コード例 #1
0
void LimitFloatBitDepth (dng_host &host,
						 const dng_image &srcImage,
						 dng_image &dstImage,
						 uint32 bitDepth,
						 real32 scale)
	{
	
	DNG_ASSERT (srcImage.PixelType () == ttFloat, "Floating point image expected");
	DNG_ASSERT (dstImage.PixelType () == ttFloat, "Floating point image expected");
	
	dng_limit_float_depth_task task (srcImage,
									 dstImage,
									 bitDepth,
									 scale);
									 
	host.PerformAreaTask (task, dstImage.Bounds ());
	
	}
コード例 #2
0
dng_filter_task::dng_filter_task (const dng_image &srcImage,
						 		  dng_image &dstImage)
	
	:	fSrcImage     (srcImage)
	,	fDstImage     (dstImage)
	
	,	fSrcPlane     (0                    )
	,	fSrcPlanes    (srcImage.Planes    ())
	,	fSrcPixelType (srcImage.PixelType ())
	
	,	fDstPlane     (0                    )
	,	fDstPlanes    (dstImage.Planes    ())
	,	fDstPixelType (dstImage.PixelType ())
	
	,	fSrcRepeat    (1, 1)
	
	{

	}
コード例 #3
0
dng_linearize_plane::dng_linearize_plane (dng_host &host,
										  dng_linearization_info &info,
										  const dng_image &srcImage,
										  dng_image &dstImage,
										  uint32 plane)

	:	fSrcImage (srcImage)
	,	fDstImage (dstImage)
	,	fPlane (plane)
	,	fActiveArea (info.fActiveArea)
	,	fSrcPixelType (srcImage.PixelType ())
	,	fDstPixelType (dstImage.PixelType ())
	,	fReal32 (false)
	,	fScale (0.0f)
	,	fScale_buffer ()
	,	fBlack_2D_rows (0)
	,	fBlack_2D_cols (0)
	,	fBlack_2D_buffer ()
	,	fBlack_1D_rows (0)
	,	fBlack_1D_buffer ()

	{

	uint32 j;
	uint32 k;

	// Make sure the source pixel type is supported.

	if (fSrcPixelType != ttByte  &&
		fSrcPixelType != ttShort &&
		fSrcPixelType != ttLong)
		{

		DNG_REPORT ("Unsupported source pixel type");

		ThrowProgramError ();

		}

	if (fDstPixelType != ttShort &&
		fDstPixelType != ttFloat)
		{

		DNG_REPORT ("Unsupported destination pixel type");

		ThrowProgramError ();

		}

	// Are we using floating point math?

	fReal32 = (fSrcPixelType == ttLong ||
			   fDstPixelType == ttFloat);

	// Find the scale for this plane.

	real64 maxBlack = info.MaxBlackLevel (plane);

	real64 minRange = info.fWhiteLevel [plane] - maxBlack;

	if (minRange <= 0.0)
		{
		ThrowBadFormat ();
		}

	real64 scale = 1.0 / minRange;

	fScale = (real32) scale;

	// Calculate two-dimensional black pattern, if any.

	if (info.fBlackDeltaH.Get ())
		{

		fBlack_2D_rows = info.fBlackLevelRepeatRows;
		fBlack_2D_cols = info.fActiveArea.W ();

		}

	else if (info.fBlackLevelRepeatCols > 1)
		{

		fBlack_2D_rows = info.fBlackLevelRepeatRows;
		fBlack_2D_cols = info.fBlackLevelRepeatCols;

		}

	if (fBlack_2D_rows)
		{

		fBlack_2D_buffer.Reset (host.Allocate (fBlack_2D_rows * fBlack_2D_cols * 4));

		for (j = 0; j < fBlack_2D_rows; j++)
			{

			for (k = 0;  k < fBlack_2D_cols; k++)
				{

				real64 x = info.fBlackLevel [j]
											[k % info.fBlackLevelRepeatCols]
											[plane];

				if (info.fBlackDeltaH.Get ())
					{

					x += info.fBlackDeltaH->Buffer_real64 () [k];

					}

				x *= scale;

				uint32 index = j * fBlack_2D_cols + k;

				if (fReal32)
					{

					fBlack_2D_buffer->Buffer_real32 () [index] = (real32) x;

					}

				else
					{

					x *= 0x0FFFF * 256.0;

					int32 y = Round_int32 (x);

					fBlack_2D_buffer->Buffer_int32 () [index] = y;

					}

				}

			}

		}

	// Calculate one-dimensional (per row) black pattern, if any.

	if (info.fBlackDeltaV.Get ())
		{

		fBlack_1D_rows = info.fActiveArea.H ();

		}

	else if (fBlack_2D_rows == 0 &&
			 (info.fBlackLevelRepeatRows > 1 || fSrcPixelType != ttShort))
		{

		fBlack_1D_rows = info.fBlackLevelRepeatRows;

		}

	if (fBlack_1D_rows)
		{

		fBlack_1D_buffer.Reset (host.Allocate (fBlack_1D_rows * 4));

		for (j = 0; j < fBlack_1D_rows; j++)
			{

			real64 x = 0.0;

			if (fBlack_2D_rows == 0)
				{

				x = info.fBlackLevel [j % info.fBlackLevelRepeatRows]
									 [0]
									 [plane];

				}

			if (info.fBlackDeltaV.Get ())
				{

				x += info.fBlackDeltaV->Buffer_real64 () [j];

				}

			x *= scale;

			if (fReal32)
				{

				fBlack_1D_buffer->Buffer_real32 () [j] = (real32) x;

				}

			else
				{

				x *= 0x0FFFF * 256.0;

				int32 y = Round_int32 (x);

				fBlack_1D_buffer->Buffer_int32 () [j] = y;

				}

			}

		}

	// Calculate scale table, if any.

	if (fSrcPixelType != ttLong)
		{

		// Find linearization table, if any.

		uint16 *lut = NULL;

		uint32 lutEntries = 0;

		if (info.fLinearizationTable.Get ())
			{

			lut = info.fLinearizationTable->Buffer_uint16 ();

			lutEntries = info.fLinearizationTable->LogicalSize () >> 1;

			}
コード例 #4
0
void HistogramArea (dng_host & /* host */,
					const dng_image &image,
					const dng_rect &area,
					uint32 *hist,
					uint32 maxValue,
					uint32 plane)
	{
	
	DNG_ASSERT (image.PixelType () == ttShort, "Unsupported pixel type");
	
	DoZeroBytes (hist, (maxValue + 1) * (uint32) sizeof (uint32));
	
	dng_rect tile;
	
	dng_tile_iterator iter (image, area);
	
	while (iter.GetOneTile (tile))
		{
		
		dng_const_tile_buffer buffer (image, tile);
		
		const void *sPtr = buffer.ConstPixel (tile.t,
											  tile.l,
											  plane);
		
		uint32 count0 = 1;
		uint32 count1 = tile.H ();
		uint32 count2 = tile.W ();
		
		int32 step0 = 0;
		int32 step1 = buffer.fRowStep;
		int32 step2 = buffer.fColStep;
		
		OptimizeOrder (sPtr,
					   buffer.fPixelSize,
					   count0,
					   count1,
					   count2,
					   step0,
					   step1,
					   step2);
					   
		DNG_ASSERT (count0 == 1, "OptimizeOrder logic error");
		
		const uint16 *s1 = (const uint16 *) sPtr;
				
		for (uint32 row = 0; row < count1; row++)
			{
			
			if (maxValue == 0x0FFFF && step2 == 1)
				{
				
				for (uint32 col = 0; col < count2; col++)
					{
					
					uint32 x = s1 [col];
					
					hist [x] ++;
					
					}
					
				}
				
			else
				{
			
				const uint16 *s2 = s1;
			
				for (uint32 col = 0; col < count2; col++)
					{
					
					uint32 x = s2 [0];
					
					if (x <= maxValue)
						{
					
						hist [x] ++;
						
						}
					
					s2 += step2;
					
					}
					
				}
				
			s1 += step1;
			
			}
		
		}
		
	}