/// Compute the Root Mean Square Error of the residuals static double RMSE(const SfM_Data & sfm_data) { // Compute residuals for each observation std::vector<double> vec; for(Landmarks::const_iterator iterTracks = sfm_data.GetLandmarks().begin(); iterTracks != sfm_data.GetLandmarks().end(); ++iterTracks) { const Observations & obs = iterTracks->second.obs; for(Observations::const_iterator itObs = obs.begin(); itObs != obs.end(); ++itObs) { const View * view = sfm_data.GetViews().find(itObs->first)->second.get(); const geometry::Pose3 pose = sfm_data.GetPoseOrDie(view); const std::shared_ptr<cameras::IntrinsicBase> intrinsic = sfm_data.GetIntrinsics().at(view->id_intrinsic); const Vec2 residual = intrinsic->residual(pose, iterTracks->second.X, itObs->second.x); //std::cout << residual << " "; vec.push_back( residual(0) ); vec.push_back( residual(1) ); } } const Eigen::Map<Eigen::RowVectorXd> residuals(&vec[0], vec.size()); const double RMSE = std::sqrt(residuals.squaredNorm() / vec.size()); return RMSE; }
void Frustum_Filter::init_z_near_z_far_depth ( const SfM_Data & sfm_data, const double zNear, const double zFar ) { // If z_near & z_far are -1 and structure if not empty, // compute the values for each camera and the structure const bool bComputed_Z = (zNear == -1. && zFar == -1.) && !sfm_data.structure.empty(); if (bComputed_Z) // Compute the near & far planes from the structure and view observations { for (Landmarks::const_iterator itL = sfm_data.GetLandmarks().begin(); itL != sfm_data.GetLandmarks().end(); ++itL) { const Landmark & landmark = itL->second; const Vec3 & X = landmark.X; for (Observations::const_iterator iterO = landmark.obs.begin(); iterO != landmark.obs.end(); ++iterO) { const IndexT id_view = iterO->first; const View * view = sfm_data.GetViews().at(id_view).get(); if (!sfm_data.IsPoseAndIntrinsicDefined(view)) continue; const Pose3 pose = sfm_data.GetPoseOrDie(view); const double z = Depth(pose.rotation(), pose.translation(), X); NearFarPlanesT::iterator itZ = z_near_z_far_perView.find(id_view); if (itZ != z_near_z_far_perView.end()) { if ( z < itZ->second.first) itZ->second.first = z; else if ( z > itZ->second.second) itZ->second.second = z; } else z_near_z_far_perView[id_view] = {z,z}; } } } else { // Init the same near & far limit for all the valid views for (Views::const_iterator it = sfm_data.GetViews().begin(); it != sfm_data.GetViews().end(); ++it) { const View * view = it->second.get(); if (!sfm_data.IsPoseAndIntrinsicDefined(view)) continue; if (z_near_z_far_perView.find(view->id_view) == z_near_z_far_perView.end()) z_near_z_far_perView[view->id_view] = {zNear, zFar}; } } }
/// Export camera poses positions as a Vec3 vector void GetCameraPositions(const SfM_Data & sfm_data, std::vector<Vec3> & vec_camPosition) { for (const auto & view : sfm_data.GetViews()) { if (sfm_data.IsPoseAndIntrinsicDefined(view.second.get())) { const geometry::Pose3 pose = sfm_data.GetPoseOrDie(view.second.get()); vec_camPosition.push_back(pose.center()); } } }
/// Triangulate a given track from a selection of observations Vec3 SfM_Data_Structure_Computation_Robust::track_sample_triangulation( const SfM_Data & sfm_data, const Observations & obs, const std::set<IndexT> & samples) const { Triangulation trianObj; for (auto& it : samples) { const IndexT & idx = it; Observations::const_iterator itObs = obs.begin(); std::advance(itObs, idx); const View * view = sfm_data.views.at(itObs->first).get(); const IntrinsicBase * cam = sfm_data.GetIntrinsics().at(view->id_intrinsic).get(); const Pose3 pose = sfm_data.GetPoseOrDie(view); trianObj.add( cam->get_projective_equivalent(pose), cam->get_ud_pixel(itObs->second.x)); } return trianObj.compute(); }
// Init a frustum for each valid views of the SfM scene void Frustum_Filter::initFrustum ( const SfM_Data & sfm_data ) { for (NearFarPlanesT::const_iterator it = z_near_z_far_perView.begin(); it != z_near_z_far_perView.end(); ++it) { const View * view = sfm_data.GetViews().at(it->first).get(); if (!sfm_data.IsPoseAndIntrinsicDefined(view)) continue; Intrinsics::const_iterator iterIntrinsic = sfm_data.GetIntrinsics().find(view->id_intrinsic); if (!isPinhole(iterIntrinsic->second->getType())) continue; const Pose3 pose = sfm_data.GetPoseOrDie(view); const Pinhole_Intrinsic * cam = dynamic_cast<const Pinhole_Intrinsic*>(iterIntrinsic->second.get()); if (!cam) continue; if (!_bTruncated) // use infinite frustum { const Frustum f( cam->w(), cam->h(), cam->K(), pose.rotation(), pose.center()); frustum_perView[view->id_view] = f; } else // use truncated frustum with defined Near and Far planes { const Frustum f(cam->w(), cam->h(), cam->K(), pose.rotation(), pose.center(), it->second.first, it->second.second); frustum_perView[view->id_view] = f; } } }
inline bool Generate_SfM_Report ( const SfM_Data & sfm_data, const std::string & htmlFilename ) { // Compute mean,max,median residual values per View IndexT residualCount = 0; Hash_Map< IndexT, std::vector<double> > residuals_per_view; for ( const auto & iterTracks : sfm_data.GetLandmarks() ) { const Observations & obs = iterTracks.second.obs; for ( const auto & itObs : obs ) { const View * view = sfm_data.GetViews().at(itObs.first).get(); const geometry::Pose3 pose = sfm_data.GetPoseOrDie(view); const cameras::IntrinsicBase * intrinsic = sfm_data.GetIntrinsics().at(view->id_intrinsic).get(); // Use absolute values const Vec2 residual = intrinsic->residual(pose, iterTracks.second.X, itObs.second.x).array().abs(); residuals_per_view[itObs.first].push_back(residual(0)); residuals_per_view[itObs.first].push_back(residual(1)); ++residualCount; } } using namespace htmlDocument; // extract directory from htmlFilename const std::string sTableBegin = "<table border=\"1\">", sTableEnd = "</table>", sRowBegin= "<tr>", sRowEnd = "</tr>", sColBegin = "<td>", sColEnd = "</td>", sNewLine = "<br>", sFullLine = "<hr>"; htmlDocument::htmlDocumentStream htmlDocStream("SFM report."); htmlDocStream.pushInfo( htmlDocument::htmlMarkup("h1", std::string("SFM report."))); htmlDocStream.pushInfo(sFullLine); htmlDocStream.pushInfo( "Dataset info:" + sNewLine ); std::ostringstream os; os << " #views: " << sfm_data.GetViews().size() << sNewLine << " #poses: " << sfm_data.GetPoses().size() << sNewLine << " #intrinsics: " << sfm_data.GetIntrinsics().size() << sNewLine << " #tracks: " << sfm_data.GetLandmarks().size() << sNewLine << " #residuals: " << residualCount << sNewLine; htmlDocStream.pushInfo( os.str() ); htmlDocStream.pushInfo( sFullLine ); htmlDocStream.pushInfo( sTableBegin); os.str(""); os << sRowBegin << sColBegin + "IdView" + sColEnd << sColBegin + "Basename" + sColEnd << sColBegin + "#Observations" + sColEnd << sColBegin + "Residuals min" + sColEnd << sColBegin + "Residuals median" + sColEnd << sColBegin + "Residuals mean" + sColEnd << sColBegin + "Residuals max" + sColEnd << sRowEnd; htmlDocStream.pushInfo( os.str() ); for (const auto & iterV : sfm_data.GetViews() ) { const View * v = iterV.second.get(); const IndexT id_view = v->id_view; os.str(""); os << sRowBegin << sColBegin << id_view << sColEnd << sColBegin + stlplus::basename_part(v->s_Img_path) + sColEnd; // IdView | basename | #Observations | residuals min | residual median | residual max if (sfm_data.IsPoseAndIntrinsicDefined(v)) { if( residuals_per_view.find(id_view) != residuals_per_view.end() ) { const std::vector<double> & residuals = residuals_per_view.at(id_view); if (!residuals.empty()) { double min, max, mean, median; minMaxMeanMedian(residuals.begin(), residuals.end(), min, max, mean, median); os << sColBegin << residuals.size()/2 << sColEnd // #observations << sColBegin << min << sColEnd << sColBegin << median << sColEnd << sColBegin << mean << sColEnd << sColBegin << max <<sColEnd; } } } os << sRowEnd; htmlDocStream.pushInfo( os.str() ); } htmlDocStream.pushInfo( sTableEnd ); htmlDocStream.pushInfo( sFullLine ); // combine all residual values into one vector // export the SVG histogram { IndexT residualCount = 0; for (Hash_Map< IndexT, std::vector<double> >::const_iterator it = residuals_per_view.begin(); it != residuals_per_view.end(); ++it) { residualCount += it->second.size(); } // Concat per view residual values into one vector std::vector<double> residuals(residualCount); residualCount = 0; for (Hash_Map< IndexT, std::vector<double> >::const_iterator it = residuals_per_view.begin(); it != residuals_per_view.end(); ++it) { std::copy(it->second.begin(), it->second.begin()+it->second.size(), residuals.begin()+residualCount); residualCount += it->second.size(); } if (!residuals.empty()) { // RMSE computation const Eigen::Map<Eigen::RowVectorXd> residuals_mapping(&residuals[0], residuals.size()); const double RMSE = std::sqrt(residuals_mapping.squaredNorm() / (double)residuals.size()); os.str(""); os << sFullLine << "SfM Scene RMSE: " << RMSE << sFullLine; htmlDocStream.pushInfo(os.str()); const double maxRange = *max_element(residuals.begin(), residuals.end()); Histogram<double> histo(0.0, maxRange, 100); histo.Add(residuals.begin(), residuals.end()); svg::svgHisto svg_Histo; svg_Histo.draw(histo.GetHist(), std::pair<float,float>(0.f, maxRange), stlplus::create_filespec(stlplus::folder_part(htmlFilename), "residuals_histogram", "svg"), 600, 200); os.str(""); os << sNewLine<< "Residuals histogram" << sNewLine; os << "<img src=\"" << "residuals_histogram.svg" << "\" height=\"300\" width =\"800\">\n"; htmlDocStream.pushInfo(os.str()); } } std::ofstream htmlFileStream(htmlFilename.c_str()); htmlFileStream << htmlDocStream.getDoc(); const bool bOk = !htmlFileStream.bad(); return bOk; }
/// Use guided matching to find corresponding 2-view correspondences void SfM_Data_Structure_Estimation_From_Known_Poses::match( const SfM_Data & sfm_data, const Pair_Set & pairs, const std::shared_ptr<Regions_Provider> & regions_provider) { C_Progress_display my_progress_bar( pairs.size(), std::cout, "Compute pairwise fundamental guided matching:\n" ); #ifdef OPENMVG_USE_OPENMP #pragma omp parallel #endif // OPENMVG_USE_OPENMP for (Pair_Set::const_iterator it = pairs.begin(); it != pairs.end(); ++it) { #ifdef OPENMVG_USE_OPENMP #pragma omp single nowait #endif // OPENMVG_USE_OPENMP { // -- // Perform GUIDED MATCHING // -- // Use the computed model to check valid correspondences // - by considering geometric error and descriptor distance ratio. std::vector<IndMatch> vec_corresponding_indexes; const View * viewL = sfm_data.GetViews().at(it->first).get(); const Pose3 poseL = sfm_data.GetPoseOrDie(viewL); const Intrinsics::const_iterator iterIntrinsicL = sfm_data.GetIntrinsics().find(viewL->id_intrinsic); const View * viewR = sfm_data.GetViews().at(it->second).get(); const Pose3 poseR = sfm_data.GetPoseOrDie(viewR); const Intrinsics::const_iterator iterIntrinsicR = sfm_data.GetIntrinsics().find(viewR->id_intrinsic); Mat xL, xR; PointsToMat(iterIntrinsicL->second.get(), regions_provider->regions_per_view.at(it->first)->GetRegionsPositions(), xL); PointsToMat(iterIntrinsicR->second.get(), regions_provider->regions_per_view.at(it->second)->GetRegionsPositions(), xR); const Mat34 P_L = iterIntrinsicL->second.get()->get_projective_equivalent(poseL); const Mat34 P_R = iterIntrinsicR->second.get()->get_projective_equivalent(poseR); const Mat3 F_lr = F_from_P(P_L, P_R); const double thresholdF = 4.0; #if defined(EXHAUSTIVE_MATCHING) // Guided matching considering geometric error and descriptor distance ratio geometry_aware::GuidedMatching <Mat3, openMVG::fundamental::kernel::EpipolarDistanceError, DescriptorT, L2_Vectorized<DescriptorT::bin_type> >( F_lr, xL, desc_provider.at(it->first), xR, desc_provider.at(it->second), Square(thresholdF), Square(0.8), vec_corresponding_indexes); #else const Vec3 epipole2 = epipole_from_P(P_R, poseL); const features::Regions * regions = regions_provider->regions_per_view.at(it->first).get(); if (regions->IsScalar()) { // L2 Metric (Handle descriptor internal type) if(regions->Type_id() == typeid(unsigned char).name()) { geometry_aware::GuidedMatching_Fundamental_Fast< openMVG::fundamental::kernel::EpipolarDistanceError, L2_Vectorized<unsigned char> > ( F_lr, epipole2, regions_provider->regions_per_view.at(it->first).get(), iterIntrinsicR->second.get()->w(), iterIntrinsicR->second.get()->h(), regions_provider->regions_per_view.at(it->second).get(), Square(thresholdF), Square(0.8), vec_corresponding_indexes); } else if(regions->Type_id() == typeid(float).name()) { geometry_aware::GuidedMatching_Fundamental_Fast< openMVG::fundamental::kernel::EpipolarDistanceError, L2_Vectorized<float> > ( F_lr, epipole2, regions_provider->regions_per_view.at(it->first).get(), iterIntrinsicR->second.get()->w(), iterIntrinsicR->second.get()->h(), regions_provider->regions_per_view.at(it->second).get(), Square(thresholdF), Square(0.8), vec_corresponding_indexes); } else if(regions->Type_id() == typeid(double).name()) { geometry_aware::GuidedMatching_Fundamental_Fast< openMVG::fundamental::kernel::EpipolarDistanceError, L2_Vectorized<double> > ( F_lr, epipole2, regions_provider->regions_per_view.at(it->first).get(), iterIntrinsicR->second.get()->w(), iterIntrinsicR->second.get()->h(), regions_provider->regions_per_view.at(it->second).get(), Square(thresholdF), Square(0.8), vec_corresponding_indexes); } } else if (regions->IsBinary() && regions->Type_id() == typeid(unsigned char).name()) { // Hamming metric geometry_aware::GuidedMatching_Fundamental_Fast< openMVG::fundamental::kernel::EpipolarDistanceError, Hamming<unsigned char> > ( F_lr, epipole2, regions_provider->regions_per_view.at(it->first).get(), iterIntrinsicR->second.get()->w(), iterIntrinsicR->second.get()->h(), regions_provider->regions_per_view.at(it->second).get(), Square(thresholdF), 0.8, vec_corresponding_indexes); } #endif #ifdef OPENMVG_USE_OPENMP #pragma omp critical #endif // OPENMVG_USE_OPENMP { ++my_progress_bar; for (size_t i = 0; i < vec_corresponding_indexes.size(); ++i) putatives_matches[*it].push_back(vec_corresponding_indexes[i]); } } } }
/// Filter inconsistent correspondences by using 3-view correspondences on view triplets void SfM_Data_Structure_Estimation_From_Known_Poses::filter( const SfM_Data & sfm_data, const Pair_Set & pairs, const std::shared_ptr<Regions_Provider> & regions_provider) { // Compute triplets // Triangulate triplet tracks // - keep valid one typedef std::vector< graph::Triplet > Triplets; const Triplets triplets = graph::tripletListing(pairs); C_Progress_display my_progress_bar( triplets.size(), std::cout, "Per triplet tracks validation (discard spurious correspondences):\n" ); #ifdef OPENMVG_USE_OPENMP #pragma omp parallel #endif // OPENMVG_USE_OPENMP for( Triplets::const_iterator it = triplets.begin(); it != triplets.end(); ++it) { #ifdef OPENMVG_USE_OPENMP #pragma omp single nowait #endif // OPENMVG_USE_OPENMP { #ifdef OPENMVG_USE_OPENMP #pragma omp critical #endif // OPENMVG_USE_OPENMP {++my_progress_bar;} const graph::Triplet & triplet = *it; const IndexT I = triplet.i, J = triplet.j , K = triplet.k; openMVG::tracks::STLMAPTracks map_tracksCommon; openMVG::tracks::TracksBuilder tracksBuilder; { PairWiseMatches map_matchesIJK; if(putatives_matches.find(std::make_pair(I,J)) != putatives_matches.end()) map_matchesIJK.insert(*putatives_matches.find(std::make_pair(I,J))); if(putatives_matches.find(std::make_pair(I,K)) != putatives_matches.end()) map_matchesIJK.insert(*putatives_matches.find(std::make_pair(I,K))); if(putatives_matches.find(std::make_pair(J,K)) != putatives_matches.end()) map_matchesIJK.insert(*putatives_matches.find(std::make_pair(J,K))); if (map_matchesIJK.size() >= 2) { tracksBuilder.Build(map_matchesIJK); tracksBuilder.Filter(3); tracksBuilder.ExportToSTL(map_tracksCommon); } // Triangulate the tracks for (tracks::STLMAPTracks::const_iterator iterTracks = map_tracksCommon.begin(); iterTracks != map_tracksCommon.end(); ++iterTracks) { { const tracks::submapTrack & subTrack = iterTracks->second; Triangulation trianObj; for (tracks::submapTrack::const_iterator iter = subTrack.begin(); iter != subTrack.end(); ++iter) { const size_t imaIndex = iter->first; const size_t featIndex = iter->second; const View * view = sfm_data.GetViews().at(imaIndex).get(); const IntrinsicBase * cam = sfm_data.GetIntrinsics().at(view->id_intrinsic).get(); const Pose3 pose = sfm_data.GetPoseOrDie(view); const Vec2 pt = regions_provider->regions_per_view.at(imaIndex)->GetRegionPosition(featIndex); trianObj.add(cam->get_projective_equivalent(pose), cam->get_ud_pixel(pt)); } const Vec3 Xs = trianObj.compute(); if (trianObj.minDepth() > 0 && trianObj.error() < 4.0) // TODO: Add an angular check ? { #ifdef OPENMVG_USE_OPENMP #pragma omp critical #endif // OPENMVG_USE_OPENMP { openMVG::tracks::submapTrack::const_iterator iterI, iterJ, iterK; iterI = iterJ = iterK = subTrack.begin(); std::advance(iterJ,1); std::advance(iterK,2); triplets_matches[std::make_pair(I,J)].push_back(IndMatch(iterI->second, iterJ->second)); triplets_matches[std::make_pair(J,K)].push_back(IndMatch(iterJ->second, iterK->second)); triplets_matches[std::make_pair(I,K)].push_back(IndMatch(iterI->second, iterK->second)); } } } } } } } // Clear putatives matches since they are no longer required matching::PairWiseMatches().swap(putatives_matches); }
/// Use guided matching to find corresponding 2-view correspondences void SfM_Data_Structure_Estimation_From_Known_Poses::match( const SfM_Data & sfm_data, const Pair_Set & pairs, const std::shared_ptr<Regions_Provider> & regions_provider) { C_Progress_display my_progress_bar( pairs.size(), std::cout, "Compute pairwise fundamental guided matching:\n" ); #ifdef OPENMVG_USE_OPENMP #pragma omp parallel #endif // OPENMVG_USE_OPENMP for (Pair_Set::const_iterator it = pairs.begin(); it != pairs.end(); ++it) { #ifdef OPENMVG_USE_OPENMP #pragma omp single nowait #endif // OPENMVG_USE_OPENMP { // -- // Perform GUIDED MATCHING // -- // Use the computed model to check valid correspondences // - by considering geometric error and descriptor distance ratio. std::vector<IndMatch> vec_corresponding_indexes; const View * viewL = sfm_data.GetViews().at(it->first).get(); const Pose3 poseL = sfm_data.GetPoseOrDie(viewL); const Intrinsics::const_iterator iterIntrinsicL = sfm_data.GetIntrinsics().find(viewL->id_intrinsic); const View * viewR = sfm_data.GetViews().at(it->second).get(); const Pose3 poseR = sfm_data.GetPoseOrDie(viewR); const Intrinsics::const_iterator iterIntrinsicR = sfm_data.GetIntrinsics().find(viewR->id_intrinsic); if (sfm_data.GetIntrinsics().count(viewL->id_intrinsic) != 0 || sfm_data.GetIntrinsics().count(viewR->id_intrinsic) != 0) { const Mat34 P_L = iterIntrinsicL->second.get()->get_projective_equivalent(poseL); const Mat34 P_R = iterIntrinsicR->second.get()->get_projective_equivalent(poseR); const Mat3 F_lr = F_from_P(P_L, P_R); const double thresholdF = 4.0; #if defined(EXHAUSTIVE_MATCHING) geometry_aware::GuidedMatching <Mat3, openMVG::fundamental::kernel::EpipolarDistanceError> ( F_lr, iterIntrinsicL->second.get(), *regions_provider->regions_per_view.at(it->first), iterIntrinsicR->second.get(), *regions_provider->regions_per_view.at(it->second), Square(thresholdF), Square(0.8), vec_corresponding_indexes ); #else const Vec3 epipole2 = epipole_from_P(P_R, poseL); const features::Regions * regions = regions_provider->regions_per_view.at(it->first).get(); geometry_aware::GuidedMatching_Fundamental_Fast <openMVG::fundamental::kernel::EpipolarDistanceError> ( F_lr, epipole2, iterIntrinsicL->second.get(), *regions_provider->regions_per_view.at(it->first), iterIntrinsicR->second.get(), *regions_provider->regions_per_view.at(it->second), iterIntrinsicR->second->w(), iterIntrinsicR->second->h(), Square(thresholdF), Square(0.8), vec_corresponding_indexes ); #endif #ifdef OPENMVG_USE_OPENMP #pragma omp critical #endif // OPENMVG_USE_OPENMP { ++my_progress_bar; for (size_t i = 0; i < vec_corresponding_indexes.size(); ++i) putatives_matches[*it].push_back(vec_corresponding_indexes[i]); } } } } }
/* OpenGL draw function & timing */ static void draw(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); { // convert opengl coordinates into the document information coordinates glPushMatrix(); glMultMatrixf((GLfloat*)m_convert); // apply view offset openMVG::Mat4 offset_w = l2w_Camera(Mat3::Identity(), Vec3(x_offset,y_offset,z_offset)); glMultMatrixd((GLdouble*)offset_w.data()); // then apply current camera transformation const View * view = sfm_data.GetViews().at(vec_cameras[current_cam]).get(); const Pose3 pose = sfm_data.GetPoseOrDie(view); const openMVG::Mat4 l2w = l2w_Camera(pose.rotation(), pose.translation()); glPushMatrix(); glMultMatrixd((GLdouble*)l2w.data()); glPointSize(3); glDisable(GL_TEXTURE_2D); glDisable(GL_LIGHTING); //Draw Structure in GREEN (as seen from the current camera) size_t nbPoint = sfm_data.GetLandmarks().size(); size_t cpt = 0; glBegin(GL_POINTS); glColor3f(0.f,1.f,0.f); for (Landmarks::const_iterator iter = sfm_data.GetLandmarks().begin(); iter != sfm_data.GetLandmarks().end(); ++iter) { const Landmark & landmark = iter->second; glVertex3d(landmark.X(0), landmark.X(1), landmark.X(2)); } glEnd(); glDisable(GL_CULL_FACE); for (int i_cam=0; i_cam < vec_cameras.size(); ++i_cam) { const View * view = sfm_data.GetViews().at(vec_cameras[i_cam]).get(); const Pose3 pose = sfm_data.GetPoseOrDie(view); const IntrinsicBase * cam = sfm_data.GetIntrinsics().at(view->id_intrinsic).get(); if (isPinhole(cam->getType())) { const Pinhole_Intrinsic * camPinhole = dynamic_cast<const Pinhole_Intrinsic*>(cam); // Move frame to draw the camera i_cam by applying its inverse transformation // Warning: translation has to be "fixed" to remove the current camera rotation // Fix camera_i translation with current camera rotation inverse const Vec3 trans = pose.rotation().transpose() * pose.translation(); // compute inverse transformation matrix from local to world const openMVG::Mat4 l2w_i = l2w_Camera(pose.rotation().transpose(), -trans); // stack it and use it glPushMatrix(); glMultMatrixd((GLdouble*)l2w_i.data()); // 1. Draw optical center (RED) and image center (BLUE) glPointSize(3); glDisable(GL_TEXTURE_2D); glDisable(GL_LIGHTING); glBegin(GL_POINTS); glColor3f(1.f,0.f,0.f); glVertex3f(0, 0, 0); // optical center glColor3f(0.f,0.f,1.f); glVertex3f(0, 0, normalized_focal); // image center glEnd(); // compute image corners coordinated with normalized focal (f=normalized_focal) const int w = camPinhole->w(); const int h = camPinhole->h(); const double focal = camPinhole->focal(); // use principal point to adjust image center const Vec2 pp = camPinhole->principal_point(); Vec3 c1( -pp[0]/focal * normalized_focal, (-pp[1]+h)/focal * normalized_focal, normalized_focal); Vec3 c2((-pp[0]+w)/focal * normalized_focal, (-pp[1]+h)/focal * normalized_focal, normalized_focal); Vec3 c3((-pp[0]+w)/focal * normalized_focal, -pp[1]/focal * normalized_focal, normalized_focal); Vec3 c4( -pp[0]/focal * normalized_focal, -pp[1]/focal * normalized_focal, normalized_focal); // 2. Draw thumbnail if (i_cam == current_cam) { glEnable(GL_TEXTURE_2D); glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glBindTexture(GL_TEXTURE_2D, m_image_vector[i_cam].texture); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_BLEND); glDisable(GL_DEPTH_TEST); if (i_cam == current_cam) { glColor4f(0.5f,0.5f,0.5f, 0.7f); } else { glColor4f(0.5f,0.5f,0.5f, 0.5f); } glBegin(GL_QUADS); glTexCoord2d(0.0,1.0); glVertex3d(c1[0], c1[1], c1[2]); glTexCoord2d(1.0,1.0); glVertex3d(c2[0], c2[1], c2[2]); glTexCoord2d(1.0,0.0); glVertex3d(c3[0], c3[1], c3[2]); glTexCoord2d(0.0,0.0); glVertex3d(c4[0], c4[1], c4[2]); glEnd(); glDisable(GL_TEXTURE_2D); glDisable(GL_BLEND); glEnable(GL_DEPTH_TEST); } // 3. Draw camera cone if (i_cam == current_cam) { glColor3f(1.f,1.f,0.f); } else { glColor3f(1.f,0.f,0.f); } glBegin(GL_LINES); glVertex3d(0.0,0.0,0.0); glVertex3d(c1[0], c1[1], c1[2]); glVertex3d(0.0,0.0,0.0); glVertex3d(c2[0], c2[1], c2[2]); glVertex3d(0.0,0.0,0.0); glVertex3d(c3[0], c3[1], c3[2]); glVertex3d(0.0,0.0,0.0); glVertex3d(c4[0], c4[1], c4[2]); glVertex3d(c1[0], c1[1], c1[2]); glVertex3d(c2[0], c2[1], c2[2]); glVertex3d(c2[0], c2[1], c2[2]); glVertex3d(c3[0], c3[1], c3[2]); glVertex3d(c3[0], c3[1], c3[2]); glVertex3d(c4[0], c4[1], c4[2]); glVertex3d(c4[0], c4[1], c4[2]); glVertex3d(c1[0], c1[1], c1[2]); glEnd(); glPopMatrix(); // go back to current camera frame } } glPopMatrix(); // go back to (document +offset) frame glPopMatrix(); // go back to identity } }
bool CreateImageFile( const SfM_Data & sfm_data, const std::string & sImagesFilename) { /* images.txt # Image list with two lines of data per image: # IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME # POINTS2D[] as (X, Y, POINT3D_ID) # Number of images: X, mean observations per image: Y */ // Header std::ofstream images_file( sImagesFilename ); if ( ! images_file ) { std::cerr << "Cannot write file" << sImagesFilename << std::endl; return false; } images_file << "# Image list with two lines of data per image:\n"; images_file << "# IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME\n"; images_file << "# POINTS2D[] as (X, Y, POINT3D_ID)\n"; images_file << "# Number of images: X, mean observations per image: Y\n"; std::map< IndexT, std::vector< std::tuple<double, double, IndexT> > > viewIdToPoints2D; const Landmarks & landmarks = sfm_data.GetLandmarks(); { for ( Landmarks::const_iterator iterLandmarks = landmarks.begin(); iterLandmarks != landmarks.end(); ++iterLandmarks) { const IndexT point3d_id = iterLandmarks->first; // Tally set of feature observations const Observations & obs = iterLandmarks->second.obs; for ( Observations::const_iterator itObs = obs.begin(); itObs != obs.end(); ++itObs ) { const IndexT currentViewId = itObs->first; const Observation & ob = itObs->second; viewIdToPoints2D[currentViewId].push_back(std::make_tuple(ob.x( 0 ), ob.x( 1 ), point3d_id)); } } } { C_Progress_display my_progress_bar( sfm_data.GetViews().size(), std::cout, "\n- CREATE IMAGE FILE -\n" ); for (Views::const_iterator iter = sfm_data.GetViews().begin(); iter != sfm_data.GetViews().end(); ++iter, ++my_progress_bar) { const View * view = iter->second.get(); if ( !sfm_data.IsPoseAndIntrinsicDefined( view ) ) { continue; } const Pose3 pose = sfm_data.GetPoseOrDie( view ); const Mat3 rotation = pose.rotation(); const Vec3 translation = pose.translation(); const double Tx = translation[0]; const double Ty = translation[1]; const double Tz = translation[2]; Eigen::Quaterniond q( rotation ); const double Qx = q.x(); const double Qy = q.y(); const double Qz = q.z(); const double Qw = q.w(); const IndexT image_id = view->id_view; // Colmap's camera_ids correspond to openMVG's intrinsic ids const IndexT camera_id = view->id_intrinsic; const std::string image_name = view->s_Img_path; // first line per image //IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME images_file << image_id << " " << Qw << " " << Qx << " " << Qy << " " << Qz << " " << Tx << " " << Ty << " " << Tz << " " << camera_id << " " << image_name << " " << "\n"; // second line per image //POINTS2D[] as (X, Y, POINT3D_ID) for (auto point2D: viewIdToPoints2D[image_id]) { images_file << std::get<0>(point2D) << " " << std::get<1>(point2D) << " " << std::get<2>(point2D) << " "; } images_file << "\n"; } } return true; }
void SfM_Data_Structure_Computation_Blind::triangulate(SfM_Data & sfm_data) const { std::deque<IndexT> rejectedId; std::unique_ptr<C_Progress_display> my_progress_bar; if (_bConsoleVerbose) my_progress_bar.reset( new C_Progress_display( sfm_data.structure.size(), std::cout, "Blind triangulation progress:\n" )); #ifdef OPENMVG_USE_OPENMP #pragma omp parallel #endif for(Landmarks::iterator iterTracks = sfm_data.structure.begin(); iterTracks != sfm_data.structure.end(); ++iterTracks) { #ifdef OPENMVG_USE_OPENMP #pragma omp single nowait #endif { if (_bConsoleVerbose) { #ifdef OPENMVG_USE_OPENMP #pragma omp critical #endif ++(*my_progress_bar); } // Triangulate each landmark Triangulation trianObj; const Observations & obs = iterTracks->second.obs; for(Observations::const_iterator itObs = obs.begin(); itObs != obs.end(); ++itObs) { const View * view = sfm_data.views.at(itObs->first).get(); if (sfm_data.IsPoseAndIntrinsicDefined(view)) { const IntrinsicBase * cam = sfm_data.GetIntrinsics().at(view->id_intrinsic).get(); const Pose3 pose = sfm_data.GetPoseOrDie(view); trianObj.add( cam->get_projective_equivalent(pose), cam->get_ud_pixel(itObs->second.x)); } } if (trianObj.size() < 2) { #ifdef OPENMVG_USE_OPENMP #pragma omp critical #endif { rejectedId.push_front(iterTracks->first); } } else { // Compute the 3D point const Vec3 X = trianObj.compute(); if (trianObj.minDepth() > 0) // Keep the point only if it have a positive depth { iterTracks->second.X = X; } else { #ifdef OPENMVG_USE_OPENMP #pragma omp critical #endif { rejectedId.push_front(iterTracks->first); } } } } } // Erase the unsuccessful triangulated tracks for (auto& it : rejectedId) { sfm_data.structure.erase(it); } }
/// Robustly try to estimate the best 3D point using a ransac Scheme /// Return true for a successful triangulation bool SfM_Data_Structure_Computation_Robust::robust_triangulation( const SfM_Data & sfm_data, const Observations & obs, Vec3 & X, const IndexT min_required_inliers, const IndexT min_sample_index) const { const double dThresholdPixel = 4.0; // TODO: make this parameter customizable const IndexT nbIter = obs.size(); // TODO: automatic computation of the number of iterations? // - Ransac variables Vec3 best_model; std::set<IndexT> best_inlier_set; double best_error = std::numeric_limits<double>::max(); // - Ransac loop for (IndexT i = 0; i < nbIter; ++i) { std::vector<size_t> vec_samples; robust::UniformSample(min_sample_index, obs.size(), &vec_samples); const std::set<IndexT> samples(vec_samples.begin(), vec_samples.end()); // Hypothesis generation. const Vec3 current_model = track_sample_triangulation(sfm_data, obs, samples); // Test validity of the hypothesis // - chierality (for the samples) // - residual error // Chierality (Check the point is in front of the sampled cameras) bool bChierality = true; for (auto& it : samples){ Observations::const_iterator itObs = obs.begin(); std::advance(itObs, it); const View * view = sfm_data.views.at(itObs->first).get(); const IntrinsicBase * cam = sfm_data.GetIntrinsics().at(view->id_intrinsic).get(); const Pose3 pose = sfm_data.GetPoseOrDie(view); const double z = pose.depth(current_model); // TODO: cam->depth(pose(X)); bChierality &= z > 0; } if (!bChierality) continue; std::set<IndexT> inlier_set; double current_error = 0.0; // Classification as inlier/outlier according pixel residual errors. for (Observations::const_iterator itObs = obs.begin(); itObs != obs.end(); ++itObs) { const View * view = sfm_data.views.at(itObs->first).get(); const IntrinsicBase * intrinsic = sfm_data.GetIntrinsics().at(view->id_intrinsic).get(); const Pose3 pose = sfm_data.GetPoseOrDie(view); const Vec2 residual = intrinsic->residual(pose, current_model, itObs->second.x); const double residual_d = residual.norm(); if (residual_d < dThresholdPixel) { inlier_set.insert(itObs->first); current_error += residual_d; } else { current_error += dThresholdPixel; } } // Does the hypothesis is the best one we have seen and have sufficient inliers. if (current_error < best_error && inlier_set.size() >= min_required_inliers) { X = best_model = current_model; best_inlier_set = inlier_set; best_error = current_error; } } return !best_inlier_set.empty(); }
bool exportToCMPMVSFormat( const SfM_Data & sfm_data, const std::string & sOutDirectory // Output CMPMVS files directory ) { bool bOk = true; // Create basis directory structure if (!stlplus::is_folder(sOutDirectory)) { stlplus::folder_create(sOutDirectory); bOk = stlplus::is_folder(sOutDirectory); } if (!bOk) { std::cerr << "Cannot access to one of the desired output directory" << std::endl; return false; } else { // Export data : C_Progress_display my_progress_bar( sfm_data.GetViews().size()*2 ); // Since CMPMVS requires contiguous camera index, and that some views can have some missing poses, // we reindex the poses to ensure a contiguous pose list. Hash_Map<IndexT, IndexT> map_viewIdToContiguous; // Export valid views as Projective Cameras: for(Views::const_iterator iter = sfm_data.GetViews().begin(); iter != sfm_data.GetViews().end(); ++iter, ++my_progress_bar) { const View * view = iter->second.get(); if (!sfm_data.IsPoseAndIntrinsicDefined(view)) continue; const Pose3 pose = sfm_data.GetPoseOrDie(view); Intrinsics::const_iterator iterIntrinsic = sfm_data.GetIntrinsics().find(view->id_intrinsic); // View Id re-indexing map_viewIdToContiguous.insert(std::make_pair(view->id_view, map_viewIdToContiguous.size())); // We have a valid view with a corresponding camera & pose const Mat34 P = iterIntrinsic->second.get()->get_projective_equivalent(pose); std::ostringstream os; os << std::setw(5) << std::setfill('0') << map_viewIdToContiguous[view->id_view] << "_P"; std::ofstream file( stlplus::create_filespec(stlplus::folder_append_separator(sOutDirectory), os.str() ,"txt").c_str()); file << "CONTOUR" << os.widen('\n') << P.row(0) <<"\n"<< P.row(1) <<"\n"<< P.row(2) << os.widen('\n'); file.close(); } // Export (calibrated) views as undistorted images std::pair<unsigned int, unsigned int> w_h_image_size; Image<RGBColor> image, image_ud; for(Views::const_iterator iter = sfm_data.GetViews().begin(); iter != sfm_data.GetViews().end(); ++iter, ++my_progress_bar) { const View * view = iter->second.get(); if (!sfm_data.IsPoseAndIntrinsicDefined(view)) continue; Intrinsics::const_iterator iterIntrinsic = sfm_data.GetIntrinsics().find(view->id_intrinsic); // We have a valid view with a corresponding camera & pose const std::string srcImage = stlplus::create_filespec(sfm_data.s_root_path, view->s_Img_path); std::ostringstream os; os << std::setw(5) << std::setfill('0') << map_viewIdToContiguous[view->id_view]; std::string dstImage = stlplus::create_filespec( stlplus::folder_append_separator(sOutDirectory), os.str(),"jpg"); const IntrinsicBase * cam = iterIntrinsic->second.get(); if (map_viewIdToContiguous[view->id_view] == 0) w_h_image_size = std::make_pair(cam->w(), cam->h()); else { // check that there is no image sizing change (CMPMVS support only images of the same size) if (cam->w() != w_h_image_size.first || cam->h() != w_h_image_size.second) { std::cerr << "CMPMVS support only image having the same image size"; return false; } } if (cam->have_disto()) { // undistort the image and save it ReadImage( srcImage.c_str(), &image); UndistortImage(image, cam, image_ud, BLACK); WriteImage(dstImage.c_str(), image_ud); } else // (no distortion) { // copy the image if extension match if (stlplus::extension_part(srcImage) == "JPG" || stlplus::extension_part(srcImage) == "jpg") { stlplus::file_copy(srcImage, dstImage); } else { ReadImage( srcImage.c_str(), &image); WriteImage( dstImage.c_str(), image); } } } // Write the mvs_firstRun script std::ostringstream os; os << "[global]" << os.widen('\n') << "dirName=\"" << stlplus::folder_append_separator(sOutDirectory) <<"\"" << os.widen('\n') << "prefix=\"\"" << os.widen('\n') << "imgExt=\"jpg\"" << os.widen('\n') << "ncams=" << map_viewIdToContiguous.size() << os.widen('\n') << "width=" << w_h_image_size.first << os.widen('\n') << "height=" << w_h_image_size.second << os.widen('\n') << "scale=2" << os.widen('\n') << "workDirName=\"_tmp_fast\"" << os.widen('\n') << "doPrepareData=TRUE" << os.widen('\n') << "doPrematchSifts=TRUE" << os.widen('\n') << "doPlaneSweepingSGM=TRUE" << os.widen('\n') << "doFuse=TRUE" << os.widen('\n') << "nTimesSimplify=10" << os.widen('\n') << os.widen('\n') << "[prematching]" << os.widen('\n') << "minAngle=3.0" << os.widen('\n') << os.widen('\n') << "[grow]" << os.widen('\n') << "minNumOfConsistentCams=6" << os.widen('\n') << os.widen('\n') << "[filter]" << os.widen('\n') << "minNumOfConsistentCams=2" << os.widen('\n') << os.widen('\n') << "#do not erase empy lines after this comment otherwise it will crash ... bug" << os.widen('\n') << os.widen('\n') << os.widen('\n'); std::ofstream file( stlplus::create_filespec(stlplus::folder_append_separator(sOutDirectory), "01_mvs_firstRun" ,"ini").c_str()); file << os.str(); file.close(); // limitedScale os.str(""); os << "[global]" << os.widen('\n') << "dirName=\"" << stlplus::folder_append_separator(sOutDirectory) <<"\"" << os.widen('\n') << "prefix=\"\"" << os.widen('\n') << "imgExt=\"jpg\"" << os.widen('\n') << "ncams=" << map_viewIdToContiguous.size() << os.widen('\n') << "width=" << w_h_image_size.first << os.widen('\n') << "height=" << w_h_image_size.second << os.widen('\n') << "scale=2" << os.widen('\n') << "workDirName=\"_tmp_fast\"" << os.widen('\n') << "doPrepareData=FALSE" << os.widen('\n') << "doPrematchSifts=FALSE" << os.widen('\n') << "doPlaneSweepingSGM=FALSE" << os.widen('\n') << "doFuse=FALSE" << os.widen('\n') << os.widen('\n') << "[uvatlas]" << os.widen('\n') << "texSide=1024" << os.widen('\n') << "scale=1" << os.widen('\n') << os.widen('\n') << "[delanuaycut]" << os.widen('\n') << "saveMeshTextured=FALSE" << os.widen('\n') << os.widen('\n') << "[hallucinationsFiltering]" << os.widen('\n') << "useSkyPrior=FALSE" << os.widen('\n') << "doLeaveLargestFullSegmentOnly=FALSE" << os.widen('\n') << "doRemoveHugeTriangles=TRUE" << os.widen('\n') << os.widen('\n') << "[largeScale]" << os.widen('\n') << "doGenerateAndReconstructSpaceMaxPts=TRUE" << os.widen('\n') << "doGenerateSpace=TRUE" << os.widen('\n') << "planMaxPts=3000000" << os.widen('\n') << "doComputeDEMandOrtoPhoto=FALSE" << os.widen('\n') << "doGenerateVideoFrames=FALSE" << os.widen('\n') << os.widen('\n') << "[meshEnergyOpt]" << os.widen('\n') << "doOptimizeOrSmoothMesh=FALSE" << os.widen('\n') << os.widen('\n') << os.widen('\n') << "#EOF" << os.widen('\n') << os.widen('\n') << os.widen('\n'); std::ofstream file2( stlplus::create_filespec(stlplus::folder_append_separator(sOutDirectory), "02_mvs_limitedScale" ,"ini").c_str()); file2 << os.str(); file2.close(); } return bOk; }