string square_anagram(string s1, string s2) { int len = s1.length(), i; string ret; for (i = 0; i < len; i++) if ((s1[i] >= 'A' && s1[i] <= 'Z')) break; if (i == len) { if (squares.find(s1) != squares.end() && squares.find(s2) != squares.end()) { if (s1 > s2) return s1; return s2; } return ""; } for (char c = '9'; c >= (i == 0 ? '1' : '0'); c--) { char save = s1[i]; if (used.find(c) != used.end()) continue; replace_all(s1, s2, s1[i], c); used.insert(c); if ((ret = square_anagram(s1, s2)) != "") return ret; used.erase(c); replace_all(s1, s2, c, save); } return ""; }
// Alínea D int Aposta::calculaCertos(const hash_set<int> &sorteio) const{ hash_set<int>::iterator it; int c =0; for (it=numeros.begin(); it!=numeros.end(); it++) if (sorteio.find(*it)!=sorteio.end()) c++; return c; }
void explore(Lit l, vector<Lit>& stack) { if (find(stack.begin(), stack.end(), l) != stack.end()) { // Found cycle // cerr << "Found cycle from " << l << endl; for (vector<Lit>::const_iterator i = find(stack.begin(), stack.end(), l); ++i != stack.end(); ) { addEquivalence(l, *i); addEquivalence(invert(l), invert(*i)); // cerr << ".. containing " << *i << endl; } // cerr << "End of cycle" << endl; } else if (find(stack.begin(), stack.end(), invert(l)) != stack.end()) { // We have not(l) -> l, so l is true addEquivalence(normalize(l), TRUE); addEquivalence(normalize(invert(l)), FALSE); // cerr << "Found known true literal " << l << endl; } else if (done.find(l) != done.end()) { // Nothing } else if (implications.find(l) == implications.end()) { // cerr << "Found pure literal " << l << endl; } else { done.insert(l); stack.push_back(l); for (size_t i = 0; i < implications[l].size(); ++i) { explore(implications[l][i], stack); } stack.pop_back(); } }
void getNB(HashGraph* G, int v, int distance, hash_set<int>& result, vector<bool>& mark) { assert(distance==1 || distance==2); EdgeMap* p_neighbors=G->getNeighbors(v); EdgeMap::iterator pnb; for (pnb=p_neighbors->begin(); pnb!=p_neighbors->end(); pnb++) { UINT w=pnb->first; if(!mark[w]) result.insert(w); } if(distance==1) return; hash_set<int>::iterator p; vector<int> temp; for(p=result.begin(); p!=result.end(); p++) temp.push_back(*p); int imnb_size=result.size(); //result.clear(); for(int i=0; i<imnb_size; i++) { p_neighbors=G->getNeighbors(temp[i]); for (pnb=p_neighbors->begin(); pnb!=p_neighbors->end(); pnb++) { UINT w=pnb->first; if(!mark[w]) result.insert(w); //automatically handel duplication. } } for(int i=0; i<imnb_size; i++) result.erase(temp[i]); }
int fun(){ ut i, t; Node one = {0}, next; tab.clear(); for(i=0;i<SIZ;i++){ cin>>t; if(t){ one.m |= (1<<i); one.s++; } } priority_queue<Node, vector<Node>, Node::cmp> q; q.push(one); while(!q.empty()){ one=q.top(); q.pop(); if(one.m == 0) break; for(i=0;i<SIZ;i++){ next = one; next.o |= (1<<i); set(next,i); if(tab.find(next.m) == tab.end()){ q.push(next); tab.insert(next.m); } } } output(one.o); return 0; }
void print(hash_set &S) { iterator_t p = S.begin(); while(p!=S.end()) { cout << S.retrieve(p) << " "; p = S.next(p); } cout << endl; }
int GetCount(int a, int b) { int qres = a + b + 1, n = 1; while (primes.find(qres) != primes.end()) { n += 1; qres = n*n + n*a + b; } return n; }
void LinearSNNClassifier::checkgradRowSparse(const vector<Example>& examples, mat& Wd, const mat& gradWd, const string& mark, int iter, const hash_set<int>& sparseRowIndexes, const mat& ft) { //Random randWdRowcheck = new Random(iter + "Row".hashCode() + hash)); int charseed = mark.length(); for (int i = 0; i < mark.length(); i++) { charseed = (int) (mark[i]) * 5 + charseed; } srand(iter + charseed); std::vector<int> idRows, idCols; idRows.clear(); idCols.clear(); if (sparseRowIndexes.empty()) { for (int i = 0; i < Wd.n_rows; ++i) idRows.push_back(i); } else { hash_set<int>::iterator it; for (it = sparseRowIndexes.begin(); it != sparseRowIndexes.end(); ++it) idRows.push_back(*it); } for (int idx = 0; idx < Wd.n_cols; idx++) idCols.push_back(idx); random_shuffle(idRows.begin(), idRows.end()); random_shuffle(idCols.begin(), idCols.end()); int check_i = idRows[0], check_j = idCols[0]; double orginValue = Wd(check_i, check_j); Wd(check_i, check_j) = orginValue + 0.001; double lossAdd = 0.0; for (int i = 0; i < examples.size(); i++) { Example oneExam = examples[i]; lossAdd += computeScore(oneExam); } Wd(check_i, check_j) = orginValue - 0.001; double lossPlus = 0.0; for (int i = 0; i < examples.size(); i++) { Example oneExam = examples[i]; lossPlus += computeScore(oneExam); } double mockGrad = (lossAdd - lossPlus) / (0.002 * ft(check_i, check_j)); mockGrad = mockGrad / examples.size(); double computeGrad = gradWd(check_i, check_j); printf("Iteration %d, Checking gradient for %s[%d][%d]:\t", iter, mark.c_str(), check_i, check_j); printf("mock grad = %.18f, computed grad = %.18f\n", mockGrad, computeGrad); Wd(check_i, check_j) = orginValue; }
int main(){ for(int i=0;i<100;i++){ tab.insert(2*i + 1); } for(hash_set<int>::iterator iter = tab.begin(); iter!=tab.end(); iter++){ cout<<(*iter)<<" "; } cout<<endl; return 0; }
void GetTmWorld(const char* pcBuffer, char* pcLeft, char* pcRight) { while(*pcBuffer != '\0') { if(tm_sep.find(*pcBuffer) == tm_sep.end() || ((*pcBuffer) == ' ')) { *pcLeft = *pcBuffer; ++pcLeft; ++pcBuffer; } else { break; } } *pcLeft = '\0'; while(tm_sep.find(*pcBuffer) != tm_sep.end()) { ++pcBuffer; } while(*pcBuffer != '\0') { if(tm_sep.find(*pcBuffer) == tm_sep.end() || ((*pcBuffer) == ' ') || ((*pcBuffer) == '*')) { *pcRight = *pcBuffer; ++pcRight; ++pcBuffer; } else { break; } } *pcRight = '\0'; }
void Query::mapNodes(vector<Neighborhood>& nbs, HashGraph* Gdb, OrthologInfoList* pOrthinfolist_db, hash_set<int>& Sq, hash_set<int>& Sdb, GraphMatch* gm, Queue& Q, hash_set<int>& nodesInQ, vector<bool>& mark, vector<bool>& dbmark) { hash_set<int>::iterator p; hash_map< int, vector<int>, inthash > lmap_q, lmap_db; for(p=Sq.begin(); p!=Sq.end(); p++) { for(unsigned int i=0; i<(*pOrthinfolist)[*p].size(); i++) { if((*pOrthinfolist)[*p][i]==0) continue; lmap_q[(*pOrthinfolist)[*p][i]].push_back(*p); } } for(p=Sdb.begin(); p!=Sdb.end(); p++) { if(!dbmark[*p]) { for(unsigned int i=0; i<(*pOrthinfolist_db)[*p].size(); i++) { if((*pOrthinfolist_db)[*p][i]==0) continue; lmap_db[(*pOrthinfolist_db)[*p][i]].push_back(*p); } } } hash_map<int, vector<int>, inthash>::iterator iter, iter2; for(iter=lmap_q.begin(); iter!=lmap_q.end(); iter++) { iter2=lmap_db.find(iter->first); if(iter2==lmap_db.end()) continue; else mapNodesHelp(nbs, Gdb, pOrthinfolist_db, iter->second, iter2->second, gm, Q, nodesInQ, mark, dbmark); } }
int trim_entropy_filter(vector<string>* keep_words, hash_set<string>& cad_words_set, WordInfoMap& wordinfo_map) { keep_words->reserve(cad_words_set.size()); for (hash_set<string>::iterator it = cad_words_set.begin(); it != cad_words_set.end(); ++it) { WordInfoMap::iterator it_map = wordinfo_map.find(*it); if (it_map == wordinfo_map.end()) { fprintf(stderr, "WARNING, word[%s] in cad_word, not in word_info", it->c_str()); continue; } if (it_map->first.size() <= WORD_LEN - 4 && it_map->second.calc_is_keep()) { keep_words->push_back(*it); } } return 0; }
int gen_trim_entropy(hash_set<string>& cad_words_set, WordInfoMap* wordinfo_map) { for (WordInfoMap::iterator it = wordinfo_map->begin(); it != wordinfo_map->end(); ++it) { string& word = const_cast<string&>(it->first); uint32_t freq = it->second.freq; if (word.length() >= 3 * 2) {//三个汉字,abc,插入词bc's left trim a,插入词ab's right trim c string left_trim(word.begin(), word.begin() + 2); string right_part(word.begin() + 2, word.end()); if (cad_words_set.find(right_part) != cad_words_set.end()) { WordInfoMap::iterator it_r = wordinfo_map->find(right_part); if (it_r == wordinfo_map->end()) { fprintf(stderr, "WARNING, word[%s] in cad word, not in word_info", right_part.c_str()); continue; } it_r->second.left_trim[left_trim] += freq; #ifdef DEBUG fprintf(stderr, "DEBUG, word[%s],left_trim[%s]\n", word.c_str(), left_trim.c_str()); #endif } string right_trim(word.end() - 2, word.end()); string left_part(word.begin(), word.end() - 2); if (cad_words_set.find(left_part) != cad_words_set.end()) { WordInfoMap::iterator it_l = wordinfo_map->find(left_part); if (it_l == wordinfo_map->end()) { fprintf(stderr, "WARNING, word[%s] in cad_word, not in word_info", left_part.c_str()); continue; } it_l->second.right_trim[right_trim] += freq; #ifdef DEBUG fprintf(stderr, "DEBUG, word[%s],right_trim[%s]\n", word.c_str(), right_trim.c_str()); #endif } } } return 0; }
void solve() { int op,x; for( f>>N; N; --N ) { f>>op>>x; switch( op ) { case 1 : H.insert(x); break; case 2 : H.erase(x); break; case 3 : g<< ( H.find(x)!=H.end() ) <<"\n"; } } }
bool containsArrayOps(const ASTNode& n, hash_set<int> & visited) { if (n.GetIndexWidth() > 0) return true; if (n.Degree() ==0) return false; if (visited.find(n.GetNodeNum()) != visited.end()) return false; visited.insert(n.GetNodeNum()); for (int i =0; i < n.Degree();i++) if (containsArrayOps(n[i],visited)) return true; return false; }
// counts the number of reads. Shortcut when we get to the limit. void numberOfReadsLessThan(const ASTNode& n, hash_set<int>& visited, int& soFar, const int limit) { if (n.isAtom()) return; if (visited.find(n.GetNodeNum()) != visited.end()) return; if (n.GetKind() == READ) soFar++; if (soFar > limit) return; visited.insert(n.GetNodeNum()); for (size_t i = 0; i < n.Degree(); i++) numberOfReadsLessThan(n[i], visited, soFar, limit); }
void support(const ast &t, std::set<std::string> &res, hash_set<ast> &memo){ if(memo.find(t) != memo.end()) return; memo.insert(t); int nargs = num_args(t); for(int i = 0; i < nargs; i++) support(arg(t,i),res,memo); switch(op(t)){ case Uninterpreted: if(nargs == 0 || !is_tree) { std::string name = string_of_symbol(sym(t)); res.insert(name); } break; case Forall: case Exists: support(get_quantifier_body(t),res,memo); break; default:; } }
void Query::mapNodesHelp(vector<Neighborhood>& nbs, HashGraph* Gdb, OrthologInfoList* pOrthinfolist_db, vector<int>& Vq, vector<int>& Vdb, GraphMatch* gm, Queue& Q, hash_set<int>& nodesInQ, vector<bool>& mark, vector<bool>& dbmark) { vector<Neighborhood> dbnbh; bool* qvisit=new bool[Vq.size()]; bool* dbvisit=new bool[Vdb.size()]; for(unsigned int j=0; j<Vdb.size(); j++) { dbvisit[j]=false; Neighborhood nbh; nbh.degree=Gdb->degree(Vdb[j]); getNeighborhood(Gdb, (*pOrthinfolist_db), Vdb[j], nbh); dbnbh.push_back(nbh); } vector<MappingIndex> mcand; for(unsigned int i=0; i<Vq.size(); i++) { qvisit[i]=false; Neighborhood& nbh=nbs[Vq[i]]; for(unsigned int j=0; j<Vdb.size(); j++) { MappingIndex m; m.indexv=i; m.indexw=j; if( getScore(nbh, dbnbh[j], m.score) ) mcand.push_back(m); } } std::sort(mcand.begin(), mcand.end(), orderMappingIndexByScore); for(unsigned int i=0; i<mcand.size(); i++) { int vi=mcand[i].indexv; int wi=mcand[i].indexw; float score=mcand[i].score; if(!qvisit[vi] && !dbvisit[wi]) { NodeMapping nm; nm.source=Vq[vi]; nm.target=Vdb[wi]; if(nodesInQ.find(Vq[vi])==nodesInQ.end())//Vq[vi] has no mapping in Q) { qvisit[vi]=true; dbvisit[wi]=true; Q.insert(nm); nodesInQ.insert(nm.source); dbmark[nm.target]=true; }else { //find the mapping in Q Queue::iterator p; for(p=Q.begin(); p!=Q.end(); p++) if(p->source==Vq[vi]) break; if( score < p->score ) { qvisit[vi]=true; dbvisit[wi]=true; dbmark[p->target]=false; Q.erase(p);//edge tm= remove the mapping of m.source from Q Q.insert(nm); //nodesInQ.insert(nm.source); dbmark[nm.target]=true; }else { qvisit[vi]=true; } } } } delete [] dbvisit; delete [] qvisit; }
bool contains(hash_set<long>&myset, long target) { hash_set<long>::iterator iter = myset.find(target); if(iter!=myset.end()) return true; else return false; }
/*! \brief Returns lists of applications to be asked to quit on shutdown. \param userApps List of RosterAppInfos identifying the user applications. Those will be ask to quit first. \param systemApps List of RosterAppInfos identifying the system applications (like Tracker and Deskbar), which will be asked to quit after the user applications are gone. \param vitalSystemApps A set of team_ids identifying teams that must not be terminated (app server and registrar). \return \c B_OK, if everything went fine, another error code otherwise. */ status_t TRoster::GetShutdownApps(AppInfoList& userApps, AppInfoList& systemApps, AppInfoList& backgroundApps, hash_set<team_id>& vitalSystemApps) { BAutolock _(fLock); status_t error = B_OK; // get the vital system apps: // * ourself // * kernel team // * app server // * debug server // ourself vitalSystemApps.insert(be_app->Team()); // kernel team team_info teamInfo; if (get_team_info(B_SYSTEM_TEAM, &teamInfo) == B_OK) vitalSystemApps.insert(teamInfo.team); // app server RosterAppInfo* info = fRegisteredApps.InfoFor("application/x-vnd.haiku-app_server"); if (info != NULL) vitalSystemApps.insert(info->team); // debug server info = fRegisteredApps.InfoFor("application/x-vnd.haiku-debug_server"); if (info != NULL) vitalSystemApps.insert(info->team); // populate the other groups for (AppInfoList::Iterator it(fRegisteredApps.It()); RosterAppInfo* info = *it; ++it) { if (vitalSystemApps.find(info->team) == vitalSystemApps.end()) { RosterAppInfo* clonedInfo = info->Clone(); if (clonedInfo) { if (_IsSystemApp(info)) { if (!systemApps.AddInfo(clonedInfo)) error = B_NO_MEMORY; } else if (info->flags & B_BACKGROUND_APP) { if (!backgroundApps.AddInfo(clonedInfo)) error = B_NO_MEMORY; } else { if (!userApps.AddInfo(clonedInfo)) error = B_NO_MEMORY; } if (error != B_OK) delete clonedInfo; } else error = B_NO_MEMORY; } if (error != B_OK) break; } // Special case, we add the input server to vital apps here so it is // not excluded in the lists above info = fRegisteredApps.InfoFor("application/x-vnd.Be-input_server"); if (info != NULL) vitalSystemApps.insert(info->team); // clean up on error if (error != B_OK) { userApps.MakeEmpty(true); systemApps.MakeEmpty(true); } return error; }