void twoscales() { TCanvas *c1 = new TCanvas("c1","hists with different scales",600,400); //create/fill draw h1 gStyle->SetOptStat(kFALSE); TH1F *h1 = new TH1F("h1","my histogram",100,-3,3); Int_t i; for (i=0;i<10000;i++) h1->Fill(gRandom->Gaus(0,1)); h1->Draw(); c1->Update(); //create hint1 filled with the bins integral of h1 TH1F *hint1 = new TH1F("hint1","h1 bins integral",100,-3,3); Float_t sum = 0; for (i=1;i<=100;i++) { sum += h1->GetBinContent(i); hint1->SetBinContent(i,sum); } //scale hint1 to the pad coordinates Float_t rightmax = 1.1*hint1->GetMaximum(); Float_t scale = gPad->GetUymax()/rightmax; hint1->SetLineColor(kRed); hint1->Scale(scale); hint1->Draw("same"); //draw an axis on the right side TGaxis *axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(), gPad->GetUxmax(), gPad->GetUymax(),0,rightmax,510,"+L"); axis->SetLineColor(kRed); axis->SetLabelColor(kRed); axis->Draw(); }
//========================================== //========================================== void plotPair(TH1F *h1,TH1F *h0 ) { h1->Draw(); // edit fonts/sizes TAxis *ax =h1->GetYaxis(); float ss=ax->GetTitleSize(); //printf("ss=%f\n",ss); ax->SetTitleSize(2*ss); ax->SetTitleOffset(0.5); ax =h1->GetXaxis(); ax->SetTitleSize(1.5*ss); ax->SetLabelSize(1.5*ss); ax->SetTitleOffset(0.7); // edit fonts/sizes DONE gPad->Update(); //scale hint1 to the pad coordinates Float_t rightmax = 1.1*h0->GetMaximum(); Float_t scale = gPad->GetUymax()/rightmax; h0->Scale(scale); h0->Draw("same"); //draw an axis on the right side TGaxis *axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(), gPad->GetUxmax(), gPad->GetUymax(),0,rightmax,510,"-R"); int col=h0->GetLineColor(); axis->SetLineColor(col); axis->SetTextColor(col); axis->SetLabelColor(col); axis ->SetTitle("LCP yield"); axis->SetTitleSize(2*ss); axis->SetTitleOffset(.5); axis->Draw(); TPaveStats *st =( TPaveStats *)gPad->GetPrimitive("stats"); st->SetX1NDC(0.35); st->SetX2NDC(0.5); st->SetY1NDC(0.7); st->SetY2NDC(1.); }
ExtraAxis anotherScale (const TH1* refHist, double scale, int color, const char* title, double offset) { ExtraAxis result; double x0 = refHist->GetXaxis()->GetXmin(); double x1 = refHist->GetXaxis()->GetXmax(); double y0 = refHist->GetMinimum(); double y1 = refHist->GetMaximum(); // double y0 = refHist->GetYaxis()->GetXmin(); // double y1 = refHist->GetYaxis()->GetXmax(); double xoffset = exp (log(x0) - (log(x1) - log(x0))*offset); TGaxis* axis = new TGaxis(xoffset, y0, xoffset, y1, y0*scale,y1*scale,510,"-GS"); axis->ImportAxisAttributes (refHist->GetXaxis()); axis->SetTitle(title); axis->SetTextColor (color); axis->SetLineColor (color); axis->SetLineWidth (1); axis->SetTextColor (color); axis->SetLabelColor (color); axis->SetLabelOffset (0.); axis->SetTitleOffset (0.65); axis->SetTickSize(0.015); result.Add (axis); TLine* line = new TLine (xoffset, y0, xoffset, y1); line->SetLineColor (color); line->SetLineWidth (2); result.Add (line); line = new TLine (x0, y0, xoffset, y0); line->SetLineColor (kGray); line->SetLineWidth (2); result.Add (line); line = new TLine (x0, y1, xoffset, y1); line->SetLineColor (kGray); line->SetLineWidth (2); result.Add (line); return result; }
/* void makeEff(TString fin){ c1 = new TCanvas("c1","",1360,768); f= TFile::Open(fin.Data()); TH1F * th1 = (TH1F*)f->FindObjectAny("HMass"); int width [nWidth]={30,35,50,45,50}; int bmin[nBmin]={91,93,95,97,99,101,103,105,107,109}; double eff[nWidth][nBmin]; for(int i=0;i<nWidth;i++){ for(int j=0;j<nBmin;j++){ eff[i][j]=getEff(th1,bmin[j],bmin[j]+width[i]); cout<<"range={"<<bmin[j]<<","<<bmin[j]+width[i]<<"} and efficiency="<<eff[i][j]<<endl; } } } */ void makeEffPRN0922() { c1 = new TCanvas("c1","",1360,768); c2 = new TCanvas("c2","",1360,768); c1->cd(); string output="FATjetATLASmassL2L3Corr"; int twikiSign[13][nWidth][nBmin]; int twikiSignNum[13][nWidth][nBmin]; double twikiSignValue[13][nWidth][nBmin]; double twikiSignNumValue[13][nWidth][nBmin]; double twikiEffValue[13][nWidth][nBmin]; double tgraphMass[13]= {600,800,1000,1200,1400,1600,1800,2000,2500,3000,3500,4000,4500}; double tgraphMassError[13]= {0}; double tgraphSigEff[13]= {0}; double tgraphSigEffError[13]= {0}; double tgraphBkgEff[13]= {0}; double tgraphBkgEffError[13]= {0}; double tgraphSgnEff[13]= {0}; double tgraphSgnEffError[13]= {0}; double tgraphSigEff145[13]= {0}; double tgraphSigEffError145[13]= {0}; double tgraphBkgEff145[13]= {0}; double tgraphBkgNum145[13]= {0}; double tgraphBkgNum[13]= {0}; double tgraphBkgEffError145[13]= {0}; double tgraphSgnEff145[13]= {0}; double tgraphSgnEffError145[13]= {0}; //double twikiEffNumValue[13][nWidth][nBmin]; //double twikiWidth[13][nWidth][nBmin]; //double twikiBmin[13][nWidth][nBmin]; //string masspoint[4]={"1000","2000","3000","4500"}; string masspoint[13]= {"600","800","1000","1200","1400","1600","1800","2000","2500","3000","3500","4000","4500"}; int width [nWidth]= {20,25,30,35,40,45,50,55,60}; int bmin[nBmin]= {90,95,100,105,110}; for (int massP=0; massP<13; massP++) { TString fin =Form("root_files/signal-%s.root",masspoint[massP].data()), fin2 = Form("root_files/DY-%s.root",masspoint[massP].data()); // fin2=Form("root_files/DYHTall-%s.root",masspoint[massP].data()); f= TFile::Open(fin.Data()); f2= TFile::Open(fin2.Data()); TH1F * th1 = (TH1F*)f->FindObjectAny("FATjetPRmassL2L3Corr"); TH1F * th2 = (TH1F*)f2->FindObjectAny("FATjetPRmassL2L3Corr"); //TString fin3 = Form("root_files/BulkGravitonZlepZqq-%s.root",masspoint[massP].data()); //f3= TFile::Open(fin3.Data()); //TH1F * th3 = (TH1F*)f3->FindObjectAny("HMass"); //cout<<"before"<<th2->GetEntries()<<endl; th2->Sumw2(); //th2->Add(th3); //cout<<"after"<<th2->GetEntries()<<endl; double eff[nWidth][nBmin],eff2[nWidth][nBmin],err[nWidth][nBmin],err2[nWidth][nBmin],err2Num[nWidth][nBmin]; double sign[nWidth][nBmin],signCP[nWidth][nBmin],signErr[nWidth][nBmin]; double signNum[nWidth][nBmin],signNumCP[nWidth][nBmin],signNumErr[nWidth][nBmin]; for(int i=0; i<nWidth; i++) { for(int j=0; j<nBmin; j++) { eff[i][j]=getEff(th1,bmin[j],bmin[j]+width[i]); eff2[i][j]=getEff(th2,bmin[j],bmin[j]+width[i]); //if(eff2[i][j]==0)cout<<massP<<","<<eff2[i][j]<<endl; err[i][j]=getErr(th1,bmin[j],bmin[j]+width[i]); err2[i][j]=getErr(th2,bmin[j],bmin[j]+width[i]); err2Num[i][j]=getErr2(th2,bmin[j],bmin[j]+width[i]); //if(massP==0)cout<<"method1="<<err2[i][j]<<",method2="<<err2Num[i][j]/th2->Integral()<<endl; sign[i][j]=getSign(eff[i][j],eff2[i][j]); signNum[i][j]=getSign(eff[i][j],eff2[i][j]*th2->Integral()); signCP[i][j]=sign[i][j]; signNumCP[i][j]=signNum[i][j]; signErr[i][j]=(1/(1+sqrt(eff2[i][j])))*sqrt(err[i][j]*err[i][j]+ (eff[i][j]*eff[i][j]*err2[i][j]*err2[i][j])/(4*eff2[i][j]*(1+sqrt(eff2[i][j]))*(1+sqrt(eff2[i][j])))); //signNumErr[i][j]=(1/(1+sqrt(eff2[i][j]*th2->Integral())))*sqrt(err[i][j]*err[i][j]+ (eff[i][j]*eff[i][j]*err2[i][j]*err2[i][j]*th2->Integral())/(4*eff2[i][j]*(1+sqrt(eff2[i][j]*th2->Integral()))*(1+sqrt(eff2[i][j]*th2->Integral())))); signNumErr[i][j]=(1/(1+sqrt(eff2[i][j]*th2->Integral())))*sqrt(err[i][j]*err[i][j]+ (eff[i][j]*eff[i][j]*err2Num[i][j]*err2Num[i][j])/(4*eff2[i][j]*th2->Integral()*(1+sqrt(eff2[i][j]*th2->Integral()))*(1+sqrt(eff2[i][j]*th2->Integral())))); if(eff2[i][j]<1e-7) { signErr[i][j]=err[i][j]/(1+sqrt(eff2[i][j])); signNumErr[i][j]=err[i][j]/(1+sqrt(eff2[i][j]*th2->Integral())); } if(massP==2 &&i==3 && j==3) { tgraphBkgNum145[massP]=eff2[i][j]*th2->Integral(); tgraphSigEff145[massP]=eff[i][j]; tgraphSigEffError145[massP]=err[i][j]; tgraphBkgEff145[massP]=eff2[i][j]; tgraphBkgEffError145[massP]=err2[i][j]; tgraphSgnEff145[massP]=signNum[i][j]; tgraphSgnEffError145[massP]=signNumErr[i][j]; } else if (massP==7 &&i==2 && j==2) { tgraphBkgNum145[massP]=eff2[i][j]*th2->Integral(); tgraphSigEff145[massP]=eff[i][j]; tgraphSigEffError145[massP]=err[i][j]; tgraphBkgEff145[massP]=eff2[i][j]; tgraphBkgEffError145[massP]=err2[i][j]; tgraphSgnEff145[massP]=signNum[i][j]; tgraphSgnEffError145[massP]=signNumErr[i][j]; } else if (massP==9 &&i==2 && j==2) { tgraphBkgNum145[massP]=eff2[i][j]*th2->Integral(); tgraphSigEff145[massP]=eff[i][j]; tgraphSigEffError145[massP]=err[i][j]; tgraphBkgEff145[massP]=eff2[i][j]; tgraphBkgEffError145[massP]=err2[i][j]; tgraphSgnEff145[massP]=signNum[i][j]; tgraphSgnEffError145[massP]=signNumErr[i][j]; } else if (massP==11 &&i==4 && j==1) { tgraphBkgNum145[massP]=eff2[i][j]*th2->Integral(); tgraphSigEff145[massP]=eff[i][j]; tgraphSigEffError145[massP]=err[i][j]; tgraphBkgEff145[massP]=eff2[i][j]; tgraphBkgEffError145[massP]=err2[i][j]; tgraphSgnEff145[massP]=signNum[i][j]; tgraphSgnEffError145[massP]=signNumErr[i][j]; } else {} if(i==4 && j==3) { //cout<<width[i]<<","<<bmin[j]; } //cout<<"range={"<<bmin[j]<<","<<bmin[j]+width[i]<<"} and efficiency="<<eff[i][j]<<endl; //cout<<"range=["<<bmin[j]<<","<<bmin[j]+width[i]<<"] and significant="<<sign[i][j]<<endl; //if(massP==0)cout<<eff[i][j]<<","<<eff2[i][j]<<endl; } } vector<int> signI,signJ; for(int ij=0; ij<nWidth*nBmin; ij++) { double tempSign=0; int tempI=0,tempJ=0; for(int i=0; i<nWidth; i++) { for(int j=0; j<nBmin; j++) { if(signCP[i][j]>tempSign) { //cout<<"i="<<i<<",j="<<j<<",signcp="<<signCP[i][j]<<",temp="<<tempSign<<endl; tempSign=signCP[i][j]; tempI=i; tempJ=j; } } } //cout<<signCP[tempI][tempJ]<<endl; signCP[tempI][tempJ]=0; if(width[tempI]+bmin[tempJ]>150) { continue; } //if(massP==0)cout<<"tempI"<<tempI<<",tempJ"<<tempJ<<endl; signI.push_back(tempI); signJ.push_back(tempJ); } vector<int> signINum,signJNum; for(int ij=0; ij<nWidth*nBmin; ij++) { double tempSign=0; int tempI=0,tempJ=0; for(int i=0; i<nWidth; i++) { for(int j=0; j<nBmin; j++) { if(signNumCP[i][j]>tempSign) { //cout<<"i="<<i<<",j="<<j<<",signcp="<<signCP[i][j]<<",temp="<<tempSign<<endl; tempSign=signNumCP[i][j]; tempI=i; tempJ=j; } } } //cout<<signCP[tempI][tempJ]<<endl; signNumCP[tempI][tempJ]=0; if(width[tempI]+bmin[tempJ]>150) { //cout<<"!"; continue; } signINum.push_back(tempI); signJNum.push_back(tempJ); } int numberBin=15; int numberBinFull=35; TH1F * th1Sign=new TH1F("Sign","Sign",numberBin,0,numberBin); TH1F * th1Eff=new TH1F("th1Eff","th1Eff",numberBin,0,numberBin); TH1F * th1Eff2=new TH1F("th1Eff2","th1Eff2",numberBin,0,numberBin); TH1F * th1SignFull=new TH1F("SignFull","SignFull",numberBinFull,0,numberBinFull); TH1F * th1EffFull=new TH1F("th1EffFull","th1EffFull",numberBinFull,0,numberBinFull); TH1F * th1Eff2Full=new TH1F("th1Eff2Full","th1Eff2Full",numberBinFull,0,numberBinFull); for(int i=0; i<numberBin; i++) { th1Sign->SetBinContent(i+1,sign[signI[i]][signJ[i]]); th1Sign->SetBinError(i+1,signErr[signI[i]][signJ[i]]); th1Eff->SetBinContent(i+1,eff[signI[i]][signJ[i]]); th1Eff2->SetBinContent(i+1,eff2[signI[i]][signJ[i]]); th1Eff->SetBinError(i+1,err[signI[i]][signJ[i]]); th1Eff2->SetBinError(i+1,err2[signI[i]][signJ[i]]); th1Sign->GetXaxis()->SetBinLabel(i+1,Form("%d-%d",bmin[signJ[i]],bmin[signJ[i]]+width[signI[i]])); //cout<<"range=["<<bmin[signJ[i]]<<","<<bmin[signJ[i]]+width[signI[i]]<<"] and significant="<<sign[signI[i]][signJ[i]]<<endl; } //cout<<"signI.size="<<signI.size()<<endl; for(unsigned int i=0; i<signI.size(); i++) { twikiSign[massP][signI[i]][signJ[i]]=i+1; th1SignFull->SetBinContent(i+1,sign[signI[i]][signJ[i]]); th1SignFull->SetBinError(i+1,signErr[signI[i]][signJ[i]]); th1EffFull->SetBinContent(i+1,eff[signI[i]][signJ[i]]); th1Eff2Full->SetBinContent(i+1,eff2[signI[i]][signJ[i]]); th1EffFull->SetBinError(i+1,err[signI[i]][signJ[i]]); th1Eff2Full->SetBinError(i+1,err2[signI[i]][signJ[i]]); //th1SignFull->GetXaxis()->SetBinLabel(i+1,Form("%d-%d",bmin[signJ[i]],bmin[signJ[i]]+width[signI[i]])); th1SignFull->GetXaxis()->SetBinLabel(i+1,""); twikiSignValue[massP][signI[i]][signJ[i]]=sign[signI[i]][signJ[i]]; twikiEffValue[massP][signI[i]][signJ[i]]=eff[signI[i]][signJ[i]]; //cout<<"range=["<<bmin[signJ[i]]<<","<<bmin[signJ[i]]+width[signI[i]]<<"] and significant="<<sign[signI[i]][signJ[i]]<<endl; } gStyle->SetOptStat(0000000000); th1Sign->SetTitle(Form("largest 15 Sign.(eff),%sGev",masspoint[massP].data())); th1Sign->SetMinimum(0); th1Sign->SetMaximum(1); th1Sign->SetLineColor(4); th1Sign->Draw(); th1Eff->SetLineColor(2); th1Eff2->SetLineColor(3); th1Eff->Draw("same"); th1Eff2->Draw("same"); TLegend* leg ; leg=new TLegend(x1NDC,y1NDC,x2NDC,y2NDC); setLeg(leg); leg->AddEntry(th1Sign,"significance"); leg->AddEntry(th1Eff,"signal efficiency"); leg->AddEntry(th1Eff2,"Bkg. efficiency"); leg->Draw("same"); if(massP==0)c1->Print(Form("pdfPR/%s.pdf(",output.data())); //else if(massP==12)c1->Print("pdf/signv2.pdf)"); else c1->Print(Form("pdfPR/%s.pdf",output.data())); th1SignFull->SetTitle(Form("all windows(eff),%sGev",masspoint[massP].data())); th1SignFull->SetMinimum(0); th1SignFull->SetMaximum(1); th1SignFull->SetLineColor(4); th1SignFull->Draw("Hist"); th1EffFull->SetLineColor(2); th1Eff2Full->SetLineColor(3); th1EffFull->Draw("same"); th1Eff2Full->Draw("same"); leg->Draw("same"); c1->Print(Form("pdfPR/%s.pdf",output.data())); for(int i=0; i<numberBin; i++) { if(i==0) { tgraphSigEff[massP]=eff[signINum[i]][signJNum[i]]; tgraphSigEffError[massP]=err[signINum[i]][signJNum[i]]; tgraphBkgEff[massP]=eff2[signINum[i]][signJNum[i]]; tgraphBkgEffError[massP]=err2[signINum[i]][signJNum[i]]; tgraphSgnEff[massP]=signNum[signINum[i]][signJNum[i]]; tgraphSgnEffError[massP]=signNumErr[signINum[i]][signJNum[i]]; tgraphBkgNum[massP]=eff2[signINum[i]][signJNum[i]]*th2->Integral(); } th1Sign->SetBinContent(i+1,signNum[signINum[i]][signJNum[i]]); th1Sign->SetBinError(i+1,signNumErr[signINum[i]][signJNum[i]]); th1Eff->SetBinContent(i+1,eff[signINum[i]][signJNum[i]]); th1Eff2->SetBinContent(i+1,eff2[signINum[i]][signJNum[i]]); th1Eff->SetBinError(i+1,err[signINum[i]][signJNum[i]]); th1Eff2->SetBinError(i+1,err2[signINum[i]][signJNum[i]]); th1Eff->GetXaxis()->SetBinLabel(i+1,Form("%d-%d",bmin[signJNum[i]],bmin[signJNum[i]]+width[signINum[i]])); //cout<<"range=["<<bmin[signJ[i]]<<","<<bmin[signJ[i]]+width[signI[i]]<<"] and significant="<<sign[signI[i]][signJ[i]]<<endl; } for(unsigned int i=0; i<signINum.size(); i++) { twikiSignNum[massP][signINum[i]][signJNum[i]]=i+1; th1SignFull->SetBinContent(i+1,signNum[signINum[i]][signJNum[i]]); th1SignFull->SetBinError(i+1,signNumErr[signINum[i]][signJNum[i]]); th1EffFull->SetBinContent(i+1,eff[signINum[i]][signJNum[i]]); th1Eff2Full->SetBinContent(i+1,eff2[signINum[i]][signJNum[i]]); th1EffFull->SetBinError(i+1,err[signINum[i]][signJNum[i]]); th1Eff2Full->SetBinError(i+1,err2[signINum[i]][signJNum[i]]); //th1SignFull->GetXaxis()->SetBinLabel(i+1,Form("%d-%d",bmin[signJ[i]],bmin[signJ[i]]+width[signI[i]])); th1SignFull->GetXaxis()->SetBinLabel(i+1,""); th1EffFull->GetXaxis()->SetBinLabel(i+1,""); th1Eff2Full->GetXaxis()->SetBinLabel(i+1,""); twikiSignNumValue[massP][signINum[i]][signJNum[i]]=signNum[signINum[i]][signJNum[i]]; th1EffFull->GetXaxis()->SetBinLabel(i+1,Form("%d-%d",bmin[signJNum[i]],bmin[signJNum[i]]+width[signINum[i]])); //twikiEffNumValue[massP][signINum[i]][signJNum[i]]=effNum[signINum[i]][signJNum[i]]; //cout<<"range=["<<bmin[signJ[i]]<<","<<bmin[signJ[i]]+width[signI[i]]<<"] and significant="<<sign[signI[i]][signJ[i]]<<endl; } th1Eff->SetMinimum(0); th1Eff->SetMaximum(1); th1EffFull->SetMinimum(0); th1EffFull->SetMaximum(1); th1Eff->SetYTitle("efficiency"); th1EffFull->SetYTitle("efficiency"); th1Eff->SetTitle(Form("largest 15 Sign.(Num),%sGev",masspoint[massP].data())); th1Eff->Draw(); th1Eff2->Draw("same"); Float_t rightmax = 2*th1Sign->GetBinContent(1); //cout<<rightmax<<endl; Float_t scale = gPad->GetUymax()/rightmax; //hint1->SetLineColor(kRed); th1Sign->Scale(scale); //hint1->Draw("same"); //draw an axis on the right side c1->Update(); th1Sign->Draw("same"); //leg->Clear(); //leg->AddEntry(th1Eff,"signal efficiency"); //leg->AddEntry(th1Eff2,"Bkg. efficiency"); //leg->SetY1(0.8335); leg->Draw("same"); TGaxis *axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(), gPad->GetUxmax(), gPad->GetUymax(),0,rightmax,510,"+L"); axis->SetTitle("significance"); axis->SetTitleColor(4); axis->SetLineColor(4); axis->SetLabelColor(4); axis->Draw(); c1->Print(Form("pdfPR/%s.pdf",output.data())); th1EffFull->SetTitle(Form("all windows(Num),%sGev",masspoint[massP].data())); th1EffFull->Draw(); th1Eff2Full->Draw("same"); c1->Update(); rightmax = 1.1*th1SignFull->GetBinContent(1); scale = gPad->GetUymax()/rightmax; th1SignFull->Scale(scale); th1SignFull->Draw("Hist,same"); leg->Draw("same"); TGaxis *axis2 = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(), gPad->GetUxmax(), gPad->GetUymax(),0,rightmax,510,"+L"); axis2->SetTitle("significance"); axis2->SetTitleColor(4); axis2->SetLineColor(4); axis2->SetLabelColor(4); axis2->Draw(); if(massP==12)c1->Print(Form("pdfPR/%s.pdf)",output.data())); else c1->Print(Form("pdfPR/%s.pdf",output.data())); } TLegend* leg ; leg=new TLegend(0.1441452,0.742447,0.300645,0.883966); setLeg(leg); c2->cd(); TGraphErrors* tg1= new TGraphErrors(13,tgraphMass,tgraphSigEff,tgraphMassError,tgraphSigEffError); TGraphErrors* tg2= new TGraphErrors(13,tgraphMass,tgraphBkgEff,tgraphMassError,tgraphBkgEffError); TGraphErrors* tg3= new TGraphErrors(13,tgraphMass,tgraphSgnEff,tgraphMassError,tgraphSgnEffError); for(int i=0; i<13; i++) { //cout<<tgraphSigEff[i]<<","<<tgraphSigEff145[i]; cout<<"i="<<i<<","<<tgraphSigEff[i]<<","<<tgraphBkgNum[i]<<","<<tgraphSgnEff[i]<<endl; cout<<"i="<<i<<","<<tgraphSigEff145[i]<<","<<tgraphBkgNum145[i]<<","<<tgraphSgnEff145[i]<<endl; tgraphSigEff[i]=tgraphSigEff[i]/tgraphSigEff145[i]; //cout<<tgraphSigEff[i]<<endl; tgraphSigEffError[i]=sqrt((tgraphSigEffError[i]/tgraphSigEff[i])*(tgraphSigEffError[i]/tgraphSigEff[i])+(tgraphSigEffError145[i]/tgraphSigEff145[i])*(tgraphSigEffError145[i]/tgraphSigEff145[i])); tgraphSigEffError[i]*=tgraphSigEff[i]; tgraphBkgEff[i]=tgraphBkgEff[i]/tgraphBkgEff145[i]; tgraphBkgEffError[i]=sqrt((tgraphBkgEffError[i]/tgraphBkgEff[i])*(tgraphBkgEffError[i]/tgraphBkgEff[i])+(tgraphBkgEffError145[i]/tgraphBkgEff145[i])*(tgraphBkgEffError145[i]/tgraphBkgEff145[i])); tgraphBkgEffError[i]*=tgraphBkgEff[i]; tgraphSgnEff[i]=tgraphSgnEff[i]/tgraphSgnEff145[i]; tgraphSgnEffError[i]=sqrt((tgraphSgnEffError[i]/tgraphSgnEff[i])*(tgraphSgnEffError[i]/tgraphSgnEff[i])+(tgraphSgnEffError145[i]/tgraphSgnEff145[i])*(tgraphSgnEffError145[i]/tgraphSgnEff145[i])); tgraphSgnEffError[i]*=tgraphSgnEff[i]; } TGraphErrors* tg4= new TGraphErrors(13,tgraphMass,tgraphSigEff,tgraphMassError,tgraphSigEffError); TGraphErrors* tg5= new TGraphErrors(13,tgraphMass,tgraphBkgEff,tgraphMassError,tgraphBkgEffError); TGraphErrors* tg6= new TGraphErrors(13,tgraphMass,tgraphSgnEff,tgraphMassError,tgraphSgnEffError); tg1->SetMaximum(1); tg1->SetMinimum(0); tg1->SetTitle(""); tg1->GetXaxis()->SetTitle("Mass of Z' [GeV]"); tg1->Draw("APL*"); tg2->SetLineColor(2); tg3->SetLineColor(3); tg1->SetMarkerStyle(20); tg2->SetMarkerStyle(21); tg3->SetMarkerStyle(22); leg->Clear(); tg1->SetFillColor(kWhite); tg2->SetFillColor(kWhite); tg3->SetFillColor(kWhite); gStyle->SetFillColor(kWhite) ; leg->AddEntry(tg1,"signal eff."); leg->AddEntry(tg2,"bkg. eff."); leg->AddEntry(tg3,"significance"); tg2->Draw("PL,same"); tg3->Draw("PL,same"); leg->Draw("same"); c2->Print("png/1.png"); tg4->GetXaxis()->SetTitle("Mass of Z' [GeV]"); tg4->SetTitle("most significant window/105-145"); tg4->SetMaximum(2.2); tg4->SetMinimum(0.3); tg4->SetMarkerStyle(20); tg5->SetMarkerStyle(21); tg6->SetMarkerStyle(22); tg4->Draw("APL"); tg5->SetLineColor(2); tg6->SetLineColor(3); leg->Clear(); tg4->SetFillColor(kWhite); tg5->SetFillColor(kWhite); tg6->SetFillColor(kWhite); gStyle->SetFillColor(kWhite) ; leg->AddEntry(tg4,"signal eff. ratio"); leg->AddEntry(tg5,"bkg. eff. ratio"); leg->AddEntry(tg6,"significance ratio"); tg5->Draw("PL,same"); tg6->Draw("PL,same"); leg->Draw("same"); c2->Print("png/2.png"); ofstream myfile; myfile.open ("txt/twikiOPPRN.txt"); myfile<<"|*windowRange*|"; for (int massP=0; massP<4; massP++)myfile<<"*"<<masspoint[massP].data()<<"Num*|"; //myfile<<"*"; for (int massP=0; massP<4; massP++)myfile<<"*"<<masspoint[massP].data()<<"Eff*|"; myfile<<"*avg.rank(eff)*|*avg.rank(Num)*|*avg.rank(total)*|"<<endl; for(int j=0; j<nBmin; j++) { for(int i=0; i<nWidth; i++) { if(width[i]+bmin[j]>150)continue; myfile<<"|"<<bmin[j]<<"to"<<bmin[j]+width[i]<<"|"; double temp1=0,temp2=0; for (int massP=0; massP<4; massP++) { myfile<<twikiSignNum[massP][i][j]<<"("<<twikiSignNumValue[massP][i][j]<<")|"; temp1+=twikiSign[massP][i][j]; temp2+=twikiSignNum[massP][i][j]; } for (int massP=0; massP<4; massP++) { myfile<<twikiSign[massP][i][j]<<"("<<twikiSignValue[massP][i][j]<<")|"; } myfile<<temp1/4<<"|"<<temp2/4<<"|"<<(temp1+temp2)/8<<"|"<<endl; //<<"to"<<bmin[i]+width[j]<<"|"<<endl; //cout<<j<<","<<i<<endl; } } myfile<<endl; myfile<<"|*rank(signalEff)*|"; for (int massP=0; massP<4; massP++)myfile<<"*"<<masspoint[massP].data()<<"Eff*|"; myfile<<endl; vector<int> signINum,signJNum; //for(int ij=0;ij<nWidth*nBmin;ij++){ for(int ij=0; ij<15; ij++) { myfile<<"|"<<ij+1<<"|"; for (int massP=0; massP<4; massP++) { double tempSign=1000; int tempI=0,tempJ=0; //for(int i=0;i<nWidth;i++)for(int j=0;j<nBmin;j++)if(width[tempI]+bmin[tempJ]>150)twikiSign[massP][tempI][tempJ]=10000; for(int i=0; i<nWidth; i++) { for(int j=0; j<nBmin; j++) { if(twikiSign[massP][i][j]<tempSign) { if(width[i]+bmin[j]>150)continue; //cout<<"i="<<i<<",j="<<j<<",signcp="<<signCP[i][j]<<",temp="<<tempSign<<endl; tempSign=twikiSign[massP][i][j]; tempI=i; tempJ=j; //cout<<tempI<<","<<tempJ<<","<<tempSign<<endl; } } } //signINum.push_back(tempI); //signJNum.push_back(tempJ); //cout<<signCP[tempI][tempJ]<<endl; //cout<<"twikiSign[massP][tempI][tempJ]="<<twikiSign[massP][tempI][tempJ]<<"|"<<bmin[tempJ]<<"to"<<bmin[tempJ]+width[tempI]<<"|"<<endl; twikiSign[massP][tempI][tempJ]=10000; //if(width[tempI]+bmin[tempJ]>150)continue; myfile<<bmin[tempJ]<<"to"<<bmin[tempJ]+width[tempI]<<"("<<setprecision(3)<<twikiEffValue[massP][tempI][tempJ]<<")|"; //cout<<twikiSign[massP][tempI][tempJ]; } myfile<<endl; } myfile<<endl; myfile<<"|*rank(signalEff)*|"; for (int massP=0; massP<4; massP++)myfile<<"*"<<masspoint[massP].data()<<"Num*|"; myfile<<endl; //vector<int> signINum,signJNum; //for(int ij=0;ij<nWidth*nBmin;ij++){ for(int ij=0; ij<15; ij++) { myfile<<"|"<<ij+1<<"|"; for (int massP=0; massP<4; massP++) { double tempSign=10000; int tempI=0,tempJ=0; //for(int i=0;i<nWidth;i++)for(int j=0;j<nBmin;j++)if(width[tempI]+bmin[tempJ]>150)twikiSignNum[massP][tempI][tempJ]=10000; for(int i=0; i<nWidth; i++) { for(int j=0; j<nBmin; j++) { if(twikiSignNum[massP][i][j]<tempSign) { if(width[i]+bmin[j]>150)continue; //cout<<"i="<<i<<",j="<<j<<",signcp="<<signCP[i][j]<<",temp="<<tempSign<<endl; tempSign=twikiSignNum[massP][i][j]; tempI=i; tempJ=j; //cout<<tempI<<","<<tempJ<<","<<tempSign<<endl; } } } //signINum.push_back(tempI); //signJNum.push_back(tempJ); //cout<<signCP[tempI][tempJ]<<endl; twikiSignNum[massP][tempI][tempJ]=10000; //if(width[tempI]+bmin[tempJ]>150)continue; myfile<<bmin[tempJ]<<"to"<<bmin[tempJ]+width[tempI]<<"("<<setprecision(3)<<twikiEffValue[massP][tempI][tempJ]<<")|"; //cout<<twikiSign[massP][tempI][tempJ]; } myfile<<endl; } myfile<<endl; }
void composeTrackAnalysisbyAssociator(string FileListName, int FileNumber) { if(debug) cout << FileListName << endl; string theFileName; ifstream composeFileList; composeFileList.open(FileListName.c_str()); string OutputPlotNamepreFix = FileListName + "_"; string OutputPlotNameFix = ".png"; unsigned int EventNumber; unsigned int trackingParticleMatch; double recTrackPurity; double recTrackrefMomentum; double recTrackrefPhi; double recTrackrefEta; double recTrackinnerMomentum; double recTrackinnerPhi; double recTrackinnerEta; unsigned int recTrackinnerValid; double recTrackouterMomentum; double recTrackouterPhi; double recTrackouterEta; unsigned int recTrackouterValid; double simTrackinnerMomentum; double simTrackinnerPhi; double simTrackinnerEta; unsigned int simTrackinnerMatch; double simTrackouterMomentum; double simTrackouterPhi; double simTrackouterEta; unsigned int simTrackouterMatch; double recTrackinnerMomentumofTSOS; double recTrackinnerPhiofTSOS; double recTrackinnerEtaofTSOS; unsigned int recTrackinnerValidofTSOS; double recTrackouterMomentumofTSOS; double recTrackouterPhiofTSOS; double recTrackouterEtaofTSOS; unsigned int recTrackouterValidofTSOS; double recTrackimpactMomentumofTSOS; double recTrackimpactPhiofTSOS; double recTrackimpactEtaofTSOS; unsigned int recTrackimpactValidofTSOS; int recTrackCharge; double simTrackMomentumPt; double simTrackPhi; double simTrackEta; int simTrackCharge; TObjArray* myEfficiencyHist = new TObjArray(); TObjArray* myParticleHist = new TObjArray(); TObjArray* mySTAHist = new TObjArray(); TObjArray* myChargeCheckHist = new TObjArray(); TObjArray* myDeltaPtHist = new TObjArray(); TObjArray* myDeltaPhiHist = new TObjArray(); TObjArray* myDeltaEtaHist = new TObjArray(); vector<string> TypeName; TypeName.clear(); for(int Index = 0; Index < FileNumber; Index++) { getline(composeFileList, theFileName); TypeName.push_back(theFileName); string fullFileName = "data/"+ theFileName + ".root"; if(debug) cout << theFileName << endl; TFile* RootFile = TFile::Open(fullFileName.c_str()); TTree* T1 = (TTree*)RootFile->Get("ExTree"); T1->SetBranchAddress("EventNumber", &EventNumber); T1->SetBranchAddress("trackingParticleMatch", &trackingParticleMatch); T1->SetBranchAddress("recTrackPurity", &recTrackPurity); T1->SetBranchAddress("recTrackrefMomentum", &recTrackrefMomentum); T1->SetBranchAddress("recTrackrefPhi", &recTrackrefPhi); T1->SetBranchAddress("recTrackrefEta", &recTrackrefEta); T1->SetBranchAddress("recTrackinnerMomentum", &recTrackinnerMomentum); T1->SetBranchAddress("recTrackinnerPhi", &recTrackinnerPhi); T1->SetBranchAddress("recTrackinnerEta", &recTrackinnerEta); T1->SetBranchAddress("recTrackinnerValid", &recTrackinnerValid); T1->SetBranchAddress("recTrackouterMomentum", &recTrackouterMomentum); T1->SetBranchAddress("recTrackouterPhi", &recTrackouterPhi); T1->SetBranchAddress("recTrackouterEta", &recTrackouterEta); T1->SetBranchAddress("recTrackouterValid", &recTrackouterValid); T1->SetBranchAddress("simTrackinnerMomentum", &simTrackinnerMomentum); T1->SetBranchAddress("simTrackinnerPhi", &simTrackinnerPhi); T1->SetBranchAddress("simTrackinnerEta", &simTrackinnerEta); T1->SetBranchAddress("simTrackinnerMatch", &simTrackinnerMatch); T1->SetBranchAddress("simTrackouterMomentum", &simTrackouterMomentum); T1->SetBranchAddress("simTrackouterPhi", &simTrackouterPhi); T1->SetBranchAddress("simTrackouterEta", &simTrackouterEta); T1->SetBranchAddress("simTrackouterMatch", &simTrackouterMatch); T1->SetBranchAddress("recTrackinnerMomentumofTSOS", &recTrackinnerMomentumofTSOS); T1->SetBranchAddress("recTrackinnerPhiofTSOS", &recTrackinnerPhiofTSOS); T1->SetBranchAddress("recTrackinnerEtaofTSOS", &recTrackinnerEtaofTSOS); T1->SetBranchAddress("recTrackinnerValidofTSOS", &recTrackinnerValidofTSOS); T1->SetBranchAddress("recTrackouterMomentumofTSOS", &recTrackouterMomentumofTSOS); T1->SetBranchAddress("recTrackouterPhiofTSOS", &recTrackouterPhiofTSOS); T1->SetBranchAddress("recTrackouterEtaofTSOS", &recTrackouterEtaofTSOS); T1->SetBranchAddress("recTrackouterValidofTSOS", &recTrackouterValidofTSOS); T1->SetBranchAddress("recTrackimpactMomentumofTSOS", &recTrackimpactMomentumofTSOS); T1->SetBranchAddress("recTrackimpactPhiofTSOS", &recTrackimpactPhiofTSOS); T1->SetBranchAddress("recTrackimpactEtaofTSOS", &recTrackimpactEtaofTSOS); T1->SetBranchAddress("recTrackimpactValidofTSOS", &recTrackimpactValidofTSOS); T1->SetBranchAddress("recTrackCharge", &recTrackCharge); T1->SetBranchAddress("simTrackMomentumPt", &simTrackMomentumPt); T1->SetBranchAddress("simTrackPhi", &simTrackPhi); T1->SetBranchAddress("simTrackEta", &simTrackEta); T1->SetBranchAddress("simTrackCharge", &simTrackCharge); string TempHistName; TempHistName = theFileName + "_Efficiency2simPt"; TH1D* Efficiency2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_Particle2simPt"; TH1D* Particle2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_STA2simPt"; TH1D* STA2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_InverseChargeRato2simPt"; TH1D* InverseChargeRato2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_DeltaPt2simPt"; TH1D* DeltaPt2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_DeltaPhi2simPt"; TH1D* DeltaPhi2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_DeltaEta2simPt"; TH1D* DeltaEta2simPtHist = new TH1D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale); TempHistName = theFileName + "_MaxPurity2simPt"; TH2D* MaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 6, 0., 1.2); TempHistName = theFileName + "_Multiplicity2simPt"; TH2D* Multiplicity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 10, 0., 10.); TempHistName = theFileName + "_ChargeCheck2simPt"; TH2D* ChargeCheck2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 5, -2.5, 2.5); TempHistName = theFileName + "_simTrackMomentumPtmaxPurity2simPt"; TH2D* simTrackMomentumPtmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, (int)5*PtScale, 0, PtScale); TempHistName = theFileName + "_simTrackPhimaxPurity2simPt"; TH2D* simTrackPhimaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 314, -PI, PI); TempHistName = theFileName + "_simTrackEtamaxPurity2simPt"; TH2D* simTrackEtamaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 400, -2.0, 2.0); TempHistName = theFileName + "_recTrackimpactMomentumofTSOSmaxPurity2simPt"; TH2D* recTrackimpactMomentumofTSOSmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, (int)5*PtScale, 0, PtScale); TempHistName = theFileName + "_recTrackimpactPhiofTSOSmaxPurity2simPt"; TH2D* recTrackimpactPhiofTSOSmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 314, -PI, PI); TempHistName = theFileName + "_recTrackimpactEtaofTSOSmaxPurity2simPt"; TH2D* recTrackimpactEtaofTSOSmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 600, -3.0, 3.0); TempHistName = theFileName + "_recTrackimpactValidofTSOSmaxPurity2simPt"; TH2D* recTrackimpactValidofTSOSmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 2, 0., 2.); TempHistName = theFileName + "_DeltaPtmaxPurity2simPt"; TH2D* DeltaPtmaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, (int)5*PtScale, -1.*PtScale, PtScale); TempHistName = theFileName + "_DeltaPhimaxPurity2simPt"; TH2D* DeltaPhimaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 314, -PI, PI); TempHistName = theFileName + "_DeltaEtamaxPurity2simPt"; TH2D* DeltaEtamaxPurity2simPtHist = new TH2D(TempHistName.c_str(), TempHistName.c_str(), (int)(PtScale/2), 0, PtScale, 400, -2.0, 2.0); unsigned int trackingParticleMatch_temp; unsigned int efficiency_temp; double recTrackPurity_temp; double recTrackrefMomentum_temp; double recTrackrefPhi_temp; double recTrackrefEta_temp; double recTrackinnerMomentum_temp; double recTrackinnerPhi_temp; double recTrackinnerEta_temp; unsigned int recTrackinnerValid_temp; double recTrackouterMomentum_temp; double recTrackouterPhi_temp; double recTrackouterEta_temp; unsigned int recTrackouterValid_temp; double simTrackinnerMomentum_temp; double simTrackinnerPhi_temp; double simTrackinnerEta_temp; unsigned int simTrackinnerMatch_temp; double simTrackouterMomentum_temp; double simTrackouterPhi_temp; double simTrackouterEta_temp; unsigned int simTrackouterMatch_temp; double recTrackinnerMomentumofTSOS_temp; double recTrackinnerPhiofTSOS_temp; double recTrackinnerEtaofTSOS_temp; unsigned int recTrackinnerValidofTSOS_temp; double recTrackouterMomentumofTSOS_temp; double recTrackouterPhiofTSOS_temp; double recTrackouterEtaofTSOS_temp; unsigned int recTrackouterValidofTSOS_temp; double recTrackimpactMomentumofTSOS_temp; double recTrackimpactPhiofTSOS_temp; double recTrackimpactEtaofTSOS_temp; unsigned int recTrackimpactValidofTSOS_temp; int recTrackCharge_temp; double simTrackMomentumPt_temp; double simTrackPhi_temp; double simTrackEta_temp; int simTrackCharge_temp; int Nentries = T1->GetEntries(); for(int i = 0; i < Nentries; i++) { T1->GetEntry(i); if(trackingParticleMatch == 0) { MaxPurity2simPtHist->Fill(simTrackMomentumPt, 0); Multiplicity2simPtHist->Fill(simTrackMomentumPt, 0); int tempParticleBinNumber = Particle2simPtHist->FindBin(simTrackMomentumPt); double tempParticleBinValue = Particle2simPtHist->GetBinContent(tempParticleBinNumber); tempParticleBinValue += 1.; Particle2simPtHist->SetBinContent(tempParticleBinNumber, tempParticleBinValue); } else { efficiency_temp = 1; trackingParticleMatch_temp = trackingParticleMatch; recTrackPurity_temp = recTrackPurity; recTrackrefMomentum_temp = recTrackrefMomentum; recTrackrefPhi_temp = recTrackrefPhi; recTrackrefEta_temp = recTrackrefEta; recTrackinnerMomentum_temp = recTrackinnerMomentum; recTrackinnerPhi_temp = recTrackinnerPhi; recTrackinnerEta_temp = recTrackinnerEta; recTrackinnerValid_temp = recTrackinnerValid; recTrackouterMomentum_temp = recTrackouterMomentum; recTrackouterPhi_temp = recTrackouterPhi; recTrackouterEta_temp = recTrackouterEta; recTrackouterValid_temp = recTrackouterValid; simTrackinnerMomentum_temp = simTrackinnerMomentum; simTrackinnerPhi_temp = simTrackinnerPhi; simTrackinnerEta_temp = simTrackinnerEta; simTrackinnerMatch_temp = simTrackinnerMatch; simTrackouterMomentum_temp = simTrackouterMomentum; simTrackouterPhi_temp = simTrackouterPhi; simTrackouterEta_temp = simTrackouterEta; simTrackouterMatch_temp = simTrackouterMatch; recTrackinnerMomentumofTSOS_temp = recTrackinnerMomentumofTSOS; recTrackinnerPhiofTSOS_temp = recTrackinnerPhiofTSOS; recTrackinnerEtaofTSOS_temp = recTrackinnerEtaofTSOS; recTrackinnerValidofTSOS_temp = recTrackinnerValidofTSOS; recTrackouterMomentumofTSOS_temp = recTrackouterMomentumofTSOS; recTrackouterPhiofTSOS_temp = recTrackouterPhiofTSOS; recTrackouterEtaofTSOS_temp = recTrackouterEtaofTSOS; recTrackouterValidofTSOS_temp = recTrackouterValidofTSOS; recTrackimpactMomentumofTSOS_temp = recTrackimpactMomentumofTSOS; recTrackimpactPhiofTSOS_temp = recTrackimpactPhiofTSOS; recTrackimpactEtaofTSOS_temp = recTrackimpactEtaofTSOS; recTrackimpactValidofTSOS_temp = recTrackimpactValidofTSOS; recTrackCharge_temp = recTrackCharge; simTrackMomentumPt_temp = simTrackMomentumPt; simTrackPhi_temp = simTrackPhi; simTrackEta_temp = simTrackEta; simTrackCharge_temp = simTrackCharge; bool nextStep = true; while(nextStep) { i++; T1->GetEntry(i); if(trackingParticleMatch <= trackingParticleMatch_temp) nextStep = false; else trackingParticleMatch_temp = trackingParticleMatch; if(nextStep == true && recTrackPurity_temp < recTrackPurity) { if(debug) cout << "step another match, trackingParticleMatch_temp: " << trackingParticleMatch_temp << endl; //trackingParticleMatch_temp = trackingParticleMatch; recTrackPurity_temp = recTrackPurity; recTrackrefMomentum_temp = recTrackrefMomentum; recTrackrefPhi_temp = recTrackrefPhi; recTrackrefEta_temp = recTrackrefEta; recTrackinnerMomentum_temp = recTrackinnerMomentum; recTrackinnerPhi_temp = recTrackinnerPhi; recTrackinnerEta_temp = recTrackinnerEta; recTrackinnerValid_temp = recTrackinnerValid; recTrackouterMomentum_temp = recTrackouterMomentum; recTrackouterPhi_temp = recTrackouterPhi; recTrackouterEta_temp = recTrackouterEta; recTrackouterValid_temp = recTrackouterValid; simTrackinnerMomentum_temp = simTrackinnerMomentum; simTrackinnerPhi_temp = simTrackinnerPhi; simTrackinnerEta_temp = simTrackinnerEta; simTrackinnerMatch_temp = simTrackinnerMatch; simTrackouterMomentum_temp = simTrackouterMomentum; simTrackouterPhi_temp = simTrackouterPhi; simTrackouterEta_temp = simTrackouterEta; simTrackouterMatch_temp = simTrackouterMatch; recTrackinnerMomentumofTSOS_temp = recTrackinnerMomentumofTSOS; recTrackinnerPhiofTSOS_temp = recTrackinnerPhiofTSOS; recTrackinnerEtaofTSOS_temp = recTrackinnerEtaofTSOS; recTrackinnerValidofTSOS_temp = recTrackinnerValidofTSOS; recTrackouterMomentumofTSOS_temp = recTrackouterMomentumofTSOS; recTrackouterPhiofTSOS_temp = recTrackouterPhiofTSOS; recTrackouterEtaofTSOS_temp = recTrackouterEtaofTSOS; recTrackouterValidofTSOS_temp = recTrackouterValidofTSOS; recTrackimpactMomentumofTSOS_temp = recTrackimpactMomentumofTSOS; recTrackimpactPhiofTSOS_temp = recTrackimpactPhiofTSOS; recTrackimpactEtaofTSOS_temp = recTrackimpactEtaofTSOS; recTrackimpactValidofTSOS_temp = recTrackimpactValidofTSOS; recTrackCharge_temp = recTrackCharge; simTrackMomentumPt_temp = simTrackMomentumPt; simTrackPhi_temp = simTrackPhi; simTrackEta_temp = simTrackEta; simTrackCharge_temp = simTrackCharge; } } i--; //if(debug) cout << "Filling Multiplicity " << trackingParticleMatch_temp << endl; MaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackPurity_temp); Multiplicity2simPtHist->Fill(simTrackMomentumPt_temp, trackingParticleMatch_temp); ChargeCheck2simPtHist->Fill(simTrackMomentumPt_temp, simTrackCharge_temp*recTrackCharge_temp); simTrackMomentumPtmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, simTrackMomentumPt_temp); simTrackPhimaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, simTrackPhi_temp); simTrackEtamaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, simTrackEta_temp); recTrackimpactMomentumofTSOSmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactMomentumofTSOS_temp); recTrackimpactPhiofTSOSmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactPhiofTSOS_temp); recTrackimpactEtaofTSOSmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactEtaofTSOS_temp); recTrackimpactValidofTSOSmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactValidofTSOS_temp); DeltaPtmaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, (recTrackimpactMomentumofTSOS_temp-simTrackMomentumPt_temp)/simTrackMomentumPt_temp); DeltaPhimaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactPhiofTSOS_temp-simTrackPhi_temp); DeltaEtamaxPurity2simPtHist->Fill(simTrackMomentumPt_temp, recTrackimpactEtaofTSOS_temp-simTrackEta_temp); int tempParticleBinNumber = STA2simPtHist->FindBin(simTrackMomentumPt_temp); double tempParticleBinValue = Particle2simPtHist->GetBinContent(tempParticleBinNumber); tempParticleBinValue += 1.; Particle2simPtHist->SetBinContent(tempParticleBinNumber, tempParticleBinValue); double tempSTABinValue = STA2simPtHist->GetBinContent(tempParticleBinNumber); tempSTABinValue += 1.; STA2simPtHist->SetBinContent(tempParticleBinNumber, tempSTABinValue); } } for(int PtIndex = 1; PtIndex <= (int)(PtScale/2); PtIndex++) { double ParticleBinValue = Particle2simPtHist->GetBinContent(PtIndex); double STABinValue = STA2simPtHist->GetBinContent(PtIndex); if(ParticleBinValue == 0.) ParticleBinValue += 1.; double EfficiencyBinValue = STABinValue / ParticleBinValue * 100.; double EfficiencyBinError = sqrt(EfficiencyBinValue * (100. - EfficiencyBinValue) / ParticleBinValue); cout << ParticleBinValue << ", " << STABinValue << ", " << EfficiencyBinValue << endl; Efficiency2simPtHist->SetBinContent(PtIndex, EfficiencyBinValue); Efficiency2simPtHist->SetBinError(PtIndex, EfficiencyBinError); TH1D* ChargeCheckHist = ChargeCheck2simPtHist->ProjectionY("ChargeCheck", PtIndex, PtIndex, "o"); double ReverseChargeBinValue = ChargeCheckHist->GetBinContent(2); double CoverseChargeBinValue = ChargeCheckHist->GetBinContent(4); double TotalChargeBinValue = ReverseChargeBinValue + CoverseChargeBinValue; if(TotalChargeBinValue == 0.); TotalChargeBinValue += 1.; double ReverseChargeRato = ReverseChargeBinValue / TotalChargeBinValue; InverseChargeRato2simPtHist->SetBinContent(PtIndex, ReverseChargeRato); TH1D* DeltaPtHist = DeltaPtmaxPurity2simPtHist->ProjectionY("DeltaPt", PtIndex, PtIndex, "o"); double DeltaPtMean = DeltaPtHist->GetMean(); double DeltaPtRMS = DeltaPtHist->GetRMS(); DeltaPt2simPtHist->SetBinContent(PtIndex, DeltaPtMean); DeltaPt2simPtHist->SetBinError(PtIndex, DeltaPtRMS); TH1D* DeltaPhiHist = DeltaPhimaxPurity2simPtHist->ProjectionY("DeltaPhi", PtIndex, PtIndex, "o"); double DeltaPhiMean = DeltaPhiHist->GetMean(); double DeltaPhiRMS = DeltaPhiHist->GetRMS(); DeltaPhi2simPtHist->SetBinContent(PtIndex, DeltaPhiMean); DeltaPhi2simPtHist->SetBinError(PtIndex, DeltaPhiRMS); TH1D* DeltaEtaHist = DeltaEtamaxPurity2simPtHist->ProjectionY("DeltaEta", PtIndex, PtIndex, "o"); double DeltaEtaMean = DeltaEtaHist->GetMean(); double DeltaEtaRMS = DeltaEtaHist->GetRMS(); DeltaEta2simPtHist->SetBinContent(PtIndex, DeltaEtaMean); DeltaEta2simPtHist->SetBinError(PtIndex, DeltaEtaRMS); } myEfficiencyHist->AddLast(Efficiency2simPtHist); myParticleHist->AddLast(Particle2simPtHist); mySTAHist->AddLast(STA2simPtHist); myChargeCheckHist->AddLast(InverseChargeRato2simPtHist); myDeltaPtHist->AddLast(DeltaPt2simPtHist); } double minX = 0; double minY = 0; double maxX = 110; double maxY = 40; TCanvas* myCanvas = new TCanvas("Canvas", "Canvas", 800, 600); myCanvas->cd(); TPad* myPad = new TPad("Pad", "Pad", 0, 0, 1, 1); myPad->Draw(); myPad->cd(); ((TH1D*)(myParticleHist->At(0)))->SetStats(0); ((TH1D*)(myParticleHist->At(0)))->GetXaxis()->SetTitle("simPt/Gev"); ((TH1D*)(myParticleHist->At(0)))->GetXaxis()->CenterTitle(1); ((TH1D*)(myParticleHist->At(0)))->Draw(); for(int Index = 0; Index < FileNumber; Index++) { ((TH1D*)(mySTAHist->At(Index)))->SetStats(0); ((TH1D*)(mySTAHist->At(Index)))->SetLineColor(kRed+Index); ((TH1D*)(mySTAHist->At(Index)))->Draw("same"); } TLegend *STALeg = new TLegend(0.6,0.1,0.9,0.3); STALeg->SetBorderSize(1); TString LegKey = "ParticleTrack"; STALeg->AddEntry(myParticleHist->At(0), LegKey, "lpf"); for(int Index = 0; Index < FileNumber; Index++) { LegKey = TypeName[Index]; STALeg->AddEntry(mySTAHist->At(Index), LegKey, "lpf"); } STALeg->Draw(); string SaveName = OutputPlotNamepreFix + "_STA2simPt" + OutputPlotNameFix; myCanvas->SaveAs(SaveName.c_str()); myPad->Clear(); myPad->Update(); double YScale = myPad->GetUymax() / 110.; ((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->SetTitle("simPt/Gev"); ((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->CenterTitle(1); ((TH1D*)(myEfficiencyHist->At(0)))->SetStats(0); ((TH1D*)(myEfficiencyHist->At(0)))->Scale(YScale); ((TH1D*)(myEfficiencyHist->At(0)))->SetLineColor(kRed); ((TH1D*)(myEfficiencyHist->At(0)))->Draw("same,ah"); for(int Index = 1; Index < FileNumber; Index++) { ((TH1D*)(myEfficiencyHist->At(Index)))->SetStats(0); ((TH1D*)(myEfficiencyHist->At(Index)))->Scale(YScale); ((TH1D*)(myEfficiencyHist->At(Index)))->SetLineColor(kRed+Index); ((TH1D*)(myEfficiencyHist->At(Index)))->Draw("same,ah"); } myPad->Update(); if(debug) cout << "Y: " << myPad->GetUymax() << endl; double YAxisMinValue=((TH1D*)(myEfficiencyHist->At(0)))->GetYaxis()->GetXmin(); double YAxisMaxValue=((TH1D*)(myEfficiencyHist->At(0)))->GetYaxis()->GetXmax(); int YAxisNBins=((TH1D*)(myEfficiencyHist->At(0)))->GetYaxis()->GetNbins(); TGaxis* YAxis = new TGaxis(myPad->GetUxmin(), myPad->GetUymin(), myPad->GetUxmin(), myPad->GetUymax(), 0, 110, 510, "-R"); YAxis->SetLineColor(kGreen); YAxis->SetLabelColor(kGreen); YAxis->SetTitle("Efficiency of STA for simPts"); YAxis->CenterTitle(1); YAxis->Draw(); double XAxisMinValue=((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->GetXmin(); double XAxisMaxValue=((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->GetXmax(); int XAxisNBins=((TH1D*)(myEfficiencyHist->At(0)))->GetXaxis()->GetNbins(); TGaxis* XAxis = new TGaxis(myPad->GetUxmin(), myPad->GetUymin(), myPad->GetUxmax(), myPad->GetUymin(), XAxisMinValue, XAxisMaxValue, 510, "+L"); XAxis->SetTitle("simPt/Gev"); XAxis->CenterTitle(1); XAxis->Draw(); TLegend *EffLeg = new TLegend(0.1,0.9,0.4,1.0); EffLeg->SetBorderSize(1); for(int Index = 0; Index < FileNumber; Index++) { TString LegKey = TypeName[Index]; EffLeg->AddEntry(myEfficiencyHist->At(Index), LegKey, "lpf"); } EffLeg->Draw(); string SaveName = OutputPlotNamepreFix + "_Eff2simPt" + OutputPlotNameFix; myCanvas->SaveAs(SaveName.c_str()); ((TH1D*)(myDeltaPtHist->At(0)))->SetStats(0); ((TH1D*)(myDeltaPtHist->At(0)))->GetXaxis()->SetTitle("simPt/Gev"); ((TH1D*)(myDeltaPtHist->At(0)))->GetXaxis()->CenterTitle(1); ((TH1D*)(myDeltaPtHist->At(0)))->GetYaxis()->SetTitle("deltPt/simPt"); ((TH1D*)(myDeltaPtHist->At(0)))->GetYaxis()->CenterTitle(1); ((TH1D*)(myDeltaPtHist->At(0)))->SetLineColor(kRed); ((TH1D*)(myDeltaPtHist->At(0)))->Draw(""); for(int Index = 1; Index < FileNumber; Index++) { ((TH1D*)(myDeltaPtHist->At(Index)))->SetStats(0); //((TH1D*)(myDeltaPtHist->At(Index)))->GetXaxis()->SetTitle("simPt/Gev"); //((TH1D*)(myDeltaPtHist->At(Index)))->GetXaxis()->CenterTitle(1); //((TH1D*)(myDeltaPtHist->At(Index)))->GetYaxis()->SetTitle("deltPt/simPt"); //((TH1D*)(myDeltaPtHist->At(Index)))->GetYaxis()->CenterTitle(1); ((TH1D*)(myDeltaPtHist->At(Index)))->SetLineColor(kRed+Index); ((TH1D*)(myDeltaPtHist->At(Index)))->Draw("same"); //SaveName = OutputPlotNamepreFix + TypeName[Index] + "DeltaPt" + OutputPlotNameFix; //myCanvas->SaveAs(SaveName.c_str()); } TLegend *PtLeg = new TLegend(0.6,0.8,0.9,0.9); PtLeg->SetBorderSize(1); for(int Index = 0; Index < FileNumber; Index++) { TString LegKey = TypeName[Index]; PtLeg->AddEntry(myDeltaPtHist->At(Index), LegKey, "lpf"); } PtLeg->Draw(); SaveName = OutputPlotNamepreFix + "_DeltaPt" + OutputPlotNameFix; myCanvas->SaveAs(SaveName.c_str()); }
int ntuAnalyzer(std::string fileName) { setGlobalStyle(); //############################### //## run274200 ## unsigned int HT250Calo = 9; //index of DST_HT250_CaloScouting_v old:1 ref:9 float HT250Calo_rate = 1928; unsigned int HT410PF = 7; //index of DST_HT410_PFScouting_v old:3 ref:7 float HT410PF_rate = 294; unsigned int MJJ200Calo = 12; //index of DST_DiCaloWideJetMass200_CaloScouting_v unsigned int HTT200 = 0; //index if L1_HTT200 unsigned int HTT240 = 1; //index if L1_HTT240 unsigned int HTT270 = 2; //index if L1_HTT270 unsigned int HTT280 = 3; //index if L1_HTT280 unsigned int DoubleJetC100 = 7; //index if L1_DoubleJetC100 unsigned int DoubleJetC112 = 8; //index if L1_DoubleJetC112 unsigned int DoubleIsoTau28er = 11; //index if L1_DoubleJetC112 float instLumi = 0.4; //E34 float targetLumi = 1; //E34 float lumiScaleFactor = targetLumi/instLumi; float PDRate = 59300; //unprescaled rate of HLTPhysics accordingly to: https://cmswbm2.web.cern.ch/cmswbm2/cmsdb/servlet/DatasetSummary?RUN=274200 and prescale of 9000 unsigned int L1scenario = HTT240; //############################### TChain* tt = new TChain("MyAnalysis/HLTree"); tt->Add(fileName.c_str()); //set branches TBranch* b_lumi; TBranch* b_caloMjj; TBranch* b_PFMjj; TBranch* b_hltAccept; TBranch* b_l1Accept; TBranch* b_l1Names; TBranch* b_caloJet1Pt; TBranch* b_caloJet2Pt; TBranch* b_caloJet1Eta; TBranch* b_caloJet2Eta; TBranch* b_caloDeltaEta; TBranch* b_PFJet1Pt; TBranch* b_PFJet2Pt; TBranch* b_PFJet1Eta; TBranch* b_PFJet2Eta; TBranch* b_PFDeltaEta; int lumi = 0; float caloMjj = 0; float PFMjj = 0; float caloJet1Pt_ = 0; float caloJet2Pt_ = 0; float caloJet1Eta_ = -999; float caloJet2Eta_ = -999; float caloDeltaEta_ = -999; float PFJet1Pt_ = 0; float PFJet2Pt_ = 0; float PFJet1Eta_ = -999; float PFJet2Eta_ = -999; float PFDeltaEta_ = -999; std::vector<int>* hltAccept = 0; std::vector<int>* l1Accept = 0; std::vector<string>* l1Names = 0; tt->SetBranchAddress("lumi", &lumi, &b_lumi); tt->SetBranchAddress("caloMjj", &caloMjj, &b_caloMjj); tt->SetBranchAddress("PFMjj", &PFMjj, &b_PFMjj); tt->SetBranchAddress("caloJet1Pt", &caloJet1Pt_, &b_caloJet1Pt); tt->SetBranchAddress("caloJet2Pt", &caloJet2Pt_, &b_caloJet2Pt); tt->SetBranchAddress("caloJet1Eta", &caloJet1Eta_, &b_caloJet1Eta); tt->SetBranchAddress("caloJet2Eta", &caloJet2Eta_, &b_caloJet2Eta); tt->SetBranchAddress("caloDeltaEta", &caloDeltaEta_, &b_caloDeltaEta); tt->SetBranchAddress("PFJet1Pt", &PFJet1Pt_, &b_PFJet1Pt); tt->SetBranchAddress("PFJet2Pt", &PFJet2Pt_, &b_PFJet2Pt); tt->SetBranchAddress("PFJet1Eta", &PFJet1Eta_, &b_PFJet1Eta); tt->SetBranchAddress("PFJet2Eta", &PFJet2Eta_, &b_PFJet2Eta); tt->SetBranchAddress("PFDeltaEta", &PFDeltaEta_, &b_PFDeltaEta); tt->SetBranchAddress("hltAccept", &hltAccept, &b_hltAccept); tt->SetBranchAddress("l1Accept", &l1Accept, &b_l1Accept); tt->SetBranchAddress("l1Names", &l1Names, &b_l1Names); int nentries = tt->GetEntries(); std::cout << "Number of entries: " << nentries << std::endl; //book graphs and plots float min = 0.; float max = 1000.; int nBins = 20; TF1* f1 = new TF1("f1","[0]*TMath::Erf((x-[1])/[2])-[0]*TMath::Erf((-x-[1])/[2])",min,max); f1->SetParameters(0.5,350,40); f1->FixParameter(0,0.5); f1->SetLineWidth(2.); f1->SetLineColor(kRed); TF1* f2 = (TF1*)f1->Clone("f2"); f2->SetParameters(0.5,150,10); f2->SetLineColor(kBlack); TH1F* caloMjjSpectrum = new TH1F("caloMjjSpectrum","caloMjjSpectrum",nBins,min,max); TH1F* PFMjjSpectrum = new TH1F("PFMjjSpectrum","PFMjjSpectrum",nBins,min,max); TEfficiency* mjj450_eff = new TEfficiency("mjj450_eff","mjj450_eff",nBins,min,max); mjj450_eff->SetMarkerColor(kRed); mjj450_eff->SetLineColor(kRed); mjj450_eff->SetLineWidth(2); mjj450_eff->SetTitle("turnOn;Mjj [GeV]"); TEfficiency* mjj200_eff = new TEfficiency("mjj200_eff","mjj200_eff",nBins,min,max); mjj200_eff->SetLineWidth(2); mjj200_eff->SetTitle("turnOn;Mjj [GeV]"); TEfficiency* pf410_eff = new TEfficiency("pf410_eff","pf410_eff",nBins,min,max); pf410_eff->SetMarkerColor(kOrange+1); pf410_eff->SetLineColor(kOrange+1); TEfficiency* calo250_eff = new TEfficiency("calo250_eff","calo250_eff",nBins,min,max); calo250_eff->SetMarkerColor(kBlue); calo250_eff->SetLineColor(kBlue); TEfficiency* HTT240_eff = new TEfficiency("HTT240_eff","HTT240_eff",nBins,min,max); HTT240_eff->SetMarkerColor(kGreen+2); HTT240_eff->SetLineColor(kGreen+2); TH1F* l1 = new TH1F("l1","l1",14,0.,14.); TH1F* l2 = new TH1F("l2","l2",14,0.,14.); //loop for (Long64_t jentry=0; jentry<nentries;++jentry) { tt->GetEntry(jentry); //remove low rate lumis. //see: https://cmswbm2.web.cern.ch/cmswbm2/cmsdb/servlet/ChartHLTTriggerRates?RUNID=274200&PATHID=2043408&LSLENGTH=23.31040958&TRIGGER_PATH=DST_HT250_CaloScouting_v2 //if(lumi > 539 && lumi < 553) continue; //l1 and hlt rates for(unsigned int ii=0; ii<l1Names->size(); ++ii) if (l1Accept->at(ii)==1) l1->Fill(ii); //analysis cuts needed to compare to the analysis //calo analysis if (caloJet1Pt_ > 60. && caloJet2Pt_ > 30. && fabs(caloJet1Eta_) < 2.5 && fabs(caloJet2Eta_) < 2.5 && caloDeltaEta_ < 1.3) { caloMjjSpectrum->Fill(caloMjj); mjj200_eff->Fill((caloMjj>200 && l1Accept->at(L1scenario)==1) || hltAccept->at(HT250Calo)==1, caloMjj); calo250_eff->Fill((hltAccept->at(HT250Calo)==1 && l1Accept->at(L1scenario)==1), caloMjj); //references HTT240_eff->Fill(l1Accept->at(HTT240)==1, caloMjj); //l1 and hlt rates for(unsigned int ii=0; ii<l1Names->size(); ++ii) if (l1Accept->at(ii)==1) l2->Fill(ii); } //PF analysis if (PFJet1Pt_ > 60. && PFJet2Pt_ > 30. && fabs(PFJet1Eta_) < 2.5 && fabs(PFJet2Eta_) < 2.5 && PFDeltaEta_ < 1.3) { PFMjjSpectrum->Fill(PFMjj); mjj450_eff->Fill((caloMjj>450 && l1Accept->at(L1scenario)==1) || hltAccept->at(HT410PF)==1, PFMjj); pf410_eff->Fill((hltAccept->at(HT410PF)==1 && l1Accept->at(L1scenario)==1), PFMjj); } } mjj450_eff->Fit(f1,"r"); mjj200_eff->Fit(f2,"r"); caloMjjSpectrum->Scale(1./caloMjjSpectrum->GetBinContent(caloMjjSpectrum->GetMaximumBin())); PFMjjSpectrum->Scale(1./PFMjjSpectrum->GetBinContent(PFMjjSpectrum->GetMaximumBin())); TLegend* leg0 = new TLegend(0.62, 0.78, 0.83, 0.89); leg0->AddEntry(mjj200_eff,"MJJ200Calo || HT250Calo","L"); leg0->AddEntry(calo250_eff,"HT250_Calo","P"); leg0->AddEntry(HTT240_eff,"HTT240","P"); TLegend* leg1 = new TLegend(0.62, 0.78, 0.83, 0.89); leg1->AddEntry(mjj450_eff,"MJJ450PF || HT410PF","L"); leg1->AddEntry(pf410_eff,"HT410_PF","P"); TCanvas* c1 = new TCanvas(); mjj200_eff->Draw(); calo250_eff->Draw("sames"); HTT240_eff->Draw("sames"); caloMjjSpectrum->Draw("L,sames"); leg0->Draw("sames"); TCanvas* c2 = new TCanvas(); mjj450_eff->Draw(); pf410_eff->Draw("sames"); PFMjjSpectrum->Draw("L,sames"); leg1->Draw("sames"); TCanvas* c3 = new TCanvas(); //l1->Scale(PDRate/nentries); for(unsigned int ii=0; ii<l1Names->size(); ++ii) l1->GetXaxis()->SetBinLabel(ii+1,l1Names->at(ii).c_str()); //l1->GetYaxis()->SetTitle("L1 Rate @4E33 [Hz]"); l1->SetMaximum(l1->GetMaximum()+200); l2->SetLineColor(kRed); l1->Draw(); l2->Draw("same"); c3->Update(); // TGaxis *l1axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),gPad->GetUxmax(), gPad->GetUymax(), // l1->GetMinimum()*lumiScaleFactor, // l1->GetMaximum()*lumiScaleFactor,510,"+L"); // c2->SetTicky(0); // l1axis->SetLineColor(kRed); // l1axis->SetLabelColor(kRed); // l1axis->SetTextColor(kRed); // l1axis->SetTitleOffset(1.3); // l1axis->SetLabelSize(0.03); // l1axis->SetTitle("L1 Rate @1E34 [Hz]"); // l1axis->Draw(); //return 0; //############################################## //############################################## //book graphs and plots TGraphErrors* totRateVsCut = new TGraphErrors(); totRateVsCut->SetMinimum(0); TGraphErrors* pureRateVsCut450 = new TGraphErrors(); TGraphErrors* pureRateVsCut280 = new TGraphErrors(); //loops int bin = 0; for (int cut = 350; cut < 500; cut=cut+10) { int mjjPassed = 0; int HT250Calo_Passed = 0; int excl410_passed = 0; int excl250_passed = 0; for (Long64_t jentry=0; jentry<nentries;++jentry) { tt->GetEntry(jentry); if (hltAccept->at(HT250Calo) == 1) ++HT250Calo_Passed; //if (caloMjj > cut && !hltAccept->at(HT410PF)) if (caloMjj > cut && l1Accept->at(L1scenario) == 1 && hltAccept->at(HT410PF)==0) ++excl410_passed; if (caloMjj > cut && l1Accept->at(L1scenario)==1 && hltAccept->at(HT250Calo)==0) ++excl250_passed; if (caloMjj > cut && l1Accept->at(L1scenario)==1) ++mjjPassed; // if (hltAccept->at(HT250Calo) == 0 && mjj > cut) // std::cout << "ref trigger doesn't completely cover cut at " << cut << std::endl; } // float mjjTotalRate = (float)mjjPassed/(float)HT250Calo_Passed*HT250Calo_rate; // float mjjPureRate = (float)exclPassed/(float)HT250Calo_Passed*HT250Calo_rate; float sigmaMjjPassed = sqrt((float)mjjPassed); float sigmaNentries = sqrt((float)nentries); float sigmaExcl410_passed = sqrt((float)excl410_passed); float sigmaExcl250_passed = sqrt((float)excl250_passed); float mjjTotalRate = (float)mjjPassed/(float)nentries*PDRate; float mjjTotalRateE = PDRate*sqrt(pow((sigmaMjjPassed/nentries),2)+pow((sigmaNentries*mjjPassed/nentries/nentries),2)); float mjj450_PureRate = (float)excl410_passed/(float)nentries*PDRate; float mjj450_PureRateE = PDRate*sqrt(pow((sigmaExcl410_passed/nentries),2)+pow((sigmaNentries*excl410_passed/nentries/nentries),2)); float mjj280_PureRate = (float)excl250_passed/(float)nentries*PDRate; float mjj280_PureRateE = PDRate*sqrt(pow((sigmaExcl250_passed/nentries),2)+pow((sigmaNentries*excl250_passed/nentries/nentries),2)); totRateVsCut->SetPoint(bin,cut,mjjTotalRate); totRateVsCut->SetPointError(bin,0.,mjjTotalRateE); pureRateVsCut450->SetPoint(bin,cut,mjj450_PureRate); pureRateVsCut450->SetPointError(bin,0.,mjj450_PureRateE); pureRateVsCut280->SetPoint(bin,cut,mjj280_PureRate); pureRateVsCut280->SetPointError(bin,0.,mjj280_PureRateE); ++bin; } //plotting and styling TLegend* leg = new TLegend(0.62, 0.78, 0.83, 0.89); leg->AddEntry(totRateVsCut,"total rate","P"); leg->AddEntry(pureRateVsCut450,"pure rate wrt HT410PF","P"); leg->AddEntry(pureRateVsCut280,"pure rate wrt HT250Calo","P"); totRateVsCut->SetTitle("Rate Ref"); totRateVsCut->GetXaxis()->SetTitle("Mjj cut threshold [GeV]"); totRateVsCut->GetYaxis()->SetTitle("Rate @4E33 [Hz]"); pureRateVsCut450->SetMarkerColor(kRed); pureRateVsCut450->SetLineColor(kRed); pureRateVsCut280->SetMarkerColor(kOrange+1); pureRateVsCut280->SetLineColor(kOrange+1); TCanvas* c4 = new TCanvas(); c4->cd(); totRateVsCut->Draw("AP"); pureRateVsCut450->Draw("P,sames"); pureRateVsCut280->Draw("P,sames"); leg->Draw("sames"); c4->Update(); TGaxis *axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),gPad->GetUxmax(), gPad->GetUymax(), (totRateVsCut->GetYaxis()->GetBinLowEdge(1))*lumiScaleFactor, (totRateVsCut->GetYaxis()->GetBinLowEdge(totRateVsCut->GetYaxis()->GetNbins())+totRateVsCut->GetYaxis()->GetBinWidth(1))*lumiScaleFactor,510,"+L"); c4->SetTicky(0); axis->SetLineColor(kRed); axis->SetLabelColor(kRed); axis->SetTextColor(kRed); axis->SetTitleOffset(1.3); axis->SetLabelSize(0.03); axis->SetTitle("Rate @1E34 [Hz]"); axis->Draw(); return 0; }
void GE11sEfficiencyScan(int RunNumber, string RunName, string path) { ifstream InGE11_IV_GIF, InGE11_IV, InGE11_V; //string path = "/home/ramkrishna/TEMP/LogFiles_TB/LogFiles306To407"; string gif = path+"/Efficiency_LC1_"+std::to_string(RunNumber)+".log"; string IV = path+"/Efficiency_LC2_"+std::to_string(RunNumber)+".log"; string V = path+"/Efficiency_LC3_"+std::to_string(RunNumber)+".log"; cout<<"gif = "<<gif<<endl; InGE11_IV_GIF.open(gif); InGE11_IV.open(IV); InGE11_V.open(V); string rootFile = "Efficiency_Run"+std::to_string(RunNumber)+".root"; const char *CharrootFile = rootFile.c_str(); TFile *f = new TFile(CharrootFile,"RECREATE"); //TTree *tree = new TTree("Run306", "Detector info for Run 306"); TNtuple *GE11_IV_GIF = new TNtuple("GE11_IV_GIF","data from text file LC1","MeanPosOfSector:Efficiency:EfficiencyError:Nevents"); TNtuple *GE11_IV = new TNtuple("GE11_IV","data from text file LC2","MeanPosOfSector:Efficiency:EfficiencyError:Nevents"); TNtuple *GE11_V = new TNtuple("GE11_V","data from text file LC3","MeanPosOfSector:Efficiency:EfficiencyError:Nevents"); Int_t nlines = 0; vector<double> GIF_MeanPosOfSector, GIF_Efficiency, GIF_EfficiencyError; vector<unsigned int> GIF_Nevents; unsigned int temp_Nevents; double temp_MeanPosOfSector, temp_Efficiency, temp_EfficiencyError; vector<double> IV_MeanPosOfSector, IV_Efficiency, IV_EfficiencyError; vector<unsigned int> IV_Nevents; vector<double> V_MeanPosOfSector, V_Efficiency, V_EfficiencyError; vector<unsigned int> V_Nevents; string NameOfDet, xRange; while (1) { InGE11_IV_GIF >> NameOfDet >> xRange >> temp_MeanPosOfSector >> temp_Efficiency >> temp_EfficiencyError >> temp_Nevents; if (!InGE11_IV_GIF.good()) break; GIF_MeanPosOfSector.push_back(temp_MeanPosOfSector+(nlines*5)); GIF_Efficiency.push_back(temp_Efficiency); GIF_EfficiencyError.push_back(temp_EfficiencyError); GIF_Nevents.push_back(temp_Nevents); GE11_IV_GIF->Fill(temp_MeanPosOfSector+(nlines*5),temp_Efficiency,temp_EfficiencyError,temp_Nevents); nlines++; if (nlines > 20) { cout<<"Check the input text file for run number "<< RunNumber << endl; exit(EXIT_SUCCESS); } } InGE11_IV_GIF.close(); nlines=0; while (1) { InGE11_IV >> NameOfDet >> xRange >> temp_MeanPosOfSector >> temp_Efficiency >> temp_EfficiencyError >> temp_Nevents; if (!InGE11_IV.good()) break; IV_MeanPosOfSector.push_back(temp_MeanPosOfSector+(nlines*5)); IV_Efficiency.push_back(temp_Efficiency); IV_EfficiencyError.push_back(temp_EfficiencyError); IV_Nevents.push_back(temp_Nevents); GE11_IV->Fill(temp_MeanPosOfSector+(nlines*5),temp_Efficiency,temp_EfficiencyError,temp_Nevents); nlines++; } InGE11_IV.close(); nlines=0; while (1) { InGE11_V >> NameOfDet >> xRange >> temp_MeanPosOfSector >> temp_Efficiency >> temp_EfficiencyError >> temp_Nevents; if (!InGE11_V.good()) break; V_MeanPosOfSector.push_back(temp_MeanPosOfSector+(nlines*5)); V_Efficiency.push_back(temp_Efficiency); V_EfficiencyError.push_back(temp_EfficiencyError); V_Nevents.push_back(temp_Nevents); GE11_V->Fill(temp_MeanPosOfSector+(nlines*5),temp_Efficiency,temp_EfficiencyError,temp_Nevents); nlines++; } InGE11_V.close(); string CanvasName = "RunNumber"+std::to_string(RunNumber); const char * CharCanvasName = CanvasName.c_str(); TCanvas* c1 = new TCanvas(CharCanvasName,"Efficiency Scan Plot",200,10,700,500); TPad *pad = new TPad("pad","",0,0,1,1); //pad->SetFillColor(42); pad->SetGrid(); pad->Draw(); pad->cd(); // draw a frame to define the range TH1F *hr = pad->DrawFrame(0,-0.5,100,1.1); hr->SetXTitle("Detector Position (mm)"); hr->SetYTitle("Efficiency"); //pad->GetFrame()->SetFillColor(21); pad->GetFrame()->SetBorderSize(12); // create first graph TGraphErrors *gr_GIF = new TGraphErrors(V_Efficiency.size()); TGraphErrors *gr_IV = new TGraphErrors(V_Efficiency.size()); TGraphErrors *gr_V = new TGraphErrors(V_Efficiency.size()); for(unsigned int i=0;i<V_Efficiency.size();i++) { gr_GIF->SetPoint(i, GIF_MeanPosOfSector[i], GIF_Efficiency[i]); gr_GIF->SetPointError(i,0, GIF_EfficiencyError[i]); gr_IV->SetPoint(i, IV_MeanPosOfSector[i], IV_Efficiency[i]); gr_IV->SetPointError(i,0, IV_EfficiencyError[i]); gr_V->SetPoint(i, V_MeanPosOfSector[i], V_Efficiency[i]); gr_V->SetPointError(i,0, V_EfficiencyError[i]); } gr_GIF->SetMarkerColor(kBlue); gr_GIF->SetLineColor(kBlue); gr_GIF->SetMarkerStyle(21); gr_GIF->GetXaxis()->SetTitle("dist (mm)"); gr_GIF->GetYaxis()->SetTitle("Efficiency"); gr_GIF->GetYaxis()->SetRangeUser(0,1.2); gr_GIF->SetTitle("Efficiency Scan"); gr_GIF->Draw("ACP"); gr_IV->SetMarkerColor(kGreen-6); gr_IV->SetLineColor(kGreen); gr_IV->SetMarkerStyle(21); gr_IV->Draw("sameCP"); gr_V->SetMarkerColor(kBlack); gr_V->SetLineColor(kBlack); gr_V->SetMarkerStyle(21); gr_V->Draw("sameCP"); //create a transparent pad drawn on top of the main pad c1->cd(); TPad *overlay = new TPad("overlay","",0,0,1,1); overlay->SetFillStyle(4000); overlay->SetFillColor(0); overlay->SetFrameFillStyle(4000); overlay->Draw(); overlay->cd(); // create second graph //TGraphErrors* gr_GIF_Num = new TGraphErrors("data_noerror.dat","%lg %lg"); TGraphErrors *gr_GIF_Num = new TGraphErrors(GIF_Nevents.size()); TGraphErrors *gr_IV_Num = new TGraphErrors(IV_Nevents.size()); TGraphErrors *gr_V_Num = new TGraphErrors(V_Nevents.size()); for(unsigned int i=0;i<V_MeanPosOfSector.size();i++) { gr_GIF_Num->SetPoint(i,GIF_MeanPosOfSector[i],GIF_Nevents[i]); gr_IV_Num->SetPoint(i,IV_MeanPosOfSector[i],IV_Nevents[i]); gr_V_Num->SetPoint(i,V_MeanPosOfSector[i],V_Nevents[i]); } gr_GIF_Num->SetMarkerColor(kBlue); gr_GIF_Num->SetLineColor(kBlue); gr_GIF_Num->SetLineStyle(2); gr_GIF_Num->SetLineWidth(3); gr_GIF_Num->SetMarkerStyle(22); gr_GIF_Num->SetName("gr_GIF_Num"); gr_IV_Num->SetMarkerColor(kGreen-6); gr_IV_Num->SetLineColor(kGreen); gr_IV_Num->SetMarkerStyle(22); gr_IV_Num->SetLineStyle(2); gr_IV_Num->SetLineWidth(3); gr_IV_Num->SetName("gr_IV_Num"); gr_V_Num->SetMarkerColor(kBlack); gr_V_Num->SetLineColor(kBlack); gr_V_Num->SetMarkerStyle(22); gr_V_Num->SetLineStyle(2); gr_V_Num->SetLineWidth(3); gr_V_Num->SetName("gr_V_Num"); Double_t xmin = pad->GetUxmin(); Double_t ymin = 0; Double_t xmax = pad->GetUxmax(); Double_t ymax = 1550; TH1F *hframe = overlay->DrawFrame(xmin,ymin,xmax,ymax); hframe->GetXaxis()->SetLabelOffset(99); hframe->GetYaxis()->SetLabelOffset(99); hframe->Draw("Y+"); gr_GIF_Num->Draw("CPY+"); gr_IV_Num->Draw("CPY+"); gr_V_Num->Draw("CPY+"); //Draw the Legend TLegend *leg = new TLegend(0.10,0.732,0.40,0.90); leg->AddEntry(gr_GIF,"GE11_IV_GIF eff","LPE"); leg->AddEntry(gr_IV,"GE11_IV eff","LPE"); leg->AddEntry(gr_V,"GE11_V eff","LPE"); leg->AddEntry(gr_GIF_Num,"No of events_GE11_IV_GIF","LPE"); leg->AddEntry(gr_IV_Num,"No of events_GE11_IV","LPE"); leg->AddEntry(gr_V_Num,"No of events_GE11_V","LPE"); leg->Draw("same"); const char *runnum = RunName.c_str(); TLatex *t2a = new TLatex(0.00,0.94, runnum ); t2a->SetNDC(); t2a->SetTextFont(42); t2a->SetTextSize(0.033); t2a->SetTextAlign(13); t2a->Draw("same"); //Draw an axis on the right side TGaxis *axis = new TGaxis(xmax,ymin,xmax, ymax,ymin,ymax,510,"+L"); axis->SetLineColor(kRed); axis->SetLabelColor(kRed); axis->SetTitle("Approx. No. of Events"); axis->Draw(); string OutputFileName = "GE11_Efficiency_Scan_"+std::to_string(RunNumber)+".pdf"; const char *CharOutputFileName = OutputFileName.c_str(); c1->SaveAs(CharOutputFileName); c1->Write(); //tree->Write(); //tree->Write("", TObject::kOverwrite); f->Write(); }
int rate(std::string fileName) { setGlobalStyle(); //############################### //## run274200 ## unsigned int HT250Calo = 9; //index of DST_HT250_CaloScouting_v old:1 ref:9 unsigned int HT410PF = 7; //index of DST_HT410_PFScouting_v old:3 ref:7 unsigned int MJJ200Calo = 12; //index of DST_DiCaloWideJetMass200_CaloScouting_v unsigned int HTT200 = 0; //index if L1_HTT200 unsigned int HTT240 = 1; //index if L1_HTT240 unsigned int HTT270 = 2; //index if L1_HTT270 unsigned int HTT280 = 3; //index if L1_HTT280 unsigned int DoubleJetC100 = 7; //index if L1_DoubleJetC100 unsigned int DoubleJetC112 = 8; //index if L1_DoubleJetC112 unsigned int DoubleIsoTau28er = 11; //index if L1_DoubleJetC112 float instLumi = 0.71; //E34 float targetLumi = 1; //E34 float lumiScaleFactor = targetLumi/instLumi; float PDRate = 21986976; //unprescaled rate of ParkingZeroBias accordingly to: nEv/(nLS*23.3)*hltPresc*l1Presc [*nPDs?] = 2343149/(824*23,3)*12*15013 unsigned int L1MjjThr = 150; //############################### TChain* tt = new TChain("MyAnalysis/HLTree"); tt->Add(fileName.c_str()); //set branches TBranch* b_lumi; TBranch* b_caloMjj; TBranch* b_PFMjj; TBranch* b_caloWMjj; TBranch* b_PFWMjj; TBranch* b_l1Mjj; TBranch* b_hltAccept; TBranch* b_l1Accept; TBranch* b_l1Names; TBranch* b_caloJet1Pt; TBranch* b_caloJet2Pt; TBranch* b_caloJet1Eta; TBranch* b_caloJet2Eta; TBranch* b_caloJet1Phi; TBranch* b_caloJet2Phi; TBranch* b_caloDeltaEta; TBranch* b_caloWJet1Pt; TBranch* b_caloWJet2Pt; TBranch* b_caloWJet1Eta; TBranch* b_caloWJet2Eta; TBranch* b_caloWJet1Phi; TBranch* b_caloWJet2Phi; TBranch* b_caloWDeltaEta; TBranch* b_PFJet1Pt; TBranch* b_PFJet2Pt; TBranch* b_PFJet1Eta; TBranch* b_PFJet2Eta; TBranch* b_PFJet1Phi; TBranch* b_PFJet2Phi; TBranch* b_PFDeltaEta; TBranch* b_PFWJet1Pt; TBranch* b_PFWJet2Pt; TBranch* b_PFWJet1Eta; TBranch* b_PFWJet2Eta; TBranch* b_PFWJet1Phi; TBranch* b_PFWJet2Phi; TBranch* b_PFWDeltaEta; TBranch* b_l1Jet1Pt; TBranch* b_l1Jet2Pt; TBranch* b_l1Jet1Eta; TBranch* b_l1Jet2Eta; TBranch* b_l1Jet1Phi; TBranch* b_l1Jet2Phi; TBranch* b_l1DeltaEta; TBranch* b_l1JetPt; TBranch* b_l1JetEta; TBranch* b_l1JetPhi; int lumi = 0; float caloMjj = 0; float PFMjj = 0; float caloWMjj = 0; float PFWMjj = 0; float l1Mjj = 0; float caloJet1Pt_ = 0; float caloJet2Pt_ = 0; float caloJet1Eta_ = -999; float caloJet2Eta_ = -999; float caloJet1Phi_ = -999; float caloJet2Phi_ = -999; float caloDeltaEta_ = -999; float caloWJet1Pt_ = 0; float caloWJet2Pt_ = 0; float caloWJet1Eta_ = -999; float caloWJet2Eta_ = -999; float caloWJet1Phi_ = -999; float caloWJet2Phi_ = -999; float caloWDeltaEta_ = -999; float PFJet1Pt_ = 0; float PFJet2Pt_ = 0; float PFJet1Eta_ = -999; float PFJet2Eta_ = -999; float PFJet1Phi_ = -999; float PFJet2Phi_ = -999; float PFDeltaEta_ = -999; float PFWJet1Pt_ = 0; float PFWJet2Pt_ = 0; float PFWJet1Eta_ = -999; float PFWJet2Eta_ = -999; float PFWJet1Phi_ = -999; float PFWJet2Phi_ = -999; float PFWDeltaEta_ = -999; float l1Jet1Pt_ = 0; float l1Jet2Pt_ = 0; float l1Jet1Eta_ = -999; float l1Jet2Eta_ = -999; float l1Jet1Phi_ = -999; float l1Jet2Phi_ = -999; float l1DeltaEta_ = -999; std::vector<float>* l1JetPt_ = 0; std::vector<float>* l1JetEta_ = 0; std::vector<float>* l1JetPhi_ = 0; std::vector<int>* hltAccept = 0; std::vector<int>* l1Accept = 0; std::vector<string>* l1Names = 0; tt->SetBranchAddress("lumi", &lumi, &b_lumi); tt->SetBranchAddress("caloMjj", &caloMjj, &b_caloMjj); tt->SetBranchAddress("PFMjj", &PFMjj, &b_PFMjj); tt->SetBranchAddress("caloWMjj", &caloWMjj, &b_caloWMjj); tt->SetBranchAddress("PFWMjj", &PFWMjj, &b_PFWMjj); tt->SetBranchAddress("l1Mjj", &l1Mjj, &b_l1Mjj); tt->SetBranchAddress("caloJet1Pt", &caloJet1Pt_, &b_caloJet1Pt); tt->SetBranchAddress("caloJet2Pt", &caloJet2Pt_, &b_caloJet2Pt); tt->SetBranchAddress("caloJet1Eta", &caloJet1Eta_, &b_caloJet1Eta); tt->SetBranchAddress("caloJet2Eta", &caloJet2Eta_, &b_caloJet2Eta); tt->SetBranchAddress("caloJet1Phi", &caloJet1Phi_, &b_caloJet1Phi); tt->SetBranchAddress("caloJet2Phi", &caloJet2Phi_, &b_caloJet2Phi); tt->SetBranchAddress("caloDeltaEta", &caloDeltaEta_, &b_caloDeltaEta); tt->SetBranchAddress("caloWJet1Pt", &caloWJet1Pt_, &b_caloWJet1Pt); tt->SetBranchAddress("caloWJet2Pt", &caloWJet2Pt_, &b_caloWJet2Pt); tt->SetBranchAddress("caloWJet1Eta", &caloWJet1Eta_, &b_caloWJet1Eta); tt->SetBranchAddress("caloWJet2Eta", &caloWJet2Eta_, &b_caloWJet2Eta); tt->SetBranchAddress("caloWJet1Phi", &caloWJet1Phi_, &b_caloWJet1Phi); tt->SetBranchAddress("caloWJet2Phi", &caloWJet2Phi_, &b_caloWJet2Phi); tt->SetBranchAddress("caloWDeltaEta", &caloWDeltaEta_, &b_caloWDeltaEta); tt->SetBranchAddress("PFJet1Pt", &PFJet1Pt_, &b_PFJet1Pt); tt->SetBranchAddress("PFJet2Pt", &PFJet2Pt_, &b_PFJet2Pt); tt->SetBranchAddress("PFJet1Eta", &PFJet1Eta_, &b_PFJet1Eta); tt->SetBranchAddress("PFJet2Eta", &PFJet2Eta_, &b_PFJet2Eta); tt->SetBranchAddress("PFJet1Phi", &PFJet1Phi_, &b_PFJet1Phi); tt->SetBranchAddress("PFJet2Phi", &PFJet2Phi_, &b_PFJet2Phi); tt->SetBranchAddress("PFDeltaEta", &PFDeltaEta_, &b_PFDeltaEta); tt->SetBranchAddress("PFWJet1Pt", &PFWJet1Pt_, &b_PFWJet1Pt); tt->SetBranchAddress("PFWJet2Pt", &PFWJet2Pt_, &b_PFWJet2Pt); tt->SetBranchAddress("PFWJet1Eta", &PFWJet1Eta_, &b_PFWJet1Eta); tt->SetBranchAddress("PFWJet2Eta", &PFWJet2Eta_, &b_PFWJet2Eta); tt->SetBranchAddress("PFWJet1Phi", &PFWJet1Phi_, &b_PFWJet1Phi); tt->SetBranchAddress("PFWJet2Phi", &PFWJet2Phi_, &b_PFWJet2Phi); tt->SetBranchAddress("PFWDeltaEta", &PFWDeltaEta_, &b_PFWDeltaEta); tt->SetBranchAddress("l1Jet1Pt", &l1Jet1Pt_, &b_l1Jet1Pt); tt->SetBranchAddress("l1Jet2Pt", &l1Jet2Pt_, &b_l1Jet2Pt); tt->SetBranchAddress("l1Jet1Eta", &l1Jet1Eta_, &b_l1Jet1Eta); tt->SetBranchAddress("l1Jet2Eta", &l1Jet2Eta_, &b_l1Jet2Eta); tt->SetBranchAddress("l1Jet1Phi", &l1Jet1Phi_, &b_l1Jet1Phi); tt->SetBranchAddress("l1Jet2Phi", &l1Jet2Phi_, &b_l1Jet2Phi); tt->SetBranchAddress("l1DeltaEta", &l1DeltaEta_, &b_l1DeltaEta); tt->SetBranchAddress("l1JetPt", &l1JetPt_, &b_l1JetPt); tt->SetBranchAddress("l1JetEta", &l1JetEta_, &b_l1JetEta); tt->SetBranchAddress("l1JetPhi", &l1JetPhi_, &b_l1JetPhi); tt->SetBranchAddress("hltAccept", &hltAccept, &b_hltAccept); tt->SetBranchAddress("l1Accept", &l1Accept, &b_l1Accept); tt->SetBranchAddress("l1Names", &l1Names, &b_l1Names); int nentries = tt->GetEntries(); std::cout << "Number of entries: " << nentries << std::endl; //book graphs and plots float min = 0.; float max = 1000.; int nBins = 20; TF1* f1 = new TF1("f1","[0]*TMath::Erf((x-[1])/[2])-[0]*TMath::Erf((-x-[1])/[2])",min,max); f1->SetParameters(0.5,350,40); f1->FixParameter(0,0.5); f1->SetLineWidth(2.); f1->SetLineColor(kRed); TF1* f2 = (TF1*)f1->Clone("f2"); f2->SetParameters(0.5,150,10); f2->SetLineColor(kBlack); //############################################## //############################################## //book graphs and plots TGraphErrors* totL1RateVsCut = new TGraphErrors(); totL1RateVsCut->SetMinimum(0); TGraphErrors* pureL1RateVsCut = new TGraphErrors(); TGraphErrors* totHltRateVsCut = new TGraphErrors(); totHltRateVsCut->SetMinimum(0); TGraphErrors* pureHltRateVsCut = new TGraphErrors(); //loops int bin = 0; for (int cut = 200; cut < 350; cut=cut+10) { std::cout << "analyzing point at " << cut << " GeV" << std::endl; int mjjHltPassed = 0; int excl_mjjHltPassed = 0; int mjjL1Passed = 0; int excl_mjjL1Passed = 0; int HTT240Passed = 0; for (Long64_t jentry=0; jentry<nentries;++jentry) { tt->GetEntry(jentry); //### Sanity checks ### if (l1Accept->at(HTT240) == 1) ++HTT240Passed; //### L1 ### bool l1Pass = (l1Mjj>cut && l1Jet1Pt_ > 15. && l1Jet2Pt_ > 15. && fabs(l1Jet1Eta_) < 5.0 && fabs(l1Jet2Eta_) < 5.0 && l1DeltaEta_ < 2.0 ); bool L1RefPass = (l1Mjj>L1MjjThr && l1Jet1Pt_ > 15. && l1Jet2Pt_ > 15. && fabs(l1Jet1Eta_) < 5.0 && fabs(l1Jet2Eta_) < 5.0 && l1DeltaEta_ < 2.0 ); // if(l1Pass && l1Accept->at(HTT240) == 0 && caloWMjj < 100 && caloWMjj>0) // { // std::cout << std::endl; // std::cout << std::fixed << std::setprecision(2) // << "l1Mjj-caloWMjj = " << l1Mjj-caloWMjj << " l1Mjj = " << l1Mjj << " caloWMjj = " << caloWMjj << std::endl; // std::cout << " caloWJet1Pt_ = " << caloWJet1Pt_ << " caloWJet1Eta_ = " << caloWJet1Eta_ << " caloWJet1Phi_ = " << caloWJet1Phi_ << std::endl; // std::cout << " l1Jet1Pt = " << l1Jet1Pt_ << " l1Jet1Eta = " << l1Jet1Eta_ << " l1Jet1Phi = " << l1Jet1Phi_ << std::endl; // std::cout << std::endl; // std::cout << " caloWJet2Pt_ = " << caloWJet2Pt_ << " caloWJet2Eta_ = " << caloWJet2Eta_ << " caloWJet2Phi_ = " << caloWJet2Phi_ << std::endl; // std::cout << " l1Jet2Pt = " << l1Jet2Pt_ << " l1Jet2Eta = " << l1Jet2Eta_ << " l1Jet2Phi = " << l1Jet2Phi_ << std::endl; // std::cout << "==========================================================" << std::endl; // } if (l1Pass) ++mjjL1Passed; if (l1Pass && l1Accept->at(HTT240) == 0) ++excl_mjjL1Passed; //### HLT ### //Hypothesis of HLT rates with L1Mjj seed at L1MjjThr if (caloWMjj > cut && L1RefPass) ++mjjHltPassed; if (caloWMjj > cut && L1RefPass && hltAccept->at(HT250Calo) == 0) ++excl_mjjHltPassed; } float HTT240rate = (float)HTT240Passed/(float)nentries*PDRate; //std::cout << "HTT240rate = " << HTT240rate << std::endl; float sigmaNentries = sqrt((float)nentries); float sigmaMjjHltPassed = sqrt((float)mjjHltPassed); float excl_sigmaMjjHltPassed = sqrt((float)excl_mjjHltPassed); float sigmaMjjL1Passed = sqrt((float)mjjL1Passed); float excl_sigmaMjjL1Passed = sqrt((float)excl_mjjL1Passed); float mjjHltRate = (float)mjjHltPassed/(float)nentries*PDRate; float mjjHltRateE = PDRate*sqrt(pow((sigmaMjjHltPassed/nentries),2)+pow((sigmaNentries*mjjHltPassed/nentries/nentries),2)); float excl_mjjHltRate = (float)excl_mjjHltPassed/(float)nentries*PDRate; float excl_mjjHltRateE = PDRate*sqrt(pow((excl_sigmaMjjHltPassed/nentries),2)+pow((sigmaNentries*excl_mjjHltPassed/nentries/nentries),2)); float mjjL1Rate = (float)mjjL1Passed/(float)nentries*PDRate; float mjjL1RateE = PDRate*sqrt(pow((sigmaMjjL1Passed/nentries),2)+pow((sigmaNentries*mjjL1Passed/nentries/nentries),2)); float excl_mjjL1Rate = (float)excl_mjjL1Passed/(float)nentries*PDRate; float excl_mjjL1RateE = PDRate*sqrt(pow((excl_sigmaMjjL1Passed/nentries),2)+pow((sigmaNentries*excl_mjjL1Passed/nentries/nentries),2)); totHltRateVsCut->SetPoint(bin,cut,mjjHltRate); totHltRateVsCut->SetPointError(bin,0.,mjjHltRateE); pureHltRateVsCut->SetPoint(bin,cut,excl_mjjHltRate); pureHltRateVsCut->SetPointError(bin,0.,excl_mjjHltRateE); totL1RateVsCut->SetPoint(bin,cut,mjjL1Rate); totL1RateVsCut->SetPointError(bin,0.,mjjL1RateE); pureL1RateVsCut->SetPoint(bin,cut,excl_mjjL1Rate); pureL1RateVsCut->SetPointError(bin,0.,excl_mjjL1RateE); ++bin; } //plotting and styling TLegend* legHlt = new TLegend(0.62, 0.78, 0.83, 0.89); legHlt->AddEntry(totHltRateVsCut,"hlt total rate","P"); legHlt->AddEntry(pureHltRateVsCut,"hlt pure rate wrt HT250","P"); TLegend* legL1 = new TLegend(0.62, 0.78, 0.83, 0.89); legL1->AddEntry(totL1RateVsCut,"l1 total rate","P"); legL1->AddEntry(pureL1RateVsCut,"l1 pure rate wrt HTT240","P"); totHltRateVsCut->GetXaxis()->SetTitle("Mjj cut threshold [GeV]"); totHltRateVsCut->GetYaxis()->SetTitle("Rate @7E33 [Hz]"); totHltRateVsCut->SetMarkerColor(kRed); pureHltRateVsCut->SetMarkerColor(kOrange+1); totL1RateVsCut->GetXaxis()->SetTitle("Mjj cut threshold [GeV]"); totL1RateVsCut->GetYaxis()->SetTitle("Rate @7E33 [Hz]"); totL1RateVsCut->SetMarkerColor(kBlue); totL1RateVsCut->SetMarkerColor(kAzure); TCanvas* c4 = new TCanvas(); c4->cd(); totHltRateVsCut->Draw("AP"); pureHltRateVsCut->Draw("P,sames"); legHlt->Draw("sames"); c4->Update(); TGaxis *axisHlt = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),gPad->GetUxmax(), gPad->GetUymax(), (totHltRateVsCut->GetYaxis()->GetBinLowEdge(1))*lumiScaleFactor, (totHltRateVsCut->GetYaxis()->GetBinLowEdge(totHltRateVsCut->GetYaxis()->GetNbins())+totHltRateVsCut->GetYaxis()->GetBinWidth(1))*lumiScaleFactor,510,"+L"); c4->SetTicky(0); axisHlt->SetLineColor(kRed); axisHlt->SetLabelColor(kRed); axisHlt->SetTextColor(kRed); axisHlt->SetTitleOffset(1.3); axisHlt->SetLabelSize(0.03); axisHlt->SetTitle("Rate @1E34 [Hz]"); axisHlt->Draw(); c4->Print("rates/hltRate.pdf","pdf"); TCanvas* c5 = new TCanvas(); c5->cd(); totL1RateVsCut->Draw("AP"); pureL1RateVsCut->Draw("P,sames"); legL1->Draw("sames"); c5->Update(); TGaxis *axisL1 = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),gPad->GetUxmax(), gPad->GetUymax(), (totL1RateVsCut->GetYaxis()->GetBinLowEdge(1))*lumiScaleFactor, (totL1RateVsCut->GetYaxis()->GetBinLowEdge(totL1RateVsCut->GetYaxis()->GetNbins())+totL1RateVsCut->GetYaxis()->GetBinWidth(1))*lumiScaleFactor,510,"+L"); c5->SetTicky(0); axisL1->SetLineColor(kRed); axisL1->SetLabelColor(kRed); axisL1->SetTextColor(kRed); axisL1->SetTitleOffset(1.3); axisL1->SetLabelSize(0.03); axisL1->SetTitle("Rate @1E34 [Hz]"); axisL1->Draw(); c5->Print("rates/l1Rate.pdf","pdf"); return 0; }
void PlotPotential2D( const TString &sim, Int_t time, Int_t zoom=2, Int_t Nbins=2, const TString &options="") { #ifdef __CINT__ gSystem->Load("libplasma.so"); #endif PlasmaGlob::Initialize(); // Palettes! gROOT->Macro("PlasmaPalettes.C"); // Init Units table PUnits::UnitsTable::Get(); // Load PData PData *pData = PData::Get(sim.Data()); pData->LoadFileNames(time); if(!pData->IsInit()) return; TString opt = options; // More makeup gStyle->SetPadGridY(0); if(opt.Contains("gridx")) { gStyle->SetPadGridX(1); } if(opt.Contains("gridy")) { gStyle->SetPadGridY(1); } // Some plasma constants Double_t n0 = pData->GetPlasmaDensity(); Double_t omegap = pData->GetPlasmaFrequency(); Double_t timedepth = 1.; if(omegap!=0.0) timedepth = 1/omegap; Double_t kp = pData->GetPlasmaK(); Double_t skindepth = 1.; if(kp!=0.0) skindepth = 1/kp; Double_t E0 = pData->GetPlasmaE0(); // Some beam properties: Double_t Ebeam = pData->GetBeamEnergy(); Double_t gamma = pData->GetBeamGamma(); Double_t vbeam = pData->GetBeamVelocity(); cout << Form(" - Bunch gamma = %8.4f", gamma ) << endl; cout << Form(" - Bunch velocity = %8.4f c", vbeam ) << endl; // Other parameters Float_t trapPotential = 1.0 - (1.0/gamma); cout << Form(" - Trap. potential = %8.4f mc2/e",trapPotential) << endl; cout << endl; // Time in OU Float_t Time = pData->GetRealTime(); // z start of the plasma in normalized units. Float_t zStartPlasma = pData->GetPlasmaStart()*kp; // z start of the beam in normalized units. Float_t zStartBeam = pData->GetBeamStart()*kp; // z start of the neutral in normalized units. Float_t zStartNeutral = pData->GetNeutralStart()*kp; // z end of the neutral in normalized units. Float_t zEndNeutral = pData->GetNeutralEnd()*kp; if(opt.Contains("center")) { Time -= zStartPlasma; if(opt.Contains("comov")) // Centers on the head of the beam. Time += zStartBeam; } Float_t shiftz = pData->Shift(opt); // cout << "Shift = " << shiftz << endl; // Calculate the "axis range" in number of bins. If Nbins==0 a RMS width is taken. Double_t rms0 = pData->GetBeamRmsY() * kp; if(pData->IsCyl()) rms0 = pData->GetBeamRmsR() * kp; Int_t FirstyBin = 0; Int_t LastyBin = 0; if(Nbins==0) { if(rms0>0.0) Nbins = TMath::Nint(rms0 / pData->GetDX(1)); else Nbins = 1; } // Slice width limits. if(!pData->IsCyl()) { FirstyBin = pData->GetNX(1)/2 + 1 - Nbins; LastyBin = pData->GetNX(1)/2 + Nbins; } else { FirstyBin = 1; LastyBin = Nbins; } // ---------------------------------------------------------------------------------- // Get charge density histos Int_t Nspecies = pData->NSpecies(); TH2F **hDen2D = new TH2F*[Nspecies]; // Get charge density on-axis TH1F **hDen1D = new TH1F*[Nspecies]; // And electric current (integrated) TH1F **hCur1D = new TH1F*[Nspecies]; for(Int_t i=0; i<Nspecies; i++) { hDen2D[i] = NULL; if(!pData->GetChargeFileName(i)) continue; cout << Form(" Getting charge density of specie: ") << i << endl; char hName[24]; sprintf(hName,"hDen2D_%i",i); hDen2D[i] = (TH2F*) gROOT->FindObject(hName); if(hDen2D[i]) delete hDen2D[i]; if(!pData->Is3D()) hDen2D[i] = pData->GetCharge(i,opt); else hDen2D[i] = pData->GetCharge2DSliceZY(i,-1,Nbins,opt+"avg"); hDen2D[i]->SetName(hName); hDen2D[i]->GetXaxis()->CenterTitle(); hDen2D[i]->GetYaxis()->CenterTitle(); hDen2D[i]->GetZaxis()->CenterTitle(); if(opt.Contains("comov")) hDen2D[i]->GetXaxis()->SetTitle("k_{p} #zeta"); else hDen2D[i]->GetXaxis()->SetTitle("k_{p} z"); if(pData->IsCyl()) hDen2D[i]->GetYaxis()->SetTitle("k_{p} r"); else hDen2D[i]->GetYaxis()->SetTitle("k_{p} y"); hDen2D[i]->GetZaxis()->SetTitle("n [n_{0}]"); hDen1D[i] = NULL; hCur1D[i] = NULL; if(!pData->GetEfieldFileName(i)) continue; sprintf(hName,"hDen1D_%i",i); hDen1D[i] = (TH1F*) gROOT->FindObject(hName); if(hDen1D[i]) delete hDen1D[i]; // 1D histograms if(pData->Is3D()) { hDen1D[i] = pData->GetH1SliceZ3D(pData->GetChargeFileName(i)->c_str(),"charge",-1,Nbins,-1,Nbins,opt+"avg"); } else if(pData->IsCyl()) { // Cylindrical: The first bin with r>0 is actually the number 1 (not the 0). hDen1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",1,Nbins,opt+"avg"); } else { // 2D cartesian hDen1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",-1,Nbins,opt+"avg"); } hDen1D[i]->SetName(hName); // if(hDen1D[i]) delete hDen1D[i]; // hDen1D[i] = (TH1F*) hE2D[i]->ProjectionX(hName,FirstyBin,LastyBin); // hDen1D[i]->Scale(1.0/(LastyBin-FirstyBin+1)); if(opt.Contains("comov")) hDen1D[i]->GetXaxis()->SetTitle("#zeta [c/#omega_{p}]"); else hDen1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]"); if(i==0) hDen1D[i]->GetYaxis()->SetTitle("n/n_{0}"); else if(i==1) hDen1D[i]->GetYaxis()->SetTitle("n_{b}/n_{0}"); else hDen1D[i]->GetYaxis()->SetTitle("n_{i}/n_{0}"); // Get the current: if(i==0) continue; sprintf(hName,"hCur1D_%i",i); hCur1D[i] = (TH1F*) gROOT->FindObject(hName); if(hCur1D[i]) delete hCur1D[i]; if(opt.Contains("curr")) { // To get the current is needed to read in a wider transverse range which includes all the charge. Int_t NbinsT = 100; if(pData->Is3D()) { hCur1D[i] = pData->GetH1SliceZ3D(pData->GetChargeFileName(i)->c_str(),"charge",-1,NbinsT,-1,NbinsT,opt+"int"); } else if(pData->IsCyl()) { // Cylindrical: The first bin with r>0 is actually the number 1 (not the 0). hCur1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",1,NbinsT,opt+"int"); } else { // 2D cartesian hCur1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",-1,NbinsT,opt+"int"); } hCur1D[i]->SetName(hName); if(opt.Contains("comov")) { hCur1D[i]->GetXaxis()->SetTitle("#zeta [c/#omega_{p}]"); hCur1D[i]->GetYaxis()->SetTitle("dn/d#zeta [(n_{0}/k_{p}^{3}) (#omega_{p}/c)]"); } else { hCur1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]"); hCur1D[i]->GetYaxis()->SetTitle("dn/dz [(n_{0}/k_{p}^{3}) (#omega_{p}/c)]"); } Int_t NB = hCur1D[i]->GetNbinsX(); Float_t dx = (hCur1D[i]->GetBinLowEdge(1)-hCur1D[i]->GetBinLowEdge(NB+1))/NB; // hCur1D[i]->Scale(dx); Float_t Charge = hCur1D[i]->Integral() * dx; cout << Form(" Integrated charge of specie %3i = %8.4f n0 * kp^-3",i,Charge) << endl; } } // Get electric fields 2D const Int_t Nfields = 3; TH2F **hE2D = new TH2F*[Nfields]; TH1F **hE1D = new TH1F*[Nfields]; TH2F *hV2D = NULL; TH1F *hV1D = NULL; for(Int_t i=0; i<Nfields; i++) { hE2D[i] = NULL; hE1D[i] = NULL; if(!pData->GetEfieldFileName(i)) continue; cout << Form(" Getting electric field number ") << i+1 << endl; char hName[24]; sprintf(hName,"hE2D_%i",i); hE2D[i] = (TH2F*) gROOT->FindObject(hName); if(hE2D[i]) delete hE2D[i]; if(!pData->Is3D()) hE2D[i] = pData->GetEField(i,opt); else hE2D[i] = pData->GetEField2DSliceZY(i,-1,Nbins,opt+"avg"); hE2D[i]->SetName(hName); hE2D[i]->GetXaxis()->CenterTitle(); hE2D[i]->GetYaxis()->CenterTitle(); hE2D[i]->GetZaxis()->CenterTitle(); if(opt.Contains("comov")) hE2D[i]->GetXaxis()->SetTitle("k_{p} #zeta"); else hE2D[i]->GetXaxis()->SetTitle("k_{p} z"); if(pData->IsCyl()) hE2D[i]->GetYaxis()->SetTitle("k_{p} r"); else hE2D[i]->GetYaxis()->SetTitle("k_{p} y"); if(i==0) hE2D[i]->GetZaxis()->SetTitle("E_{z}/E_{0}"); else if(i==1) hE2D[i]->GetZaxis()->SetTitle("E_{y}/E_{0}"); else if(i==2) hE2D[i]->GetZaxis()->SetTitle("E_{x}/E_{0}"); sprintf(hName,"hE1D_%i",i); hE1D[i] = (TH1F*) gROOT->FindObject(hName); if(hE1D[i]) delete hE1D[i]; // 1D histograms char nam[3]; sprintf(nam,"e%i",i+1); if(pData->Is3D()) { if(i==0) hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,-1,Nbins,opt+"avg"); else hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,-Nbins,Nbins,opt+"avg"); } else if(pData->IsCyl()) { // Cylindrical: The first bin with r>0 is actually the number 1 (not the 0). hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opt+"avg"); } else { // 2D cartesian if(i==0) hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,opt+"avg"); else hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,opt+"avg"); } hE1D[i]->SetName(hName); if(opt.Contains("comov")) hE1D[i]->GetXaxis()->SetTitle("#zeta [c/#omega_{p}]"); else hE1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]"); if(i==0) hE1D[i]->GetYaxis()->SetTitle("E_{z} [E_{0}]"); else if(i==1) hE1D[i]->GetYaxis()->SetTitle("E_{y} [E_{0}]"); else if(i==2) hE1D[i]->GetYaxis()->SetTitle("E_{x} [E_{0}]"); // Alternative // if(hE1D[i]) delete hE1D[i]; // hE1D[i] = (TH1F*) hE2D[i]->ProjectionX(hName,FirstyBin,LastyBin); // hE1D[i]->Scale(1.0/(LastyBin-FirstyBin+1)); if(i==0) { Int_t NbinsX = hE2D[i]->GetNbinsX(); Int_t NbinsY = hE2D[i]->GetNbinsY(); Float_t dx = pData->GetDX(0); sprintf(hName,"hV2D"); hV2D = (TH2F*) hE2D[i]->Clone(hName); hV2D->Reset(); sprintf(hName,"hV1D"); hV1D = (TH1F*) hE1D[i]->Clone(hName); hV1D->Reset(); for(Int_t j=NbinsY; j>0; j--) { Double_t integral = 0.0; for(Int_t k=NbinsX; k>0; k--) { integral += hE2D[i]->GetBinContent(k,j) * dx; hV2D->SetBinContent(k,j,integral); } } Double_t integral = 0.0; for(Int_t k=NbinsX; k>0; k--) { integral += hE1D[i]->GetBinContent(k) * dx; hV1D->SetBinContent(k,integral); } } } // Now, combine the electric field components into the total |E| // and calculate ionization probability for He: // Outter Helium electron Double_t Eion0 = 24.59 * PUnits::eV; Double_t Z = 1; TH2F *hETotal2D = (TH2F*) hE2D[0]->Clone("hETotal2D"); hETotal2D->Reset(); TH2F *hIonProb2D = (TH2F*) hE2D[0]->Clone("hIonProb2D"); hIonProb2D->Reset(); TH1F *hETotal1D = (TH1F*) hE1D[0]->Clone("hETotal1D"); hETotal1D->Reset(); TH1F *hIonProb1D = (TH1F*) hE1D[0]->Clone("hIonProb1D"); hIonProb1D->Reset(); { Int_t NbinsX = hE2D[0]->GetNbinsX(); Int_t NbinsY = hE2D[0]->GetNbinsY(); for(Int_t j=0; j<NbinsX; j++) { for(Int_t k=0; k<NbinsY; k++) { Double_t E1 = hE2D[0]->GetBinContent(j,k); Double_t E2 = hE2D[1]->GetBinContent(j,k); Double_t E3 = hE2D[2]->GetBinContent(j,k); Double_t E = TMath::Sqrt(E1*E1+E2*E2+E3*E3); hETotal2D->SetBinContent(j,k,E); E *= E0; // Double_t IonProb = (PFunc::ADK(E,Eion0,Z,l,m)/PUnits::atomictime)*PUnits::femtosecond; Double_t IonProb = PFunc::ADK_ENG(E,Eion0,Z) * PUnits::femtosecond; // if(IonProb>1) IonProb = 1.0; // cout << "Ion prob = " << IonProb << endl; hIonProb2D->SetBinContent(j,k,IonProb); } Double_t E1 = hE1D[0]->GetBinContent(j); Double_t E2 = hE1D[1]->GetBinContent(j); Double_t E3 = hE1D[2]->GetBinContent(j); Double_t E = TMath::Sqrt(E1*E1+E2*E2+E3*E3); hETotal1D->SetBinContent(j,E); E *= E0; // Double_t IonProb = (PFunc::ADK(E,Eion0,Z,l,m)/PUnits::atomictime)*PUnits::femtosecond; Double_t IonProb = PFunc::ADK_ENG(E,Eion0,Z) * PUnits::femtosecond; // cout << "Ion prob = " << IonProb << endl; hIonProb1D->SetBinContent(j,IonProb); } } hETotal2D->GetZaxis()->SetTitle("E [E_{0}]"); hIonProb2D->GetZaxis()->SetTitle("W_{ADK} [fs^{-1}]"); hETotal1D->GetYaxis()->SetTitle("E [E_{0}]"); hIonProb1D->GetYaxis()->SetTitle("W_{ADK} [fs^{-1}]"); // Tunning the Histograms // --------------------- // Chaning to user units: // -------------------------- if(opt.Contains("units") && n0) { for(Int_t i=0; i<Nspecies; i++) { if(!hDen2D[i]) continue; Int_t NbinsX = hDen2D[i]->GetNbinsX(); Float_t xMin = skindepth * hDen2D[i]->GetXaxis()->GetXmin() / PUnits::um; Float_t xMax = skindepth * hDen2D[i]->GetXaxis()->GetXmax() / PUnits::um; Int_t NbinsY = hDen2D[i]->GetNbinsY(); Float_t ymin = skindepth * hDen2D[i]->GetYaxis()->GetXmin() / PUnits::um; Float_t ymax = skindepth * hDen2D[i]->GetYaxis()->GetXmax() / PUnits::um; hDen2D[i]->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax); // for(Int_t j=0;j<hDen2D[i]->GetNbinsX();j++) { // for(Int_t k=0;k<hDen2D[i]->GetNbinsY();k++) { // hDen2D[i]->SetBinContent(j,k, hDen2D[i]->GetBinContent(j,k) * n0 / (1e17/PUnits::cm3) ); // } // } if(pData->IsCyl()) hDen2D[i]->GetYaxis()->SetTitle("r [#mum]"); else hDen2D[i]->GetYaxis()->SetTitle("y [#mum]"); if(opt.Contains("comov")) hDen2D[i]->GetXaxis()->SetTitle("#zeta [#mum]"); else hDen2D[i]->GetXaxis()->SetTitle("z [#mum]"); // if(i==0) // hDen2D[i]->GetZaxis()->SetTitle("n_{e} [10^{17}/cm^{3}]"); // else if(i==1) // hDen2D[i]->GetZaxis()->SetTitle("n_{b} [10^{17}/cm^{3}]"); // else // hDen2D[i]->GetZaxis()->SetTitle("n_{i} [10^{17}/cm^{3}]"); hDen1D[i]->SetBins(NbinsX,xMin,xMax); // for(Int_t j=0;j<hDen1D[i]->GetNbinsX();j++) { // hDen1D[i]->SetBinContent(j, hDen1D[i]->GetBinContent(j) * n0 / (1e17/PUnits::cm3) ); // } if(opt.Contains("comov")) hDen1D[i]->GetXaxis()->SetTitle("#zeta [#mum]"); else hDen1D[i]->GetXaxis()->SetTitle("z [#mum]"); if(hCur1D[i]) { hCur1D[i]->SetBins(NbinsX,xMin,xMax); Double_t binSize = (xMax - xMin)/NbinsX; // bin size in um. Double_t dV = skindepth * skindepth * skindepth; Double_t lightspeed = PConst::c_light / (PUnits::um/PUnits::femtosecond); hCur1D[i]->Scale(TMath::Abs(n0 * dV * (PConst::ElectronCharge/PUnits::picocoulomb) * (kp * PConst::c_light * PUnits::femtosecond))); hCur1D[i]->GetYaxis()->SetTitle("I[kA]"); hCur1D[i]->GetYaxis()->SetTitle(""); if(opt.Contains("comov")) hCur1D[i]->GetXaxis()->SetTitle("#zeta [#mum]"); else hCur1D[i]->GetXaxis()->SetTitle("z [#mum]"); Float_t Charge = hCur1D[i]->Integral() * (binSize / lightspeed); cout << Form(" Integrated charge of specie %3i = %8f pC",i,Charge) << endl; } } for(Int_t i=0; i<Nfields; i++) { Int_t NbinsX = hE2D[i]->GetNbinsX(); Float_t xMin = skindepth * hE2D[i]->GetXaxis()->GetXmin() / PUnits::um; Float_t xMax = skindepth * hE2D[i]->GetXaxis()->GetXmax() / PUnits::um; Int_t NbinsY = hE2D[i]->GetNbinsY(); Float_t ymin = skindepth * hE2D[i]->GetYaxis()->GetXmin() / PUnits::um; Float_t ymax = skindepth * hE2D[i]->GetYaxis()->GetXmax() / PUnits::um; hE2D[i]->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax); hE1D[i]->SetBins(NbinsX,xMin,xMax); for(Int_t j=0; j<hE2D[i]->GetNbinsX(); j++) { for(Int_t k=0; k<hE2D[i]->GetNbinsY(); k++) { hE2D[i]->SetBinContent(j,k, hE2D[i]->GetBinContent(j,k) * ( E0 / (PUnits::GV/PUnits::m) ) ); } hE1D[i]->SetBinContent(j, hE1D[i]->GetBinContent(j) * ( E0 / (PUnits::GV/PUnits::m) ) ); } if(pData->IsCyl()) hE2D[i]->GetYaxis()->SetTitle("r [#mum]"); else hE2D[i]->GetYaxis()->SetTitle("y [#mum]"); if(opt.Contains("comov")) hE2D[i]->GetXaxis()->SetTitle("#zeta [#mum]"); else hE2D[i]->GetXaxis()->SetTitle("z [#mum]"); if(i==0) hE2D[i]->GetZaxis()->SetTitle("E_{z} [GV/m]"); else if(i==1) hE2D[i]->GetZaxis()->SetTitle("E_{y} [GV/m]"); else if(i==2) hE2D[i]->GetZaxis()->SetTitle("E_{x} [GV/m]"); if(opt.Contains("comov")) hE1D[i]->GetXaxis()->SetTitle("#zeta [mm]"); else hE1D[i]->GetXaxis()->SetTitle("z [mm]"); if(i==0) hE1D[i]->GetYaxis()->SetTitle("E_{z} [GV/m]"); else if(i==1) hE1D[i]->GetYaxis()->SetTitle("E_{y} [GV/m]"); else if(i==2) hE1D[i]->GetYaxis()->SetTitle("E_{x} [GV/m]"); if(i==0) { hV2D->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax); hETotal2D->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax); hIonProb2D->SetBins(NbinsX,xMin,xMax,NbinsY,ymin,ymax); hV1D->SetBins(NbinsX,xMin,xMax); hETotal1D->SetBins(NbinsX,xMin,xMax); hIonProb1D->SetBins(NbinsX,xMin,xMax); for(Int_t j=0; j<NbinsX; j++) { for(Int_t k=0; k<NbinsY; k++) { hV2D->SetBinContent(j,k, hV2D->GetBinContent(j,k) * E0 * skindepth / (PUnits::MV)); hETotal2D->SetBinContent(j,k, hETotal2D->GetBinContent(j,k) * ( E0 / (PUnits::GV/PUnits::m) ) ); } hV1D->SetBinContent(j, hV1D->GetBinContent(j) * ( E0 * skindepth / (PUnits::MV) ) ); hETotal1D->SetBinContent(j, hETotal1D->GetBinContent(j) * ( E0 / (PUnits::GV/PUnits::m) ) ); } if(pData->IsCyl()) { hV2D->GetYaxis()->SetTitle("r [#mum]"); hETotal2D->GetYaxis()->SetTitle("r [#mum]"); } else { hV2D->GetYaxis()->SetTitle("y [#mum]"); hETotal2D->GetYaxis()->SetTitle("y [#mum]"); } if(opt.Contains("comov")) { hV2D->GetXaxis()->SetTitle("#zeta [#mum]"); hV1D->GetXaxis()->SetTitle("#zeta [#mum]"); hETotal2D->GetXaxis()->SetTitle("#zeta [#mum]"); hETotal1D->GetXaxis()->SetTitle("#zeta [#mum]"); } else { hV2D->GetXaxis()->SetTitle("z [#mum]"); hV2D->GetXaxis()->SetTitle("z [#mum]"); hETotal2D->GetXaxis()->SetTitle("z [#mum]"); hETotal1D->GetXaxis()->SetTitle("z [#mum]"); } hV2D->GetZaxis()->SetTitle("#Psi-#Psi_{t} [MV]"); hV1D->GetYaxis()->SetTitle("#Psi-#Psi_{t} [MV]"); hETotal2D->GetZaxis()->SetTitle("E [GV/m]"); hETotal1D->GetYaxis()->SetTitle("E [GV/m]"); } } } // --------------------------------------------------- Vertical Zoom ------------ Float_t yRange = (hDen2D[0]->GetYaxis()->GetXmax() - hDen2D[0]->GetYaxis()->GetXmin())/zoom; Float_t midPoint = (hDen2D[0]->GetYaxis()->GetXmax() + hDen2D[0]->GetYaxis()->GetXmin())/2.; Float_t yMin = midPoint-yRange/2; Float_t yMax = midPoint+yRange/2; if(pData->IsCyl()) { yMin = pData->GetXMin(1); yMax = yRange; } for(Int_t i=0; i<Nspecies; i++) { if(!hDen2D[i]) continue; hDen2D[i]->GetYaxis()->SetRangeUser(yMin,yMax); } for(Int_t i=0; i<Nfields; i++) { if(!hE2D[i]) continue; hE2D[i]->GetYaxis()->SetRangeUser(yMin,yMax); } hETotal2D->GetYaxis()->SetRangeUser(yMin,yMax); Float_t xMin = hDen2D[0]->GetXaxis()->GetXmin(); Float_t xMax = hDen2D[0]->GetXaxis()->GetXmax(); Float_t xRange = xMax - xMin; // ------------- z Zoom --------------------------------- Plasma palette ----------- // Set the range of the plasma charge density histogram for maximum constrast // using a dynamic palette wich adjust the nominal value to a certain color. Float_t density = 1; Float_t Base = density; Float_t *Max = new Float_t[Nspecies]; Float_t *Min = new Float_t[Nspecies]; for(Int_t i=0; i<Nspecies; i++) { if(!hDen2D[i]) continue; Max[i] = hDen2D[i]->GetMaximum(); Min[i] = 1.01E-1 * Base; if(i==1) Min[i] = 1.01E-1 * Base; if(i==2) Min[i] = 1.01E-4 * Base; hDen2D[i]->GetZaxis()->SetRangeUser(Min[i],Max[i]); } // Dynamic plasma palette const Int_t plasmaDNRGBs = 3; const Int_t plasmaDNCont = 64; Float_t basePos = 0.5; if(Max[0]!=Min[0]) { if(opt.Contains("logz")) { Float_t a = 1.0/(TMath::Log10(Max[0])-TMath::Log10(Min[0])); Float_t b = TMath::Log10(Min[0]); basePos = a*(TMath::Log10(Base) - b); } else { basePos = (1.0/(Max[0]-Min[0]))*(Base - Min[0]); } } Double_t plasmaDStops[plasmaDNRGBs] = { 0.00, basePos, 1.00 }; Double_t plasmaDRed[plasmaDNRGBs] = { 0.99, 0.90, 0.00 }; Double_t plasmaDGreen[plasmaDNRGBs] = { 0.99, 0.90, 0.00 }; Double_t plasmaDBlue[plasmaDNRGBs] = { 0.99, 0.90, 0.00 }; PPalette * plasmaPalette = (PPalette*) gROOT->FindObject("plasma"); plasmaPalette->CreateGradientColorTable(plasmaDNRGBs, plasmaDStops, plasmaDRed, plasmaDGreen, plasmaDBlue, plasmaDNCont); // Change the range of z axis for the fields to be symmetric. Float_t *Emax = new Float_t[Nfields]; Float_t *Emin = new Float_t[Nfields]; for(Int_t i=0; i<Nfields; i++) { Emax[i] = hE2D[i]->GetMaximum(); Emin[i] = hE2D[i]->GetMinimum(); if(Emax[i] > TMath::Abs(Emin[i])) Emin[i] = -Emax[i]; else Emax[i] = -Emin[i]; hE2D[i]->GetZaxis()->SetRangeUser(Emin[i],Emax[i]); } // Potential if(opt.Contains("units")) { trapPotential *= ( E0 * skindepth / (PUnits::MV) ); } Float_t Vmin = hV1D->GetMinimum(); { // Shift potential Int_t NbinsX = hV2D->GetNbinsX(); Int_t NbinsY = hV2D->GetNbinsY(); for(Int_t j=0; j<NbinsX; j++) { for(Int_t k=0; k<NbinsY; k++) { hV2D->SetBinContent(j,k, hV2D->GetBinContent(j,k) - Vmin -trapPotential); } hV1D->SetBinContent(j, hV1D->GetBinContent(j) - Vmin -trapPotential); } } Vmin = hV1D->GetMinimum(); Float_t Vmax = hV1D->GetMaximum(); // Dynamic potential palette const Int_t potPNRGBs = 5; const Int_t potPNCont = 64; Float_t zeroPos = -Vmin/(Vmax-Vmin); Double_t potPStops[potPNRGBs] = { 0.00, zeroPos-3.0/potPNCont,zeroPos, zeroPos+3.0/potPNCont, 1.00 }; Double_t potPRed[potPNRGBs] = { 0.518, 0.965, 0.90, 0.498, 0.106 }; Double_t potPGreen[potPNRGBs] = { 0.078, 0.925, 0.90, 0.718, 0.078 }; Double_t potPBlue[potPNRGBs] = { 0.106, 0.353, 0.90, 0.780, 0.518 }; PPalette * potentialPalette = (PPalette*) gROOT->FindObject("rbow2inv"); potentialPalette->CreateGradientColorTable(potPNRGBs, potPStops, potPRed, potPGreen, potPBlue, potPNCont); // Extract contours TCanvas* c = new TCanvas("c","Contour List",0,0,600,600); c->cd(); // Potential TH2F *hV2Dc = (TH2F*) hV2D->Clone("hV2Dc"); const Int_t Ncontours = 25; Double_t contours[Ncontours]; for(Int_t i=0; i<Ncontours; i++) { contours[i] = i*(trapPotential/5.0) - trapPotential; } hV2Dc->SetContour(Ncontours, contours); hV2Dc->Draw("cont list"); c->Update(); TObjArray *contsV2D = (TObjArray*) gROOT->GetListOfSpecials()->FindObject("contours"); TClonesArray graphsV2D("TGraph",Ncontours); { Int_t ncontours = contsV2D->GetSize(); TList* clist = NULL; Int_t nGraphs = 0; TGraph *gr = NULL; for(Int_t i = 0; i < ncontours; i++) { if(i==0) continue; clist = (TList*) contsV2D->At(i); for(Int_t j = 0 ; j < clist->GetSize(); j++) { gr = (TGraph*) clist->At(j); if(!gr) continue; gr->SetLineWidth(1); gr->SetLineColor(kGray+1); if( !((i)%5) ) { gr->SetLineWidth(2); gr->SetLineColor(kGray+2); } new(graphsV2D[nGraphs]) TGraph(*gr) ; nGraphs++; } } } // Ion probability hIonProb2D->GetZaxis()->SetRangeUser(0.00501,80); TH2F *hIonProb2Dc = (TH2F*) hIonProb2D->Clone("hIonProb2Dc"); const Int_t NcontI = 4; Double_t contI[NcontI] = {0.01,0.1,1.0,10.0}; hIonProb2Dc->SetContour(NcontI, contI); hIonProb2Dc->Draw("cont list"); c->Update(); TObjArray *contsI2D = (TObjArray*) gROOT->GetListOfSpecials()->FindObject("contours"); TClonesArray graphsI2D("TGraph",NcontI); { Int_t ncontours = contsI2D->GetSize(); TList* clist = NULL; Int_t nGraphs = 0; TGraph *gr = NULL; for(Int_t i = 0; i < ncontours; i++) { clist = (TList*) contsI2D->At(i); for(Int_t j = 0 ; j < clist->GetSize(); j++) { gr = (TGraph*) clist->At(j); if(!gr) continue; if( !(i%2) ) { gr->SetLineWidth(1); gr->SetLineStyle(2); gr->SetLineColor(kOrange-3); } else { gr->SetLineWidth(1); gr->SetLineStyle(1); gr->SetLineColor(kOrange-3); } new(graphsI2D[nGraphs]) TGraph(*gr) ; nGraphs++; } } } // "Axis range" in Osiris units: Double_t ylow = hDen2D[0]->GetYaxis()->GetBinLowEdge(FirstyBin); Double_t yup = hDen2D[0]->GetYaxis()->GetBinUpEdge(LastyBin); Double_t xmin = hDen2D[0]->GetXaxis()->GetXmin(); Double_t xmax = hDen2D[0]->GetXaxis()->GetXmax(); TLine *lineYzero = new TLine(xmin,0.0,xmax,0.0); lineYzero->SetLineColor(kGray+2); lineYzero->SetLineStyle(2); TLine *lineYup = new TLine(xmin,yup,xmax,yup); lineYup->SetLineColor(kGray+1); lineYup->SetLineStyle(2); TLine *lineYdown = new TLine(xmin,ylow,xmax,ylow); lineYdown->SetLineColor(kGray+1); lineYdown->SetLineStyle(2); zStartPlasma -= shiftz; zStartNeutral -= shiftz; zEndNeutral -= shiftz; if(opt.Contains("units")) { zStartPlasma *= skindepth / PUnits::um; zStartNeutral *= skindepth / PUnits::um; zEndNeutral *= skindepth / PUnits::um; } // cout << "Start plasma = " << zStartPlasma << endl; TLine *lineStartPlasma = new TLine(zStartPlasma,yMin,zStartPlasma,yMax); lineStartPlasma->SetLineColor(kGray+2); lineStartPlasma->SetLineStyle(2); lineStartPlasma->SetLineWidth(3); // cout << "Start plasma = " << zStartNeutral << endl; TLine *lineStartNeutral = new TLine(zStartNeutral,yMin,zStartNeutral,yMax); lineStartNeutral->SetLineColor(kGray+1); lineStartNeutral->SetLineStyle(2); lineStartNeutral->SetLineWidth(3); // cout << "End plasma = " << zEndNeutral << endl; TLine *lineEndNeutral = new TLine(zEndNeutral,yMin,zEndNeutral,yMax); lineEndNeutral->SetLineColor(kGray+1); lineEndNeutral->SetLineStyle(2); lineEndNeutral->SetLineWidth(3); // Plotting // ----------------------------------------------- // Canvas setup TCanvas *C = new TCanvas("C","2D Charge density and Electric field",750,666); // Palettes setup TExec *exPlasma = new TExec("exPlasma","plasmaPalette->cd();"); TExec *exElec = new TExec("exElec","redelectronPalette->cd();"); TExec *exHot = new TExec("exHot","hotPalette->cd();"); TExec *exField = new TExec("exField","rbow2Palette->cd();"); TExec *exFieldT = new TExec("exFieldT","redPalette->cd();"); TExec *exIonP = new TExec("exIonP","redPalette->cd();"); TExec *exPot = new TExec("exPot","rbow2invPalette->cd();"); // Actual Plotting! // ------------------------------------------------------------ // Output file TString fOutName = Form("./%s/Plots/Potential2D/Potential2D",pData->GetPath().c_str()); fOutName += Form("-%s_%i",pData->GetName(),time); // Setup Pad layout: Float_t lMargin = 0.15; Float_t rMargin = 0.18; Float_t bMargin = 0.15; Float_t tMargin = 0.04; Float_t factor = 1.0; PlasmaGlob::CanvasAsymPartition(C,2,lMargin,rMargin,bMargin,tMargin,factor); TPad *pad[2]; TString sLabels[] = {"(a)","(b)"}; // Text objects TPaveText **textLabel = new TPaveText*[2]; C->cd(0); char pname[16]; sprintf(pname,"pad_%i",1); pad[0] = (TPad*) gROOT->FindObject(pname); pad[0]->Draw(); pad[0]->cd(); // <---------------------------------------------- Top Plot --------- if(opt.Contains("logz")) { pad[0]->SetLogz(1); } else { pad[0]->SetLogz(0); } pad[0]->SetFrameLineWidth(3); pad[0]->SetTickx(1); // Re-range: for(Int_t i=0; i<Nspecies; i++) { if(!hDen2D[i]) continue; hDen2D[i]->GetYaxis()->SetRangeUser(yMin -(factor-1)*yRange, yMax); } TH2F *hFrame = (TH2F*) gROOT->FindObject("hFrame1"); if(hFrame) delete hFrame; hFrame = (TH2F*) hDen2D[0]->Clone("hFrame1"); hFrame->Reset(); hFrame->SetLabelFont(42,"xyz"); hFrame->SetTitleFont(42,"xyz"); hFrame->GetYaxis()->SetNdivisions(505); hFrame->GetYaxis()->SetLabelSize(0.085); hFrame->GetYaxis()->SetTitleSize(0.09); hFrame->GetYaxis()->SetTitleOffset(0.7); hFrame->GetYaxis()->SetTickLength(0.02); hFrame->GetXaxis()->SetLabelOffset(999.); hFrame->GetXaxis()->SetTitleOffset(999.); hFrame->GetXaxis()->SetTickLength(0.04); // Frame asymmetry: hFrame->Draw("col"); // hDen2D[0]->GetZaxis()->SetNdivisions(505); // Injected electrons if any if(Nspecies>=3) { if(hDen2D[2]) { exHot->Draw(); hDen2D[2]->Draw("colz same"); } } // Plasma hDen2D[0]->GetZaxis()->SetTitleFont(42); exPlasma->Draw(); hDen2D[0]->Draw("colz same"); // Beam driver. if(hDen2D[1]) { // hDen2D[1]->GetZaxis()->SetNdivisions(505); exElec->Draw(); hDen2D[1]->Draw("colz same"); } { TGraph *gr = (TGraph*) graphsV2D.At(4); gr->Draw("C"); } { TGraph *gr = (TGraph*) graphsI2D.At(1); gr->Draw("C"); } if(opt.Contains("1dline")) { lineYzero->Draw(); lineYdown->Draw(); lineYup->Draw(); } if(opt.Contains("sline")) { if(zStartPlasma>xmin && zStartPlasma<xmax) lineStartPlasma->Draw(); if(zStartNeutral>xmin && zStartNeutral<xmax) lineStartNeutral->Draw(); if(zEndNeutral>xmin && zEndNeutral<xmax) lineEndNeutral->Draw(); } // lineYdown->Draw(); // lineYup->Draw(); // Palettes re-arrangement pad[0]->Update(); Float_t y1 = pad[0]->GetBottomMargin(); Float_t y2 = 1 - pad[0]->GetTopMargin(); Float_t x1 = pad[0]->GetLeftMargin(); Float_t x2 = 1 - pad[0]->GetRightMargin(); TPaletteAxis *palette = NULL; if(Nspecies>=3) { if(hDen2D[2]) { palette = (TPaletteAxis*)hDen2D[2]->GetListOfFunctions()->FindObject("palette"); } } if(palette) { palette->SetY2NDC(y2 - 0.00); palette->SetY1NDC(0.66*(y1+y2) + 0.00); palette->SetX1NDC(x2 + 0.005); palette->SetX2NDC(x2 + 0.03); // palette->SetTitleFont(42); // palette->SetTitleOffset(0.85); palette->SetTitleOffset(999.9); palette->SetTitleSize(0.075); palette->SetLabelFont(42); palette->SetLabelSize(0.075); palette->SetLabelOffset(0.001); palette->SetBorderSize(2); palette->SetLineColor(1); } palette = (TPaletteAxis*)hDen2D[0]->GetListOfFunctions()->FindObject("palette"); if(palette) { palette->SetY2NDC(0.66*(y1+y2) - 0.00); palette->SetY1NDC(0.33*(y1+y2) + 0.00); palette->SetX1NDC(x2 + 0.005); palette->SetX2NDC(x2 + 0.03); // palette->SetTitleFont(42); palette->SetTitleOffset(0.80); palette->SetTitleSize(0.075); palette->SetLabelFont(42); palette->SetLabelSize(0.075); palette->SetLabelOffset(0.001); palette->SetBorderSize(2); palette->SetLineColor(1); } palette = (TPaletteAxis*)hDen2D[1]->GetListOfFunctions()->FindObject("palette"); if(palette) { palette->SetY2NDC(0.33*(y1+y2) - 0.00); palette->SetY1NDC(y1 + 0.00); palette->SetX1NDC(x2 + 0.005); palette->SetX2NDC(x2 + 0.03); //palette->SetTitleFont(42); //palette->SetTitleOffset(0.85); palette->SetTitleOffset(999.9); palette->SetTitleSize(0.075); palette->SetLabelFont(42); palette->SetLabelSize(0.075); palette->SetLabelOffset(0.001); palette->SetBorderSize(2); palette->SetLineColor(1); } // 1D charge density plots: Float_t yaxismin = pad[0]->GetUymin(); Float_t yaxismax = pad[0]->GetUymin() + 0.33*(pad[0]->GetUymax() - pad[0]->GetUymin()) - 0.00; Float_t denmin = Min[1]; Float_t denmax = Max[1]; if(opt.Contains("logz")) { denmin = TMath::Log10(denmin); denmax = TMath::Log10(denmax); } Float_t curmin = 0.0; Float_t curmax = 0.0; if(opt.Contains("curr")) { curmin = 0.0; curmax = hCur1D[1]->GetMaximum(); cout << Form(" Maximum driver current = %6.2f kA ", curmax) << endl ; if(Nspecies>=3) if(hCur1D[2]) cout << Form(" Maximum witness current = %6.2f kA ", hCur1D[2]->GetMaximum()) << endl ; // Round for better plotting curmax = 0.1*TMath::Nint(curmax*10); } for(Int_t i=0; i<Nspecies; i++) { if(!hDen1D[i]) continue; Float_t slope = (yaxismax - yaxismin)/(denmax - denmin); for(Int_t j=0; j<hDen1D[i]->GetNbinsX(); j++) { Float_t content = hDen1D[i]->GetBinContent(j+1); if(opt.Contains("logz")) content = TMath::Log10(content); if(content<denmin) hDen1D[i]->SetBinContent(j+1,yaxismin); else hDen1D[i]->SetBinContent(j+1,(content - denmin) * slope + yaxismin); } if(hCur1D[i]) { slope = (yaxismax - yaxismin)/(curmax - curmin); for(Int_t j=0; j<hCur1D[i]->GetNbinsX(); j++) { Float_t content = hCur1D[i]->GetBinContent(j+1); if(content<curmin) hCur1D[i]->SetBinContent(j+1,yaxismin); else hCur1D[i]->SetBinContent(j+1,(content - curmin) * slope + yaxismin); } } } // Plasma on-axis density: // hDen1D[0]->SetLineWidth(2); // hDen1D[0]->SetLineColor(kGray+1); // // // PlasmaGlob::SetH1Style(hDen1D[0],1); // hDen1D[0]->Draw("same C"); if(opt.Contains("curr")) { hCur1D[1]->SetLineWidth(2); hCur1D[1]->SetLineColor(PlasmaGlob::elecLine); hCur1D[1]->Draw("same C"); } else { hDen1D[1]->SetLineWidth(2); hDen1D[1]->SetLineColor(PlasmaGlob::elecLine); // hDen1D[1]->Draw("same C"); } if(Nspecies>=3) { if(hDen1D[2]) { if(opt.Contains("curr")) { hCur1D[2]->SetLineWidth(2); hCur1D[2]->SetLineColor(kOrange+8); hCur1D[2]->Draw("same C"); } else { hDen1D[2]->SetLineWidth(2); hDen1D[2]->SetLineColor(kOrange+8); // hDen1D[2]->Draw("same C"); } } } // Current axis TGaxis *axis = NULL; if(opt.Contains("curr")) { axis = new TGaxis(xMax-xRange/6.0,yMin - (factor-1)*yRange, xMax-xRange/6.0,yaxismax, 0.001,curmax,503,"+LS"); axis->SetLineWidth(1); axis->SetLineColor(kGray+3);//PlasmaGlob::elecLine); axis->SetLabelColor(kGray+3);//PlasmaGlob::elecLine); axis->SetLabelSize(0.06); axis->SetLabelOffset(0.01); axis->SetLabelFont(42); axis->SetTitleColor(kGray+3);//PlasmaGlob::elecLine); axis->SetTitleSize(0.06); axis->SetTitleOffset(0.6); axis->SetTitleFont(42); axis->SetTickSize(0.03); axis->SetTitle("I [kA]"); axis->CenterTitle(); axis->SetNdivisions(505); axis->Draw(); } TPaveText *textTime = new TPaveText(xMax - 0.3*xRange, yMax-0.15*yRange, xMax-0.1, yMax-0.05*yRange); //x2-0.17,y2-0.12,x2-0.02,y2-0.02,"NDC"); PlasmaGlob::SetPaveTextStyle(textTime,32); char ctext[128]; if(opt.Contains("units") && n0) sprintf(ctext,"z = %5.1f #mum", Time * skindepth / PUnits::um); else sprintf(ctext,"t = %5.1f #omega_{p}^{-1}",Time); textTime->SetTextFont(42); textTime->AddText(ctext); textTime->Draw(); // textDen->Draw(); // if(opt.Contains("units")) // textWav->Draw(); textLabel[0] = new TPaveText(xMin + 0.02*xRange, yMax-0.2*yRange, xMin+0.30*xRange, yMax-0.05*yRange); PlasmaGlob::SetPaveTextStyle(textLabel[0],12); textLabel[0]->SetTextFont(42); textLabel[0]->AddText(sLabels[0]); textLabel[0]->Draw(); pad[0]->RedrawAxis(); C->cd(0); sprintf(pname,"pad_%i",0); pad[1] = (TPad*) gROOT->FindObject(pname); pad[1]->Draw(); pad[1]->cd(); // <--------------------------------------------------------- Bottom Plot pad[1]->SetFrameLineWidth(3); pad[1]->SetTickx(1); hFrame = (TH2F*) gROOT->FindObject("hFrame2"); if(hFrame) delete hFrame; hFrame = (TH2F*) hDen2D[0]->Clone("hFrame2"); hFrame->Reset(); Float_t yFactor = pad[0]->GetAbsHNDC()/pad[1]->GetAbsHNDC(); hFrame->GetYaxis()->SetLabelSize(yFactor*0.085); hFrame->GetYaxis()->SetTitleSize(yFactor*0.09); hFrame->GetYaxis()->SetTitleOffset(0.7/yFactor); hFrame->GetYaxis()->SetTickLength(0.02/yFactor); hFrame->GetXaxis()->SetTitleSize(0.10); hFrame->GetXaxis()->SetLabelSize(0.08); hFrame->GetXaxis()->SetLabelOffset(0.02); hFrame->GetXaxis()->SetTitleOffset(1.0); hFrame->GetXaxis()->SetTickLength(0.04*yFactor); hFrame->SetLabelFont(42,"xyz"); hFrame->SetTitleFont(42,"xyz"); hFrame->Draw("col"); // hE2D[0]->GetZaxis()->SetNdivisions(505); hV2D->GetZaxis()->SetTitleFont(42); hV2D->GetZaxis()->SetTickLength(0.02/yFactor); exPot->Draw(); hV2D->Draw("col z same"); for(Int_t i=0; i<graphsV2D.GetEntriesFast(); i++) { TGraph *gr = (TGraph*) graphsV2D.At(i); if(!gr) continue; gr->Draw("C"); } for(Int_t i=0; i<graphsI2D.GetEntriesFast(); i++) { //if(i!=2) continue; TGraph *gr = (TGraph*) graphsI2D.At(i); if(!gr) continue; gr->Draw("C"); } if(opt.Contains("1dline")) { lineYzero->Draw(); lineYdown->Draw(); lineYup->Draw(); } if(opt.Contains("sline")) { if(zStartPlasma>xmin && zStartPlasma<xmax) lineStartPlasma->Draw(); if(zStartNeutral>xmin && zStartNeutral<xmax) lineStartNeutral->Draw(); if(zEndNeutral>xmin && zEndNeutral<xmax) lineEndNeutral->Draw(); } pad[1]->Update(); y1 = pad[1]->GetBottomMargin(); y2 = 1 - pad[1]->GetTopMargin(); x1 = pad[1]->GetLeftMargin(); x2 = 1 - pad[1]->GetRightMargin(); palette = (TPaletteAxis*)hV2D->GetListOfFunctions()->FindObject("palette"); if(palette) { palette->SetY2NDC(y2 - 0.00); palette->SetY1NDC(y1 + 0.00); palette->SetX1NDC(x2 + 0.005); palette->SetX2NDC(x2 + 0.03); // palette->SetTitleFont(42); palette->SetTitleSize(yFactor*0.075); palette->SetTitleOffset(0.80/yFactor); palette->SetLabelSize(yFactor*0.075); palette->SetLabelFont(42); palette->SetLabelOffset(0.01/yFactor); palette->SetBorderSize(2); palette->SetLineColor(1); } pad[1]->RedrawAxis(); textLabel[1] = new TPaveText(xMin + 0.02*xRange, yMax-0.2*yRange, xMin+0.30*xRange, yMax-0.05*yRange); PlasmaGlob::SetPaveTextStyle(textLabel[1],12); textLabel[1]->SetTextFont(42); textLabel[1]->AddText(sLabels[1]); textLabel[1]->Draw(); C->cd(); // Print to a file PlasmaGlob::imgconv(C,fOutName,opt); // --------------------------------------------------------- PlasmaGlob::DestroyCanvases(); }
void PlotDensity1D( const TString &sim, Int_t time, Int_t Nbins=1, const TString &options="") { #ifdef __CINT__ gSystem->Load("libplasma.so"); #endif PlasmaGlob::Initialize(); // Init Units table PUnits::UnitsTable::Get(); // Load PData PData *pData = PData::Get(sim.Data()); pData->LoadFileNames(time); if(!pData->IsInit()) return; TString opt = options; gStyle->SetPadRightMargin(0.20); // Margin right axis if(opt.Contains("grid")) { gStyle->SetPadGridX(1); gStyle->SetPadGridY(1); } Bool_t CYL = kFALSE; if(sim.Contains("cyl")) { CYL = kTRUE; opt += "cyl"; } Bool_t ThreeD = kFALSE; if(sim.Contains("3D")) ThreeD = kTRUE; Bool_t INT = kTRUE; // Integrate instead of averaging. // Some plasma constants Float_t n0 = pData->GetPlasmaDensity(); Float_t kp = pData->GetPlasmaK(); Float_t skindepth = (1/kp); Float_t E0 = pData->GetPlasmaE0(); // Some beam properties: Double_t Ebeam = pData->GetBeamEnergy(); Double_t gamma = pData->GetBeamGamma(); Double_t vbeam = pData->GetBeamVelocity(); Double_t kbeta = PFunc::BeamBetatronWavenumber(gamma,n0); Double_t rms0 = pData->GetBeamRmsY() * kp; if(CYL) rms0 = pData->GetBeamRmsR() * kp; cout << Form(" - Bunch gamma = %8.4f", gamma ) << endl; cout << Form(" - Bunch velocity = %8.4f c", vbeam ) << endl; cout << Form(" - Bunch betatron k = %8.4f mm-1", kbeta * PUnits::mm) << endl; cout << Form(" - Bunch RMS_0 = %8.4f um", rms0 * skindepth / PUnits::um) << endl; cout << endl; // Time in OU Float_t Time = pData->GetRealTime(); // z start of the plasma in normalized units. Float_t zStartPlasma = pData->GetPlasmaStart()*kp; // z start of the beam in normalized units. Float_t zStartBeam = pData->GetBeamStart()*kp; if(opt.Contains("center")) { Time -= zStartPlasma; if(opt.Contains("comov")) // Centers on the head of the beam. Time += zStartBeam; } // Get charge density histos Int_t Nspecies = pData->NSpecies(); TH1F **hDen1D = new TH1F*[Nspecies]; TH2F *hDen2D = NULL; for(Int_t i=0;i<Nspecies;i++) { hDen1D[i] = NULL; if(!pData->GetChargeFileName(i)) continue; if(i==0) { if(ThreeD) hDen2D = pData->GetCharge2DSliceZY(i,-1,Nbins); else hDen2D = pData->GetCharge(i,opt); char hName[24]; sprintf(hName,"hDen_%i",i); hDen2D->SetName(hName); hDen2D->GetXaxis()->CenterTitle(); hDen2D->GetYaxis()->CenterTitle(); hDen2D->GetZaxis()->CenterTitle(); hDen2D->GetXaxis()->SetTitle("z [c/#omega_{p}]"); hDen2D->GetYaxis()->SetTitle("y [c/#omega_{p}]"); if(i==0) hDen2D->GetZaxis()->SetTitle("#LTn_{e}#GT [n_{0}]"); else hDen2D->GetZaxis()->SetTitle("#LTn_{b}#GT [n_{0}]"); } if(Nbins==0) { Nbins = TMath::Nint(rms0 / hDen2D->GetYaxis()->GetBinWidth(1)) ; // cout << Form(" Rms0 = %6.2f Dx = %6.2f Nbins = %4i .", // rms0, hDen2D[i]->GetYaxis()->GetBinWidth(1), Nbins) << endl; } // 1D histograms TString opth1 = opt; opth1 += "avg"; if(CYL) opth1 += "cyl"; if(ThreeD) { hDen1D[i] = pData->GetH1SliceZ3D(pData->GetChargeFileName(i)->c_str(),"charge",-1,Nbins,-1,Nbins); } else if(CYL) { // Cylindrical: The first bin with r>0 is actually the number 1 (not the 0). hDen1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",1,Nbins,opth1.Data()); } else { // 2D cartesian hDen1D[i] = pData->GetH1SliceZ(pData->GetChargeFileName(i)->c_str(),"charge",-1,Nbins,opth1.Data()); } char hName[24]; sprintf(hName,"hDen_%i",i); hDen1D[i]->SetName(hName); hDen1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]"); hDen1D[i]->GetYaxis()->SetTitle("#LTn_{e}#GT [n_{0}]"); } // Get electric fields const Int_t Nfields = 2; TH1F **hE1D = new TH1F*[Nfields]; for(Int_t i=0;i<Nfields;i++) { hE1D[i] = NULL; if(!pData->GetEfieldFileName(i)) continue; // 1D histograms TString opth1 = opt; opth1 += "avg"; if(CYL) opth1 += "cyl"; char nam[3]; sprintf(nam,"e%i",i+1); if(ThreeD) { if(i==0) hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,-1,Nbins); else hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,-Nbins,Nbins); } else if(CYL) { // Cylindrical: The firt bin with r>0 is actually the number 1 (not the 0). if(i==0) hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opth1.Data()); else hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opth1.Data()); } else { // 2D cartesian if(i==0) hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,opth1.Data()); else hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,opth1.Data()); } char hName[24]; sprintf(hName,"hE_%i",i); hE1D[i]->SetName(hName); hE1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]"); hE1D[i]->GetYaxis()->SetTitle("E [E_{e}]"); } // Y range: Int_t NbinsY = (Int_t) hDen2D->GetNbinsY(); Int_t midyBin = NbinsY/2; if(!CYL && (Nbins > midyBin) ) Nbins = midyBin; if(CYL && (Nbins >= NbinsY ) ) Nbins = NbinsY-1; Int_t FirstyBin = midyBin + 1 - Nbins; Int_t LastyBin = midyBin + Nbins; if(CYL) { FirstyBin = 1; LastyBin = Nbins; } if(LastyBin>=NbinsY) LastyBin = NbinsY - 1; Float_t ymin = hDen2D->GetYaxis()->GetBinLowEdge(FirstyBin); Float_t ymax = hDen2D->GetYaxis()->GetBinLowEdge(LastyBin+1); cout << Form(" Nbins = %i. Firstbin = %i Lastbin = %i -> ymin = %7.2f , ymax = %7.2f",Nbins,FirstyBin,LastyBin,ymin,ymax) << endl; // ---- // Tunning the Histograms // --------------------- // Chaning to user units: // cout << Form(" n0 = %10e ", n0 * PUnits::cm3) << endl; if(opt.Contains("units") && n0) { Int_t NbinsX = hDen2D->GetNbinsX(); Float_t xMin = skindepth * hDen2D->GetXaxis()->GetXmin() / PUnits::mm; Float_t xMax = skindepth * hDen2D->GetXaxis()->GetXmax() / PUnits::mm; Int_t NbinsY = hDen2D->GetNbinsY(); Float_t yMin = skindepth * hDen2D->GetYaxis()->GetXmin() / PUnits::mm; Float_t yMax = skindepth * hDen2D->GetYaxis()->GetXmax() / PUnits::mm; hDen2D->SetBins(NbinsX,xMin,xMax,NbinsY,yMin,yMax); for(Int_t j=0;j<hDen2D->GetNbinsX();j++) { for(Int_t k=0;k<hDen2D->GetNbinsY();k++) { hDen2D->SetBinContent(j,k, hDen2D->GetBinContent(j,k) * n0 / (1e15/PUnits::cm3) ); } } hDen2D->GetYaxis()->SetTitle("y [mm]"); if(opt.Contains("comov")) hDen2D->GetXaxis()->SetTitle("#zeta [mm]"); else hDen2D->GetXaxis()->SetTitle("z [mm]"); hDen2D->GetZaxis()->SetTitle("#LTn_{b}#GT [10^{15}/cm^{3}]"); for(Int_t i=0;i<Nspecies;i++) { Int_t NbinsX = hDen1D[i]->GetNbinsX(); Float_t xMin = skindepth * hDen1D[i]->GetXaxis()->GetXmin() / PUnits::mm; Float_t xMax = skindepth * hDen1D[i]->GetXaxis()->GetXmax() / PUnits::mm; hDen1D[i]->SetBins(NbinsX,xMin,xMax); for(Int_t j=0;j<hDen1D[i]->GetNbinsX();j++) { Float_t bincontent = (hDen1D[i]->GetBinContent(j) * n0 / (1e15/PUnits::cm3)); hDen1D[i]->SetBinContent(j,bincontent); } hDen1D[i]->GetYaxis()->SetTitle("#LTn_{e}#GT [10^{15}/cm^{3}]"); if(opt.Contains("comov")) hDen1D[i]->GetXaxis()->SetTitle("#zeta [mm]"); else hDen1D[i]->GetXaxis()->SetTitle("z [mm]"); } for(Int_t i=0;i<Nfields;i++) { Int_t NbinsX = hE1D[i]->GetNbinsX(); Float_t xMin = skindepth * hE1D[i]->GetXaxis()->GetXmin() / PUnits::mm; Float_t xMax = skindepth * hE1D[i]->GetXaxis()->GetXmax() / PUnits::mm; hE1D[i]->SetBins(NbinsX,xMin,xMax); for(Int_t j=0;j<hE1D[i]->GetNbinsX();j++) { hE1D[i]->SetBinContent(j, hE1D[i]->GetBinContent(j) * ( E0 / (PUnits::GV/PUnits::m) ) ); } hE1D[i]->GetYaxis()->SetTitle("E [GV/m]"); if(opt.Contains("comov")) hE1D[i]->GetXaxis()->SetTitle("#zeta [mm]"); else hE1D[i]->GetXaxis()->SetTitle("z [mm]"); } } // Set the range of the histogram for maximum constrast Float_t density = 1; if(opt.Contains("units") && n0) density = 1e-15 * 1e-6 * n0; Float_t Max = 1.1*hDen1D[0]->GetMaximum(); Float_t Min = 0; // Float_t Base = density; // Float_t Min = 2.* Base - Max; // if(Max >= 2. * Base) { // Max = 2. * Base; // Min = 2. * Base - Max; // } else if(Max<1.0 * Base) { // Max = 1.1 * Base; // Min = 0.; // } hDen1D[0]->GetYaxis()->SetRangeUser(0.,Max); // Plotting // ----------------------------------------------- // Canvas setup TCanvas *C = new TCanvas("C","Charge density and Electric field on axis",850,500); TPaveText *textTime = new TPaveText(0.63,0.87,0.78,0.92,"NDC"); PlasmaGlob::SetPaveTextStyle(textTime); textTime->SetTextColor(kGray+2); char ctext[128]; if(opt.Contains("units") && n0) sprintf(ctext,"Z = %5.1f mm", 1e3 * skindepth * Time); else sprintf(ctext,"T = %5.1f 1/#omega_{p}",Time); textTime->AddText(ctext); TPaveText *textRange = new TPaveText(0.13,0.87,0.38,0.92,"NDC"); PlasmaGlob::SetPaveTextStyle(textRange,12); textRange->SetTextColor(kGray+2); if(opt.Contains("units") && n0) sprintf(ctext,"%5.3f < y < %5.3f mm",ymin,ymax); else sprintf(ctext,"%5.3f < y < %5.3f c/#omega_{p}",ymin,ymax); textRange->AddText(ctext); // Actual Plotting! // ------------------------------------------------------------ // Output file TString fOutName = Form("./%s/Plots/Density1D/Density1D",sim.Data()); fOutName += Form("-%s_%i",sim.Data(),time); // Colors Int_t plasmaC = kGray+1; Int_t beamC = kAzure-5; Int_t fieldC = kOrange+10; Int_t fieldCb = kGray+1; C->cd(0); gPad->SetFrameLineWidth(2); hDen1D[0]->SetLineColor(plasmaC); hDen1D[0]->SetLineWidth(1); hDen1D[0]->Draw("C"); hDen1D[0]->GetYaxis()->CenterTitle(); hDen1D[0]->GetXaxis()->CenterTitle(); C->Update(); TLine *line0 = new TLine(hDen1D[0]->GetXaxis()->GetXmin(), (gPad->GetUymin()+gPad->GetUymax())/2., hDen1D[0]->GetXaxis()->GetXmax(), (gPad->GetUymin()+gPad->GetUymax())/2.); line0->SetLineColor(kGray+1); line0->SetLineStyle(2); line0->Draw(); Float_t rightmax = 2.5 * hDen1D[1]->GetMaximum(); Float_t slope = (gPad->GetUymax() - gPad->GetUymin())/rightmax; for(Int_t i=0;i<hDen1D[1]->GetNbinsX();i++) { hDen1D[1]->SetBinContent(i+1,hDen1D[1]->GetBinContent(i+1)*slope + Min); } hDen1D[1]->SetLineWidth(2); hDen1D[1]->SetLineColor(beamC); hDen1D[1]->Draw("same C"); // hTest->Draw("same"); //draw an axis on the right side TGaxis *axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),gPad->GetUxmax(), gPad->GetUymax(),0,rightmax,505,"+L"); axis->SetLineWidth(1); axis->SetLineColor(beamC); axis->SetLabelColor(beamC); if(opt.Contains("units") && n0) axis->SetTitle("#LTn_{b}#GT [10^{15}/cm^{3}]"); else axis->SetTitle("#LTn_{b}#GT [n_{0}]"); axis->CenterTitle(); axis->SetTitleColor(beamC); axis->SetTitleOffset(1.2); axis->Draw(); // Longitudinal Electric field Float_t factor = 1.5; Float_t rightmin = factor * hE1D[0]->GetMinimum(); rightmax = factor * hE1D[0]->GetMaximum(); if(hE1D[1]) { if(hE1D[1]->GetMaximum() > hE1D[0]->GetMaximum()) rightmax = factor * hE1D[1]->GetMaximum(); } if(rightmax > TMath::Abs(rightmin)) rightmin = -rightmax; else rightmax = - rightmin; slope = (gPad->GetUymax() - gPad->GetUymin())/(rightmax-rightmin); for(Int_t i=0;i<hE1D[0]->GetNbinsX();i++) { hE1D[0]->SetBinContent(i+1,(hE1D[0]->GetBinContent(i+1)-rightmin)*slope + Min); } hE1D[0]->SetLineStyle(1); hE1D[0]->SetLineWidth(2); hE1D[0]->SetLineColor(fieldC); hE1D[0]->Draw("same C"); // Transverse field for(Int_t i=0;i<hE1D[1]->GetNbinsX();i++) { hE1D[1]->SetBinContent(i+1,(hE1D[1]->GetBinContent(i+1)-rightmin)*slope + Min); } hE1D[1]->SetLineStyle(2); hE1D[1]->SetLineWidth(1); hE1D[1]->SetLineColor(fieldC); hE1D[1]->Draw("same C"); //draw an axis on the right side Float_t rightmargin = 0.08; Float_t ux = gPad->PixeltoX(gPad->UtoPixel(1-rightmargin)); TGaxis *axisE = new TGaxis(ux,gPad->GetUymin(),ux, gPad->GetUymax(),rightmin,rightmax,505,"+L"); axisE->SetLineWidth(1); axisE->SetLineColor(fieldC); axisE->SetLabelColor(fieldC); axisE->SetTitleColor(fieldC); if(opt.Contains("units") && n0) axisE->SetTitle("E [GV/m]"); else axisE->SetTitle("E [E_{0}]"); axisE->CenterTitle(); axisE->SetTitleOffset(0.8); axisE->Draw(); textTime->Draw(); textRange->Draw(); C->cd(); // Print to a file PlasmaGlob::imgconv(C,fOutName,opt); // --------------------------------------------------------- }
void PlotField1D( const TString &sim, Int_t time, Int_t Nbins=1, const TString &options="") { #ifdef __CINT__ gSystem->Load("libplasma.so"); #endif PlasmaGlob::Initialize(); TString opt = options; gStyle->SetPadLeftMargin(0.10); // Margin left axis gStyle->SetPadRightMargin(0.12); // Margin right axis if(opt.Contains("grid")) { gStyle->SetPadGridX(1); gStyle->SetPadGridY(1); } // Load PData PData *pData = PData::Get(sim.Data()); pData->LoadFileNames(time); if(!pData->IsInit()) return; Bool_t CYL = kFALSE; if(sim.Contains("cyl")) { CYL = kTRUE; opt += "cyl"; } Bool_t ThreeD = kFALSE; if(sim.Contains("3D")) ThreeD = kTRUE; // Some plasma constants Double_t n0 = pData->GetPlasmaDensity(); Double_t kp = pData->GetPlasmaK(); Double_t skindepth = 1/kp; Double_t E0 = pData->GetPlasmaE0(); // Some beam properties: Float_t Ebeam = pData->GetBeamEnergy() * PUnits::MeV; Float_t gamma = Ebeam / PConst::ElectronMassE; Float_t vbeam = TMath::Sqrt(1 - 1/(gamma*gamma)); // cout << Form(" - Bunch gamma = %8.4f", gamma ) << endl; // cout << Form(" - Bunch velocity = %8.4f c", vbeam ) << endl; Float_t Time = pData->GetRealTime(); // z start of the plasma in normalized units. Float_t zStartPlasma = pData->GetPlasmaStart()*kp; // z start of the beam in normalized units. Float_t zStartBeam = pData->GetBeamStart()*kp; Time -= zStartPlasma - zStartBeam; // 1D histograms TString opth1 = opt; opth1 += "avg"; // Get electric fields const Int_t Nfields = 1; TH1F **hE1D = new TH1F*[Nfields]; for(Int_t i=0;i<Nfields;i++) { hE1D[i] = NULL; if(!pData->GetEfieldFileName(i)) continue; char nam[3]; sprintf(nam,"e%i",i+1); if(ThreeD) { if(i==0) hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,-1,Nbins,opth1.Data()); else hE1D[i] = pData->GetH1SliceZ3D(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,-Nbins,Nbins,opth1.Data()); } else if(CYL) { // Cylindrical: The firt bin with r>0 is actually the number 1 (not the 0). if(i==0) hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opth1.Data()); else hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,1,Nbins,opth1.Data()); } else { // 2D cartesian if(i==0) hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-1,Nbins,opth1.Data()); else hE1D[i] = pData->GetH1SliceZ(pData->GetEfieldFileName(i)->c_str(),nam,-Nbins,Nbins,opth1.Data()); } char hName[24]; sprintf(hName,"hE_%i",i); hE1D[i]->SetName(hName); if(opt.Contains("comov")) hE1D[i]->GetXaxis()->SetTitle("#zeta [c/#omega_{p}]"); else hE1D[i]->GetXaxis()->SetTitle("z [c/#omega_{p}]"); if(i==0) hE1D[i]->GetYaxis()->SetTitle("E_{z} [E_{0}]"); else if(i==1) hE1D[i]->GetYaxis()->SetTitle("E_{y} [E_{0}}]"); else if(i==2) hE1D[i]->GetYaxis()->SetTitle("E_{x} [E_{0}}]"); } // Chaning to user units: if(opt.Contains("units") && n0) { for(Int_t i=0;i<Nfields;i++) { Int_t NbinsX = hE1D[i]->GetNbinsX(); Float_t xMin = (skindepth/PUnits::mm) * hE1D[i]->GetXaxis()->GetXmin(); Float_t xMax = (skindepth/PUnits::mm) * hE1D[i]->GetXaxis()->GetXmax(); hE1D[i]->SetBins(NbinsX,xMin,xMax); for(Int_t j=0;j<NbinsX;j++) { hE1D[i]->SetBinContent(j, hE1D[i]->GetBinContent(j) * ( E0 / (PUnits::GV/PUnits::m) ) ); } if(opt.Contains("comov")) hE1D[i]->GetXaxis()->SetTitle("#zeta [mm]"); else hE1D[i]->GetXaxis()->SetTitle("z [mm]"); if(i==0) hE1D[i]->GetYaxis()->SetTitle("E_{z} [GV/m]"); else if(i==1) hE1D[i]->GetYaxis()->SetTitle("E_{y} [GV/m]"); else if(i==2) hE1D[i]->GetYaxis()->SetTitle("E_{x} [GV/m]"); } } // Calculate wave positions: // ---------------------------------------------------------------- // Retrieve the previous time TGraph if any; // Open TGraph TString filename = Form("./%s/Plots/Field1D/Field1D-%s.root",sim.Data(),sim.Data()); TFile * ifile = (TFile*) gROOT->GetListOfFiles()->FindObject(filename); // if doesn't exist the directory should be created if (!ifile) { TString f = filename; TString dir2 = f.Remove( f.Last( '/' ), f.Length() - f.Last( '/' ) ); TString dir1 = f.Remove( f.Last( '/' ), f.Length() - f.Last( '/' ) ); gSystem->mkdir( dir1 ); gSystem->mkdir( dir2 ); ifile = new TFile(filename,"UPDATE"); } Float_t *EMaxPos = new Float_t[Nfields]; Float_t *EMaxValue = new Float_t[Nfields]; // Get the Graph with the x1 positions of the maximum E_1 TGraph **graph = new TGraph*[Nfields]; char gName[24]; for(Int_t i=0;i<Nfields;i++) { if(!hE1D[i]) continue; EMaxPos[i] = EMaxValue[i] = -999; // Initial time search window: Float_t xCenter = (hE1D[i]->GetXaxis()->GetXmin()+hE1D[i]->GetXaxis()->GetXmax())/2.; Float_t xs1min = 0.5*(hE1D[i]->GetXaxis()->GetXmin()+xCenter); Float_t xs1max = xCenter; // For focusing fields i==1,2 we use a narrower window based on the previosly found // minimum for the accelerating fields i==0. if(i>0) { xCenter = EMaxPos[0]; if(opt.Contains("units") && n0) { xs1min = xCenter - (0.25*TMath::Pi() * 1e3 * skindepth); xs1max = xCenter + (0.25*TMath::Pi() * 1e3 * skindepth); } else { xs1min = xCenter - 0.25*TMath::Pi(); xs1max = xCenter + 0.25*TMath::Pi(); } } sprintf(gName,"gEMaxPos_%i",i); graph[i] = (TGraph*) ifile->Get(gName); if(graph[i]) { Double_t *y = graph[i]->GetY(); // Setup the searching windows to +/- pi/2 respect the last found minimum. if(opt.Contains("units") && n0) { xs1min = y[graph[i]->GetN()-1] - (0.5*TMath::Pi() * 1e3 * skindepth); xs1max = y[graph[i]->GetN()-1] + (0.5*TMath::Pi() * 1e3 * skindepth); } else { xs1min = y[graph[i]->GetN()-1] - 0.5*TMath::Pi(); xs1max = y[graph[i]->GetN()-1] + 0.5*TMath::Pi(); } delete graph[i]; } TH1F *htemp = (TH1F*) hE1D[i]->Clone("htemp"); htemp->GetXaxis()->SetRangeUser(xs1min,xs1max); //htemp->Smooth(1,"R"); Int_t binMax = htemp->GetMinimumBin(); EMaxPos[i] = (Float_t) htemp->GetBinCenter(binMax); EMaxValue[i] = (Float_t) htemp->GetBinContent(binMax); delete htemp; } // Tunning the Histograms // --------------------- // Plotting // ----------------------------------------------- // Output file TString fOutName = Form("./%s/Plots/Field1D/Field1D",sim.Data()); fOutName += Form("-%s_%i",sim.Data(),time); // Canvas setup TCanvas *C = new TCanvas("C","Electric wakefield on axis",850,1000); C->Divide(1,2); // Draw objects TPaveText *textTime = new TPaveText(0.70,0.87,0.85,0.92,"NDC"); PlasmaGlob::SetPaveTextStyle(textTime); char ctext[128]; if(opt.Contains("units") && n0) sprintf(ctext,"Z = %5.1f mm", 1e3 * skindepth * Time); else sprintf(ctext,"T = %5.1f 1/#omega_{p}",Time); textTime->AddText(ctext); // Colors Int_t fieldC = PlasmaGlob::fieldLine; Int_t phaseC = kGray+1; // Actual Plotting! // ------------------------------------------------------------ // More makeup C->cd(1); gPad->SetGridy(0); gPad->SetGridx(0); gPad->SetFrameLineWidth(2); hE1D[0]->SetLineWidth(1); hE1D[0]->GetYaxis()->CenterTitle(); hE1D[0]->GetXaxis()->CenterTitle(); hE1D[0]->SetLineStyle(1); hE1D[0]->SetLineWidth(3); hE1D[0]->SetLineColor(fieldC); hE1D[0]->SetMarkerStyle(20); if(Nfields>1) { hE1D[1]->GetYaxis()->CenterTitle(); hE1D[1]->GetXaxis()->CenterTitle(); hE1D[1]->SetLineStyle(1); hE1D[1]->SetLineWidth(1); hE1D[1]->SetLineColor(fieldC); hE1D[1]->SetMarkerStyle(24); } Float_t factor = 1.5; Float_t minimum = factor * hE1D[0]->GetMinimum(); Float_t maximum = factor * hE1D[0]->GetMaximum(); if(Nfields>1) { if(hE1D[1]->GetMaximum() > hE1D[0]->GetMaximum()) { maximum = factor * hE1D[1]->GetMaximum(); } if(hE1D[1]->GetMinimum() < hE1D[0]->GetMinimum()) { minimum = factor * hE1D[1]->GetMinimum(); } } if( maximum >= TMath::Abs(minimum)) minimum = -maximum; else maximum = - minimum; hE1D[0]->GetYaxis()->SetRangeUser(minimum,maximum); hE1D[0]->Draw("C"); if(Nfields>1) hE1D[1]->Draw("C same"); C->Update(); TLine *line0 = new TLine(hE1D[0]->GetXaxis()->GetXmin(), (gPad->GetUymin()+gPad->GetUymax())/2., hE1D[0]->GetXaxis()->GetXmax(), (gPad->GetUymin()+gPad->GetUymax())/2.); line0->SetLineColor(kGray+1); line0->SetLineStyle(2); line0->Draw(); TMarker *markEMax0 = new TMarker(EMaxPos[0],EMaxValue[0], 24); markEMax0->SetMarkerColor(fieldC); markEMax0->SetMarkerSize(1.6); markEMax0->Draw(); if(Nfields>1) { TMarker *markEMax1 = new TMarker(EMaxPos[1],EMaxValue[1], 24); markEMax1->SetMarkerColor(fieldC); markEMax1->SetMarkerSize(1.4); markEMax1->Draw(); } textTime->Draw(); // ---- // Define the TGraphs Int_t nPoints = 0; TGraph **gEMaxPos = new TGraph*[Nfields]; TGraph **gEMaxValue = new TGraph*[Nfields]; for(Int_t i=0;i<Nfields;i++) { if(!hE1D[i]) continue; sprintf(gName,"gEMaxPos_%i",i); gEMaxPos[i] = (TGraph*) ifile->Get(gName); if(gEMaxPos[i]==NULL) { gEMaxPos[i] = new TGraph(); gEMaxPos[i]->SetName(gName); } else { nPoints = gEMaxPos[i]->GetN(); } gEMaxPos[i]->Set(nPoints+1); if(opt.Contains("units") && n0) gEMaxPos[i]->SetPoint(nPoints, 1e3 * skindepth * Time,EMaxPos[i]); else gEMaxPos[i]->SetPoint(nPoints,Time,EMaxPos[i]); if(opt.Contains("units") && n0) { gEMaxPos[i]->GetYaxis()->SetTitle("#zeta_{min} [mm]"); gEMaxPos[i]->GetXaxis()->SetTitle("Z [mm]"); } else { gEMaxPos[i]->GetYaxis()->SetTitle("#zeta_{min} [c/#omega_{p}]"); gEMaxPos[i]->GetXaxis()->SetTitle("T [c/#omega_{p}]"); } gEMaxPos[i]->Write(gEMaxPos[i]->GetName(),TObject::kOverwrite); sprintf(gName,"gEMaxValue_%i",i); gEMaxValue[i] = (TGraph*) ifile->Get(gName); if(gEMaxValue[i]==NULL) { gEMaxValue[i] = new TGraph(); gEMaxValue[i]->SetName(gName); } else { nPoints = gEMaxValue[i]->GetN(); } gEMaxValue[i]->Set(nPoints+1); if(opt.Contains("units") && n0) gEMaxValue[i]->SetPoint(nPoints, 1e3 * skindepth * Time,EMaxValue[i]); else gEMaxValue[i]->SetPoint(nPoints,Time,EMaxValue[i]); if(opt.Contains("units") && n0) { gEMaxValue[i]->GetYaxis()->SetTitle("E_{min} [GV/m]"); gEMaxValue[i]->GetXaxis()->SetTitle("Z [mm]"); } else { gEMaxValue[i]->GetYaxis()->SetTitle("E_{min} [E_{0}]"); gEMaxValue[i]->GetXaxis()->SetTitle("T [c/#omega_{p}]"); } gEMaxValue[i]->Write(gEMaxValue[i]->GetName(),TObject::kOverwrite); } C->cd(2); gPad->SetGridy(1); gPad->SetGridx(0); gPad->SetFrameLineWidth(2); Float_t minPhase = 99.; Float_t maxPhase = -99.; Float_t minField = 99.; Float_t maxField = -99.; Double_t *yEMaxPos[Nfields]; Double_t *yEMaxValue[Nfields]; for(Int_t i=0;i<Nfields;i++) { yEMaxPos[i] = gEMaxPos[i]->GetY(); yEMaxValue[i] = gEMaxValue[i]->GetY(); for(Int_t j=0;j<gEMaxPos[0]->GetN();j++) { if(yEMaxPos[i][j]>maxPhase) maxPhase = yEMaxPos[i][j]; if(yEMaxPos[i][j]<minPhase) minPhase = yEMaxPos[i][j]; if(yEMaxValue[i][j]>maxField) maxField = yEMaxValue[i][j]; if(yEMaxValue[i][j]<minField) minField = yEMaxValue[i][j]; } } Float_t margin = (maxPhase - minPhase)/10; gEMaxPos[0]->GetYaxis()->SetRangeUser(minPhase-margin,maxPhase+margin); gEMaxPos[0]->GetYaxis()->CenterTitle(); gEMaxPos[0]->GetXaxis()->CenterTitle(); gEMaxPos[0]->SetLineColor(phaseC); gEMaxPos[0]->SetMarkerColor(phaseC); gEMaxPos[0]->SetLineWidth(3); gEMaxPos[0]->SetMarkerStyle(20); gEMaxPos[0]->SetMarkerSize(1.4); gEMaxPos[0]->Draw("APC"); if(Nfields>1) { gEMaxPos[1]->SetLineStyle(1); gEMaxPos[1]->SetLineColor(phaseC); gEMaxPos[1]->SetMarkerColor(phaseC); gEMaxPos[1]->SetLineWidth(1); gEMaxPos[1]->SetMarkerStyle(24); gEMaxPos[1]->SetMarkerSize(1.4); gEMaxPos[1]->Draw("PC"); } // Emax value // New axis first: C->Update(); // Needed for the axis! margin = (maxField - minField)/10; if (margin==0) margin = 1; Float_t rightmin = minField-margin; Float_t rightmax = maxField+margin; Float_t slope = (gPad->GetUymax() - gPad->GetUymin())/(rightmax-rightmin); TGaxis *axisEmax = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),gPad->GetUxmax(), gPad->GetUymax(),rightmin,rightmax,505,"+L"); axisEmax->SetLineWidth(1); axisEmax->SetLineColor(fieldC); axisEmax->SetLabelColor(fieldC); axisEmax->SetTitleColor(fieldC); if(opt.Contains("units") && n0) axisEmax->SetTitle("E_{min} [GV/m]"); else axisEmax->SetTitle("E_{min} [E_{0}]"); axisEmax->CenterTitle(); axisEmax->SetTitleSize(0.05); axisEmax->SetTitleOffset(1.2); axisEmax->SetLabelSize(0.05); axisEmax->SetLabelOffset(0.006); axisEmax->Draw(); // Adjust the TGraph Double_t *x = gEMaxValue[0]->GetX(); Double_t *y = gEMaxValue[0]->GetY(); for(Int_t i=0;i<gEMaxValue[0]->GetN();i++) { gEMaxValue[0]->SetPoint(i,x[i],(y[i]-rightmin)*slope + gPad->GetUymin()); } gEMaxValue[0]->SetLineColor(fieldC); gEMaxValue[0]->SetMarkerColor(fieldC); gEMaxValue[0]->SetLineWidth(3); gEMaxValue[0]->SetMarkerStyle(20); gEMaxValue[0]->SetMarkerSize(1.4); gEMaxValue[0]->Draw("PC"); if(Nfields>1) { x = gEMaxValue[1]->GetX(); y = gEMaxValue[1]->GetY(); for(Int_t i=0;i<gEMaxValue[1]->GetN();i++) { gEMaxValue[1]->SetPoint(i,x[i],(y[i]-rightmin)*slope + gPad->GetUymin()); } gEMaxValue[1]->SetLineColor(fieldC); gEMaxValue[1]->SetMarkerColor(fieldC); gEMaxValue[1]->SetLineWidth(1); gEMaxValue[1]->SetMarkerStyle(24); gEMaxValue[1]->SetMarkerSize(1.4); gEMaxValue[1]->Draw("PC"); } // Emax value // New axis first: C->Update(); // Needed for the axis! C->cd(); ifile->Close(); // Print to a file PlasmaGlob::imgconv(C,fOutName,opt); // --------------------------------------------------------- }