コード例 #1
0
ファイル: game.hpp プロジェクト: RogerTsang/spacerace
void playerScore(const StateMatrix& state,
                 const ControlData& control,
                 const Map& map,
                 const SimulationParameters& params,
                 GameStats& gameStats)
{
  std::vector<float> distance(state.rows());

  for (uint i=0; i<state.rows();i++)
  {
    std::pair<uint,uint> coords = indices(state(i,0), state(i,1), map, params);
    distance[i] = map.endDistance(coords.first, coords.second);
    gameStats.playerDists[control.ids.at(i)] = distance[i];
  }

  std::vector<int> indices = argsort(distance);
  std::vector<int> ranks(indices.size());
  for (int i=0;i<indices.size();i++)
    ranks[indices[i]] = i;
  for (uint i=0; i<state.rows();i++)
  {
    gameStats.playerRanks[control.ids.at(i)] = ranks[i];
  }

}
コード例 #2
0
LQRController::UpdateGainsJob::UpdateGainsJob(LQRController * c, const StateMatrix & weights, const InputMatrix &input_weights, const StateVector & target)
: c_(c), target_(target)
{
  if(!c)
    return;
  ROS_DEBUG_STREAM("target is "<<target.transpose());
  const int n=weights.rows();
  const int m=input_weights.rows();
  
  input_offset_.resize(m,1);
  gains_.resize(n,n);
  
  //Computes a linearization around the target point
  StateMatrix A(n,n);
  InputMatrix B(n,m);
  if(!c_->model_->getLinearization(target, A, B, input_offset_))
  {
    ROS_ERROR("Failed to get linearization");
    c_=NULL;
    return;
  }
  ROS_DEBUG_STREAM("************ Obtained linearization **********\n[A]\n"<<A<<std::endl<<"[B]"<<std::endl<<B<<std::endl<<"[input offset]"<<std::endl<<input_offset_<<"\n*************");
  ROS_DEBUG("Sanity checks");
  ROS_ASSERT(LQR::isCommandable(A,B));
  // Compute new gains matrix
  ROS_DEBUG("Computing LQR gains matrix. Hold on to your seatbelts...");
  LQR::LQRDP<StateMatrix,InputMatrix,StateMatrix,InputMatrix>::runContinuous(A, B, weights, weights, input_weights, 0.01, 0.1, gains_);
  ROS_DEBUG_STREAM("Done. Computed gains:\n***********\n"<<gains_<<"\n**********\n");
  // Check validity
  ROS_DEBUG("Checking gains matrix...");
  bool test=LQR::isConverging(A,B,gains_);
  ROS_ASSERT(test);
  ROS_DEBUG("Valid gains matrix");
//   assert(test);
}
コード例 #3
0
ファイル: game.hpp プロジェクト: RogerTsang/spacerace
std::string winner(const PlayerSet& players,
                   const StateMatrix& state,
                   const ControlData& control,
                   const Map& map,
                   const SimulationParameters& params)
{
  std::string winnerName = "";
  for (uint i=0; i<state.rows();i++)
  {
    std::pair<uint,uint> coords = indices(state(i,0), state(i,1), map, params);
    bool winner = map.finish.count(coords);
    if (winner)
    {
      winnerName = control.ids.at(i);
      break;
    }
  }
  return winnerName;
}
コード例 #4
0
ファイル: physics.hpp プロジェクト: RogerTsang/spacerace
void rk4TimeStep(StateMatrix& s, const ControlMatrix& c, const
        SimulationParameters& params, const Map & m)
{
  // CHANGED(AL): Now implementing RK4
  StateMatrix k1, k2, k3, k4;
  uint n_states = s.cols();
  uint n = s.rows();
  k1 = StateMatrix(n, n_states);
  k2 = StateMatrix(n, n_states);
  k3 = StateMatrix(n, n_states);
  k4 = StateMatrix(n, n_states);

  float dt = params.timeStep;

  derivatives(s, k1, c, params, m);
  derivatives(s + 0.5*k1*dt, k2, c, params, m);
  derivatives(s + 0.5*k2*dt, k3, c, params, m);
  derivatives(s + k3*dt, k4, c, params, m);
  
  s += (k1 + 2.*k2 + 2.*k3 + k4) * dt/6.;

}
コード例 #5
0
ファイル: game.hpp プロジェクト: RogerTsang/spacerace
void initialiseState(StateMatrix& state, const Map& map, 
        const SimulationParameters& params)
{
  static std::default_random_engine gen;
  static std::uniform_real_distribution<float> dist(0.0, 1.0);

  std::vector<std::pair<uint,uint>> startPixels;
  std::copy(map.start.begin(), map.start.end(), std::back_inserter(startPixels));
  std::random_shuffle(startPixels.begin(), startPixels.end());
  uint pixelIdx = 0;
  for (uint i=0; i<state.rows();i++)
  {
    auto coords = startPixels[pixelIdx];
    state(i, 0) = (float(coords.second) + dist(gen)) / params.mapScale;
    state(i, 1) = (float(coords.first) + dist(gen)) / params.mapScale;
    state(i, 2) = 0.0;
    state(i, 3) = 0.0;
    state(i, 4) = dist(gen) * 2.0 * M_PI;
    state(i, 5) = 0.0;
    pixelIdx = (pixelIdx + 1) % startPixels.size();
  }
}
コード例 #6
0
ファイル: physics.hpp プロジェクト: RogerTsang/spacerace
void derivatives(const StateMatrix& states, StateMatrix& derivs, 
    const ControlMatrix& ctrls, const SimulationParameters& params, 
    const Map & map)
{
  float cd_a_rho = params.linearDrag;  // 0.1  coeff of drag * area * density of fluid
  float k_elastic = params.elasticity;  // 4000.  // spring constant of ships
  float rad = 1.;  // leave radius 1 - we decided to change map scale instead
  const Eigen::VectorXf &masses = params.shipDensities;  // order of 1.0 Mass of ships 
  float spin_drag_ratio = params.rotationalDrag; // 1.8;  // spin friction to translation friction
  float eps = 1e-5;  // Avoid divide by zero special cases
  float mu = params.shipFriction;  // 0.05;  // friction coefficient between ships
  float mu_wall = params.wallFriction;  //0.25*?wallFriction;  // 0.01;  // wall friction parameter
  float wall_restitution = params.wallRestitution; // 0.5
  float ship_restitution = params.shipRestitution; // circa 0.5
  float diameter = 2.*rad;  // rad(i) + rad(j) for any i, j
  float inertia_mass_ratio = 0.25;
  float map_grid = rad * 2. + eps; // must be 2*radius + eps
  std::unordered_map<std::pair<int, int>, std::vector<uint>, 
                     boost::hash<std::pair<int, int>>> bins;

  uint n = states.rows();
  Eigen::MatrixXd f = Eigen::MatrixXd::Zero(n, 2);
  Eigen::VectorXd trq = Eigen::VectorXd::Zero(n);
  // rotationalThrust Order +- 10 
  // linearThrust Order +100
  // mapscale order 10 - thats params.pixelsize
  // Accumulate forces and torques into these:
  uint collide_checks = 0;  // debug count...

  for (uint i=0; i<n; i++) {
    Eigen::Vector2f pos_i;
    pos_i(0) = states(i,0);
    pos_i(1) = states(i,1);
    Eigen::Vector2f vel_i;
    vel_i(0) = states(i,2);
    vel_i(1) = states(i,3);
    float theta_i = states(i,4);
    float w_i = states(i,5);

    // 1. Control 
    float thrusting = ctrls(i, 0);
    float turning = ctrls(i, 1);
    f(i, 0) = thrusting * params.linearThrust * cos(theta_i);
    f(i, 1) = thrusting * params.linearThrust * sin(theta_i);
    trq(i) = turning * params.rotationalThrust;

    // 2. Drag
    f(i, 0) -= cd_a_rho * vel_i(0);
    f(i, 1) -= cd_a_rho * vel_i(1);
    trq(i) -= spin_drag_ratio*cd_a_rho*w_i*rad*rad; // * abs(w_i)

    // 3. Inter-ship collisions against ships of lower index...  
    // Figure out this ship's hashes: It has 4 in 2 dimensions
    std::unordered_set<uint> collision_shortlist;
    std::pair<int, int> my_hash;
    for (int dx=-1; dx < 2; dx+=2)
      for (int dy=-1; dy < 2; dy+=2)
      {
        float x_mod = pos_i(0) + float(dx)*rad;
        float y_mod = pos_i(1) + float(dy)*rad;
        my_hash = std::make_pair(int(x_mod / map_grid), 
                                 int(y_mod / map_grid));
        if (bins.count(my_hash) > 0)
        {
            // Already exists - shortlist others and add self
            std::vector<uint> current_bin = bins.find(my_hash)->second; 
            // -->first is the key as it returns a key/value pair
            for (uint bin_idx: current_bin)
              if (bin_idx != i)
                collision_shortlist.insert(bin_idx);
            current_bin.push_back(i);
        }
        else
        {
            // didnt exist - add self, and push into map
            std::vector<uint> current_bin;
            current_bin.push_back(i);
            bins.insert(std::make_pair(my_hash, current_bin));
        }
      }

    for (uint j: collision_shortlist) {  // =i+1; j<n; j++) {
      collide_checks ++;
      // std::cout << "Checking " << i << ", " << j << "\n";
      Eigen::Vector2f pos_j;
      pos_j(0) = states(j,0);
      pos_j(1) = states(j,1);
      Eigen::Vector2f vel_j;
      vel_j(0) = states(j,2);
      vel_j(1) = states(j,3);
      float theta_j = states(j,4);
      float w_j = states(j,5);

      Eigen::Vector2f dP = pos_j - pos_i;
      float dist = dP.norm() + eps - diameter;
      Eigen::Vector2f dPhat = dP / (dP.norm() + eps);
      if (dist < 0) {
        // we have a collision interaction
        
        // A. Direct collision: apply linear spring normal force
        float f_magnitude = - dist * k_elastic; // dist < =
        if ((vel_j - vel_i).dot(pos_j - pos_i) > 0)
            f_magnitude *= ship_restitution;
        Eigen::Vector2f f_norm = f_magnitude * dPhat;
        f(i, 0) -= f_norm(0);
        f(i, 1) -= f_norm(1);
        f(j, 0) += f_norm(0);
        f(j, 1) += f_norm(1);

        // B. Surface frictions: approximate spin effects
        Eigen::Vector2f perp;  // surface tangent pointing +theta direction
        perp(0) = -dPhat(1);
        perp(1) = dPhat(0);
        
        // relative velocities of surfaces
        float v_rel = rad*w_i + rad*w_j + perp.dot(vel_i - vel_j);
        float fric = f_magnitude * mu * sigmoid(v_rel);
        Eigen::Vector2f f_fric = fric * perp;
        f(i, 0) += f_fric(0);
        f(i, 1) += f_fric(1);
        f(j, 0) -= f_fric(0);
        f(j, 1) -= f_fric(1);
        trq(i) -= fric * rad;
        trq(j) -= fric * rad;
      }  // end collision
    } // end loop 3. opposing ship


    // 4. Wall single body collisions
    // compute distance to wall and local normals
    float wall_dist, norm_x, norm_y;
    interpolate_map(pos_i(0), pos_i(1), wall_dist, norm_x, norm_y, map, params);
    float dist = wall_dist - rad;
    if (dist < 0)
    {
      /* if (dist < -1.) */
      /*     assert(false); */

      // Spring force
      float f_norm_mag = -dist*k_elastic;  // dist is negative, f_norm is +ve
      if (norm_x*vel_i(0) + norm_y*vel_i(1) > 0)
          f_norm_mag *= wall_restitution;
      
      if (dist > -rad*0.25)
      {
        // not significantly through wall yet
        f(i, 0) += f_norm_mag * norm_x;
        f(i, 1) += f_norm_mag * norm_y;
      }
      else
      {
        // uh-oh - lets just SET normal forces and seriously damp vel
        f(i, 0) = f_norm_mag * norm_x;
        f(i, 1) = f_norm_mag * norm_y;
        f(i, 0) -= 100. * vel_i(0);
        f(i, 1) -= 100. * vel_i(1);
        
      }
      // Surface friction
      Eigen::Vector2f perp;  // surface tangent pointing +theta direction
      perp(0) = -norm_y;
      perp(1) = norm_x;
      float v_rel = w_i * rad + vel_i(0)*norm_y - vel_i(1)*norm_x;
      float fric = f_norm_mag * mu_wall * sigmoid(v_rel);
      f(i, 0) -= fric*norm_y;
      f(i, 1) += fric*norm_x;
      trq(i) -= fric * rad;
    }
  } // end loop current ship

  // std::cout << "Collision checks:" << collide_checks << "\n";
  // Compose the vector of derivatives:
  float vmax = 40.0;
  for (int i=0; i<n; i++)
  {
    float vx = states(i,2);
    float vy = states(i,3);
    float speed = std::sqrt(vx*vx + vy*vy);
    if (speed > vmax)
    {
      vx *= vmax/speed;
      vy *= vmax/speed;
    }
    
    // x_dot = vx
    derivs(i, 0) = vx;
    // y_dot = vy
    derivs(i, 1) = vy; 
    // vx_dot = fx / m
    float ax = f(i,0)/masses(i);
    float ay = f(i,1)/masses(i);
    
    derivs(i, 2) = ax;
    // vy_dot = fy / m
    derivs(i, 3) = ay;
    // theta_dot = omega
    derivs(i, 4) = states(i, 5);
    // omega_dot = T_r / (inertia_mass_ratio*m)
    derivs(i,5) = trq(i) / (inertia_mass_ratio * masses(i));
  }
  
  // ux uy vx vy  theta omega
  // 0  1  2  3   4     5
}
コード例 #7
0
// General outline: the model can be written:
//    M(o)o_dotdot + Q(o,o_dot)o_dot + G(o) = tau
// When we linearize to the first order around position O, we get the approximation: o = O + e and
//    M(O)e_dotdot + Q(O,O_dot)e_dot + G(O) + grad(G)(O)e = tau
// Or:
//    (e)_dot = I e_dot                                + 0
//    (e_dot)_dot = -M^-1 Q e_dot -M^-1 G e + M^-1 tau - G(O)
// We first compute the matrices M,Q,G and then linearize the gravity term.
bool SerialChainModel::getLinearization(const StateVector & x, StateMatrix & A, InputMatrix & B, InputVector & c)
{
//   ROS_DEBUG("1");
  assert(inputs_>0);
  const int n=inputs_;
  KDL::JntArray kdl_q(n);
  KDL::JntArray kdl_q_dot(n);

//   ROS_DEBUG("2");
  //Fills the data
  for(int i=0; i<n; ++i)
  {
    kdl_q(i) = x(i);
    kdl_q_dot(i) = x(i+n);
  }
  
//   ROS_DEBUG("3");
  //Compute M
  Eigen::MatrixXd M(n,n);
  NEWMAT::Matrix mass(n,n);
  chain_->computeMassMatrix(kdl_q,kdl_torque_,mass);
  for(int i=0;i<n;i++)
    for(int j=0;j<n;j++)
      M(i,j)=mass(i+1,j+1);
//   ROS_DEBUG("4");
  //Compute Q
  Eigen::MatrixXd Q(n,n);
  Q.setZero();
  NEWMAT::Matrix christoffel(n*n,n);
  chain_->computeChristoffelSymbols(kdl_q,kdl_torque_,christoffel);
//   ROS_DEBUG("5-");
  for(int i=0;i<n;i++)
    for(int j=0;j<n;j++)
      for(int k=0;k<n;k++)
        Q(i,j)+=christoffel(i*n+j+1,k+1)*kdl_q_dot(j);
//   ROS_DEBUG("5");
  //Compute G
  Eigen::VectorXd G(n,1);
  chain_->computeGravityTerms(kdl_q,kdl_torque_);
  for(int i=0;i<n;i++)
    G(i)=kdl_torque_[i][2];
//   ROS_DEBUG("6");
  //Computing the gradient of G
  Eigen::MatrixXd gG(n,n);
  const double epsi=0.01;
  for(int i=0;i<n;i++)
  {
    KDL::JntArray ja = kdl_q;
    ja(i)=ja(i)+epsi;
    chain_->computeGravityTerms(ja,kdl_torque_);
    for(int j=0;j<n;j++)
      gG(i,j)=(kdl_torque_[j][2]-G(j))/epsi;
  }
//   ROS_DEBUG("7");
  // Final assembling
  Eigen::MatrixXd Minvminus=-M.inverse(); //Computing M's inverse once
  ROS_DEBUG_STREAM(A.rows());
  assert(A.rows()==n*2);
  assert(A.cols()==n*2);
  A.block(0,0,n,n).setZero();
  A.block(0,n,n,n)=Eigen::MatrixXd::Identity(n,n);
  A.block(n,0,n,n)=Minvminus*gG;
  A.block(n,n,n,n)=Minvminus*Q;
  
  assert(B.rows()==n*2);
  assert(B.cols()==n);
  B.block(0,0,n,n).setZero();
  B.block(n,0,n,n)=Minvminus;
//   ROS_DEBUG("8");
  c=-G;
  return true;
}