR_WIDTH, lane.width);
                }
                if (lane.offset != NBEdge::UNSPECIFIED_OFFSET && e->hasLaneSpecificOffset()) {
                    edevice.writeAttr(SUMO_ATTR_OFFSET, lane.offset);
                }
                if (e->hasLaneSpecificSpeed()) {
                    edevice.writeAttr(SUMO_ATTR_SPEED, lane.speed);
                }
                edevice.closeTag();
            }
            edevice.closeTag();
        }
        // write this edge's connections to the connections-files
        e->sortOutgoingConnectionsByIndex();
        const std::vector<NBEdge::Connection> connections = e->getConnections();
        for (std::vector<NBEdge::Connection>::const_iterator c = connections.begin(); c != connections.end(); ++c) {
            NWWriter_SUMO::writeConnection(cdevice, *e, *c, false, NWWriter_SUMO::PLAIN);
        }
        if (connections.size() > 0) {
            cdevice << "\n";
        }
    }

    // write loaded prohibitions to the connections-file
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        NWWriter_SUMO::writeProhibitions(cdevice, i->second->getProhibitions());
    }
    edevice.close();
    cdevice.close();
}